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Abstract 

The collision integral of Maxwell's balance equation (equation of change) for tensorial Hermite 
polynomials is calculated with velocity distribution functions represented as orthogonal 
expansions of local Maxwellians with respect to these polynomials. Closed expressions are 
obtained for the tensorial coefficients in the expansion of the collision integral with respect 
to products of Hermitian moments, i.e. velocity averaged Hermite polynomials. The averages 
over the collisional kinetic energies are represented by transport collision frequencies with two 
superscripts, which form a/null-sequence with increasing second superscript. 

1. Introduction 

To calculate the collision integral in Maxwell's (1867, equation 73) balance 
equation (equation of change) for a quantity of particles, assumptions must be 
made for the velocity distribution functions h(Cj) of all particle species j. In his 
first extensive paper on the dynamical theory of gases Maxwell (1867, equations 
27, 48 and 56) used a shifted Maxwellian h(Cj) = 1j1 (mjlcj - Cjl2 /2kT) with 
Cj as the average velocity of particles j, but in his follow-up paper Maxwell 
(1879) introduced (without saying so) an expansion of a local Maxwellian in 
tensorial Hermite polynomials He (n) { C / (2kT / m ) ! }, truncated after the third-order 
polynomial with n = 3. [Rearranging this truncated expansion with respect to 
tensorial powers cO = 1, C = c\ cc = c2 , CCC = c3 yields immediately Maxwell's 
(1879) equations 11, 21 and 22.] 

Seventy years later Grad (1949b, equations 4.8, 4.9 and 5.4) introduced this 
expansion for a simple gas with a local shifted Maxwellian as weight function. He 
not only neglected all polynomials with n ~ 4 but also the tracefree part of the 
third-order polynomial H e(3), thus ending up with his 13 moment approximation, 
consisting of the number density, the average velocity, the temperature, the 
(tracefree symmetric) stress tensor, and the heat flux vector. 

Instead oftensorial Hermite polynomials He(n) (x) Desloge (1964, equation 43), 
Weinert and Suchy (1977, equation AI), Lin et al. (1979, equation 9), Viehland 
and Lin (1979) and Viehland et al. (1981, equation 20) used products of three 
scalar Hermite polynomials Hen! (xl)H en2 (x2)Hen3 (X3). Their representation with 
Laguerre-Sonine polynomials and spherical harmonics (Weinert and Suchy 1977, 
equation A17 with A19 and A21) corresponds to our representation (75) with 
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(76) below. Tensorial Hermite polynomials were used by Eu and Ohr (1994, 
equations 2.5, 3.2 and 3.4) to expand the logarithm of the velocity distribution 
function divided by a Maxwellian. 

The most extensive treatment of the Hermite expansion was given in Balescu's 
(1988) book on transport processes in plasmas. Since plasmas are always mixtures, 
Balescu (1988, equations 4.3.11 and 4.3.16), like Maxwell (1867), introduced 
local shifted Maxwellians as weight functions for all species, but with species 
temperatures Tj := (mj/3k)lcj - Cjl2 instead of Maxwell's mean temperature T. 
Furthermore Balescu (1988, equation 2.6.24) used the Landau collision integral, 
valid for long-range interactions only, instead of the Maxwell-Boltzmann integral 
(used by the other authors quoted) which is valid also for short-range interactions. 

In contrast to Maxwell and Balescu we introduce tensorial Hermite polynomials 
in Section 2 for peculiar velocities Cj - v (where v is the mean-mass velocity of the 
whole mixture) with the mean temperature T as additional parameter. This has 
been proved convenient for the calculation of the dynamical (differential) part of 
the balance equation for Hermite polynomials (Suchy 1995, equation 1.7) and is 
also useful for the decomposition of the peculiar velocities into relative velocities 
(between collision partners) and centre-of-mass velocities in Sections 3 and 4. This 
decomposition is necessary for the treatment of the deflection during collisions 
in Section 6. The necessary integrations over the centre-of-mass velocities are 
done in Section 5. In Section 7 the characteristics of the collisional (long- and 
short-range) interactions are condensed in transport collision frequencies, which 
are linear combinations of omega integrals used in the Chapman-Enskog approach 
(Chapman and Cowling 1970, equation 9.33,2). 

2. Tensorial Hermite Polynomials and Hermitian Moments 

For the treatment of transport processes Enskog's equation of change is very 
often used as the starting point. It is a balance equation for the velocity average 

(1) 

of a property ¢j (r, t, C j) of particles of species j with velocity distribution function 
fj(r,t,C j ) and number density nj(r,t). The peculiar velocity C j := Cj - v is 
defined as the particle velocity Cj relative to the mean-mass-velocity 

with the mass densities 

Pj := mjnj and p:= LPj. 
j 

With the convective (barycentric) derivative 

D a 
-:= - +v·V 
Dt at 

(2) 

(3) 

(4) 
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and the acceleration Cj by external forces Enskog's equation of change reads 
(Chapman and Cowling 1970, equation 3.13,6) 

[) - -- D¢j 
- n . A- + V' . (n . (v + C·) A- .) - n . - - n· C . V' A[)t J'f/J J J 'f/J J Dt J J 'f/J 

(5) 

In the rate of change by collisions with particles of species k (Chapman and 
Cowling 1970, equation 3.51,3), viz. 

the dashed quantities are taken with velocities after a collision, the undashed 
before a collision, and Cjk := Cj - Ck is the relative velocity (with conserved 
modulus elk = ejk for elastic collisions). The surface element d2cJk on the 
unit sphere about the particle k is the solid angle element dEd( cos X) with 
the azimuthal angle E and the deflection angle X. The differential cross section 
(Jjk(X, ejk) depends on X and ejk (for elastic collisions between pointlike particles). 

If the particle property ¢j(r, t, Cj) varies with r, t only via the mean-mass
velocity v (2) and a mean temperature, defined with Boltzmann's constant k as 
(Chapman and Cowling 1970, equation 2.5,10) 

12: P-',lkT:= - ....J...C2 with 
2 n. 2 J 

(7) 
J 

then the first two negative terms in Enskog's equation of change (5) can be 
specialised as 

Specialising the velocity dependence of ¢j to three-dimensional tensorial Hermite 
polynomials, Grad (1949a, 1949b) divided all velocities C j by the square-root 
of kT Imj to obtain a dimensionless vector x as the argument of the Hermite 
polynomials. The explicit appearance of derivatives with respect to C j and T in 
the general balance equation (5) with (8) suggests the generalisation of Grad's 
(1949a, equation 13) nth order symmetric dimensionless Hermite polynomials 

(9) 
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to (Suchy 1995, equation 1.7) 

He(n)(j):= He(n)(TjjCj ):= exp(C]/2Tj) (_T/))n exp(-C]/2Tj) 
8Cj 

with 

The first polynomials are 

He(O)(j) = 1 He(l)(j) = C j He(2)(j) = C; - Tj I:: 

(10) 

~ ~ ~ 
He(3)(j) = CJ - 3Tj Cjl:: He(4)(j) = cj - 6Tj C;I:: +3TJ II (11) 

with tensorial powers C; := CjCj etc., the second order unit tensor 1:::= gigi, 
and the symmetry symbol for a nth order tensor T(n) is 

;<:;0 := 1 LT(n) , 
number of 11" 

(12) 
7r 

where 

11" := significant permutations of either the base vectors gi,gi or the indices. 

For example we have 

~ 
abb = i(abb + bab + bba) (13) 

Their velocity averages (1), called Hermitan moments (Balescu 1988, Section 
4.3), 'are partly related to macroscopic quantities: 

wht:·c 

He(l)(j) = C j ' 

pjHe(2)(j) = p. - njkTI, 
=J -

.! trace p' H e(3) (]') = q. - !in ·kTC· 
2 J J 2J J' (14) 

(15) 

are the partial pressure tensor and the partial energy flux vector, respectively. 
The introduction of a mean temperature Tin (7) does not require the equality 

of the temperatures 

(16) 
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of the different species j. With the definition (7) we can write 

T = '" nj (T. + mj 10-12) 
. ~ n 3 3k 3 

3 

(17) 

j j 

This is analogous to Ej pjHe(l)(j) = Ej pj(Cj - v) = 0 which follows from the 
definition (2) of the mean-mass velocity v and therefore justifies the introduction 
of the mean temperature T in (7) for the width of the local Maxwellian nj exp 
(-mjG} /2kT) (10) in parallel to its centre at the mean-mass velocity v. 

The balance equations (equations of change) for the traces of Pj H e(2) (j) are 
evolution equations for the differences Tj - T, whereas their sum over all species 
j is the evolution equation for the mean temperature T. 

3. Representation of the Collision Integral by Hermitian Moments 

Since the left-hand (dynamical) side of the general balance equation (5) with 
(8) has been calculated for the generalised tensorial Hermite polynomials He(n)(j) 
(10) (Suchy 1995, equation 4.2) we will do the same for the collisional integral 
(6), viz. 

The first step is the expansion of the velocity distribution functions /j and 
!k in an infinite series of orthogonal (generalised tensorial) Hermite polynomials 
(10) as (Grad 1949a, equation 4.8) 

(20) 

(21) 

Here· means the p fold contraction (scalar product) with the innermost indices 
p 

contracted first (McCourt et al. 1991, Section 20.4.1), and 

'._ . ._ exp(-GJ/2Tj) 
w(J) .- W(Tj, C j ) .- 3' analogous w(k) , (22) 

(21l"Tj) "2" 
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is the local Maxwellian as weight function in the orthogonality relation (Erdeyi 
et al. 1953, equation 12.9.1) 

(23) 

with T(q) as an arbitrary tensor of order q. This yields for the collision integral 
(19) the infinite series of Hermitian moments (Weinert and Suchy 1977, equation 
2.10) 

n. 8He n (j) = '" '" B(n+p+q)(j, k) . He p (j) He q (k) ( 
() ) coli ( ) ( ) 

J 8t k ~ 7 p+q p!TJ/2 q!T%/2 
(24) 

with the Maxwell-Boltzmann tensor of order n + p + q 

(25) 

Since the Hermitian moments in (24) are already macroscopic quantities there 
remains the calculation of the Maxwell-Boltzmann tensor (25). 

For the treatment of binary collisions as a two-body problem the introduction 
of the relative velocity Cjk := Cj - Ck and the centre-of-mass velocity relative to 
the mean-mass velocity v in (2) 

C jk := mjCj + mkCk = mjcj + mkCk _ v 

mj +mk mj +mk 
(26) 

is advantageous. With the reduced mass f.Ljk := mjmk/(mj + mk) there holds 

This leads to the Jacobian 

8(Cj , Ck) =-1 
8(Cj k , Cjk) 

(27) 

(28) 
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and to (Kumar 1966, equations 84 and 87) 

where 

C 2 C2 C 2 2 j k _ jk Cjk -+---+-
2Tj 2Tk 2Tjk 2Tjk 

. h T kT 
WIt jk:= ---

mj+mk 
and 

kT 
Tjk:= -

J.Ljk 

1141 

(29) 

(30) 

(31) 

The first integrations for the Maxwell-Boltzmann tensor (25) are now transformed 
as 

4. Decomposition of the Maxwell-Boltzmann Tensor 

To replace the (generalised) Hermite polynomials H e(p) (j) := H e(p) (Tj; C j) 
and He(q)(k) := He(q) (Tk; Ck)(10) by Hermite polynomials in the new variables 
Tjk, C jk and Tjk, Cjk (26) and (29) we write (Kumar 1966, equation 83) 

(33) 

with the mass ratios 

(34) 

With (10) this yields 

He~;~j) = He(p) (CjIT}) = He(p) (Tj C~k + Tk Cjt) , 
Tj Tjk Tjk 

He(q)(k) _ H (q) (C I !) _ H (q) ( Cjk _ . Cjk) 
/2 - e k Tk - e Tk 1 TJ 1 

q T"2" "2" Tk jk Tjk 
(35) 

The addition theorem (Erdelyi et al. 1953, equation 10.13.40) 
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together with (10) leads to the desired result 

where we have written for short 

(38) 

The insertion of the expressions (37) and an anologous one for H e(n) (jf) - H e(n) (j) 
into the Maxwell-Boltzmann tensor (25) would lead to products of three Hermite 
polynomials of the same variable. To avoid this the following ansatz is made 
(Kumar 1966, equation 88; Weinert and Suchy 1977, equation 2.14) 

H (q)(k) H (p)(.) H (M)(C· ) H (IJ.)( . ) 
e e J ="" e Jk e CJk . T(IJ.+M+q+p) (39) 

q/2 p/2 ~ ~ TM/2 1J./2 IJ.+M ' 
Tk Tj M IJ. jk Tjk 

H (n)(') H (v)( ) H (N)(C ) 
e J =" "T(n+O+N+v). e Cjk e jk (40) 

n/2 ~ ~ v+N v/2 TN/2 
Tj N v Tjk jk 

with the dimensionless transformation tensors (Kumar 1966, equation 90; Weinert 
und Suchy 1977, equations 2.18 and 2.19) 

T(IJ.+M+q+p):= J d3cjkW (Cjk) J d3Cjkw(Cj k) 

x He(IJ.)(Cjk) He(M)(Cjk ) He(q)(k) He(p)(j) 

I 1J./2 MITM/2 q/2 p/2' 
/L.Tjk . jk Tk Tj 

(41) 

where the orthogonality relation (23) has been used. The range of the summations 
for non-negative integer M,/L,N,II will be restricted later (61) to M +/L =p+q 

and N +11 =n. 
The addition theorem (37) will be used later in (46). 
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Insertion of the ansatz (39) and (40) into the Maxwell-Boltzmann tensor (25) 
leads to (Weinert and Suchy 1977, equation 2.20) 

with the collision tensor 

V(v+N+M+/L) := njnk J d3cjkW (Cjk)Cjk J d3C jkW(Cj k) (44) 

f 2A/ . He(v)(cjk)He(N)(Cjk) - He(v) (cjk)He(N) (Cjk) 
x d cjk O'Jk v/2 N/2 

v!rjk N!Tjk 

x He(M)(Cjk) He(/L)(Cjk) 

M!Tj~/2 p.!rN2 

The transformation tensors (41) and (42) merely depend on the properties of 
the Hermite polynomials, whereas the collision tensor (44) depends in addition 
on the properties of the particle interactions. 

5. Calculation of the Transformation Tensor 

To evaluate the transformation tensor T(/L+M+q+p) in (41) in the decomposition 
(43) of the Maxwell-Boltzmann tensor B(n+p+q) we observe that the latter is always 
p + q fold contracted with the symmetric Hermitian moments H e(p) (j) H e(q) (k) 
in (24). Therefore we calculate the contracted transformation tensor 

T(/L+M+q+p) . S(p)S(q) 
p+q 

(45) 

where S(p) and seq) are arbitrary symmetric tensors of order p and q, respectively. 
From the addition theorem (37) we obtain 

He(p)(j) .S(p) = ~ (p) (r{)t (r~ )P-t He(t)(C'k)'S(P) . He(p-t)(COk) , 
r 1!/2 p ~ t T2 r2 J t p-t J 
J t=O jk jk 
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where the contracted products of Hermite polynomials are scalar quantities and 
therefore commute with tensors. This property will be used in the next step, 
when (46) is inserted into (45): 

T(p,+M +q+p) . S(p) seq) 
p+q 

with the tensor 

(47) 

For the integration over ejk we use the generalised orthonormality relation 
(Erdelyi et al. 1954, equation 16.5.15) 

{
~ ~ll II 
T(l) . T(n) .m.n. for l- m + n 

= 1-'2±n [l, m, n] 

oem) for Z - m + n odd 

even 
(49) 

with 
1 1 

"'-[Z-, m-, n-] .- -;"Z---m-+-n-I-m---n-+---;-Z-I n---Z-;-+-m-I ' 
(50) 

2 . 2 ·2· 

where T(l) and T(n) are arbitrary tensors of order land n, respectively, and 
[Z, m, n] is invariant with respect to any interchange of two or three of the numbers 
Z, m, n. The quoted formula gives only the factor l!m!n!/[l, m, n] in (49). The 
other factor with the (Z - m + n) /2 fold contraction of the two symmetric tensors 
~ ~ 

T(l) and T(n) can be explained as follows: An l-fold contraction of an arbitrary 
tensor T(l) with a symmetric tensor H eel) cancels all nonsymmetric parts of 

~ 

T(l), leaving only contributions of the symmetric part T(l) (Suchy 1964, equation 
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,,-"'-.. 

A2.12). The only possibility to construct an mth-order tensor with T(l) and 
,.-A-.. 

T(n) is their (l- m + n)/2 fold contraction. For 1- m + n odd, also 1+ m + n is 
odd. Since the Hermite polynomials He(n)(x) in (11) contain even/odd tensorial 
powers of x for n even/odd, the integral in (49) vanishes for 1+ m + n odd and 
therefore for I - m + n odd. 

Calculating the factorials in the definition (50) of [I, m, n] for 1+ m + n even, 
one obtains 

1 Ol+m,n 
for I.::; m'::; n 

[l,m,n] l!m! 

Om+n,l 
m!n! 

for m'::; n'::; I (51) 

On+l,m 
n!l! 

for n'::; I'::; m. 

With y = e jk and 0: = Tjk in the expression (49) we obtain for (48) 

with the 

first selection rule: t - M + u even. (53) 

For the next integration in (47), viz. 

t ' I J H (p-t) ( ) = .u. d 3c w(c.) e ejk. S(p) . 
[t M u] Jk Jk (p-t)/2 p-t ~ 

, , Tjk 2 

t!u! (p - t)!(q - u)! S(p) S(q) 

[t, M, u] [p - t, q - u, J.L] p+q-r-p. 
(54) 

with the 

second selection rule: p - t - J.L + q - u even, (55) 
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we have used again the generalised orthonormality relation (49) with (50) with 
l = p - t, n = q - u, m = /-L, which resulted in the contraction number 

t-M+u p-t-/-L+q-u 
2 + 2 

(56) 

of the two symmetric tensors S(p) and S(q). 

The two selection rules (53) and (55) together give the 

combined selection rule: p + q - M - /-L even (57) 

with the consequence 

(58) 

Until now only a post-contracted transformation tensor T(Jl+M+q+p) in (45) 
has been considered. But in the decomposition (43) of the Maxwell-Boltzmanan 
tensor B(n+p+q) the transformation tensor T(Jl+M+q+p) appears M + /-L fold 
pre-contracted. Modifying the previous results for this case with arbitrary 
symmetric tensors S(Jl) and S(M) we are led to 

{ 

rv S(M) . S(Jl) for M + /-L - P - q 
S(M) S(Jl) . T(Jl+M+q+p) M+"2-V- q 

M+Jl ( ) 
= 0 q+p for M + /-L - P - q odd 

even 

(59) 

with the consequence 

M+/-L'?:.p+q. (60) 

The combination of (58) and (60) gives the 

selection rule: p + q = M + /-L • (61) 

Application of the selection rule (61) to (47) with (54) and (59) results in 

T(Jl+M+q+p) . S(p) S(q) rv S(p) . S(q) = S(p) S(q) , 
p+q 0 

S(M) S(Jl) . T(Jl+M +q+p) rv S(M) . S(Jl) = S(M) S(Jl) . 
M+Jl 0 

(62) 

Therefore the transformation tensor T(Jl+M+q+p) can be taken as proportional 
to the symmetrising tensor I(Jl+M/q+p) which selects and reproduces products 
of symmetric tensors S(M) S(Jl) and S(p) S(q) if M + /-L times precontracted or 
p + q = M + /-L times postcontracted, respectively: 

(63) 
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Examples are, cf. (12) and (13), 

where Einstein's summation convention is used. 
Combining the results (47), (52), (54), (61) and (63) we can write the 

transformation tensor as 

(64) 

with the scalar transformation factor 

p q (_l)q-u r~+t-u rk-t+u 
Tjk(M,J.LiP,q) :=p!q!LL [][PJ ] 

t=o u=o t, u, M - t, q - u, J.L 

(65) 

For Burnett functions [Le. products of scalar spherical harmonics and Laguerre
Sonine polynomials, cf. (75) and (76)] instead of tensorial Hermite polynomials, 
expressions containing Talmi coefficients (Kumar 1966, Sections V and VI) are the 
equivalent to .the transformation tensors (64) with (65). The symmetry relations 
of the Talmi coefficients have their counterparts presumably in the properties of 
the symmetrising tensor I(/L+Mlq+p). 

For the calculation of the double sum in the expression (65) of the transformation 
factor Tjk(M, J.LiP, q) the result (51) for the factorial products [l, m, n] (50) is 
used together with the selection rule (61). The result is 

T· (M J.L.p q) = p'q' ~ ~(_l)q-U r~-u+t rP-t+uDM,t+u Dp+q,/L+M 
Jk '" •• L..- L..- J k t" (- t)'( _ )' t=o u=O . u. p . q u. 

(66) 

with the Jacobi polynomial pj:-M,q-M)(rJ - rD (Erdelyi et al. 1953, equation 
10.8.12), recalling rJ + r~ = 1 in (34). 

Finally we have to insert the expression (64) for the two transformation 
tensors T(n+O+N+v) and T(/L+M+q+p) in the decomposition (43) of the Maxwell-
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Boltzmann tensor B(n+p+q) (j, k) (25). The symmetrising tensors I(n+OIN +11) and 
I(J.L+Mlq+p) reproduce products of symmetric tensors S(II) S(N) and S(M) S(J.L) if 
v + N times postcontracted and M + p, times precontracted, respectively. Since 
the collision tensor V(II+N+M+J.L) in (44) contains symmetric Hermite tensors 
H e(lI) , H e(N), H e(M) and H e(J.L) from (10) we can therefore write 

I(n+OIN+II) . V(II+N+M+J.L) . I(J.L+Mlq+p) = V(II+Nlm+J.L) (67) 
~N M~ , 

where V(II+NIM+J.L) equals V(II+N+M+J.L) but with the additional property of 
symmetrising when v + N fold precontracted or M + p, fold postcontracted. But 
during the calculations of the following Section 6 this property becomes overgrown 
with superior symmetries. Therefore we continue to write V(II+N+M+J.L). 

Now the insertion of (64) into the decomposition (43) of the Maxwell-Boltzmann 
tensor yields 

(68) 

= 7;/2 L L DN+II,n T jk(N, v; n, 0) L L DJ.L+M,p+qTjk(M, p,;p, q)V(II+N+M+J.L) . 

N II M J.L 

All that is left of the two transformation tensors in (43) are the two scalar 
transformation factors Tjk(N, v; n, 0) and Tjk(M, p,; p, q) (66) and the Kronecker 
symbols DN+II,n DM+J.L ,p+q representing the selection rule (61). 

6. Collision Tensor and Collision Rates 

We now turn to the evaluation of the collision tensor V(II+N+M+J.L) in (44). 
The conservation of the total momentum during a collision leads with (26) to 

Cjk = C jk · (69) 

For the integration over Cjk we make use of the orthogonality relation (23) of 
the Hermite polynomials and obtain 

V(II+N+M+J.L) . S(p)S(q) =n.nk jd3C'kW (C'k)Ck 
M+J.L J J J J 

(70) 

For the integration over the solid angle d2cjk = dtd( cos X) we expand the 
differential cross section ajk(Cjk, X) for point-like particles as (Kumar 1966, 
equation 96) 

00 

ajk(Cjk, X) = L al (cjk)l1 (cos X) with 
1=0 

A' A cos X = Cjk' Cjk· (71) 
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The orthogonality of the Legendre polynomials PI (cos X) yields for the coefficient 
(Weinert and Suchy 1977, equation 2.23) 

2l + 1/+1 
O'I(Cjk) = -- d(COSX)O'jk PI (COS X) . 

2 -1 
(72) 

With the connection (Ikenberry 1961, equation 5) 

p (AI A.) _ (2l - l)!!y(l)(AI ) y(l)( . ) 
I ejk . eJk - l! Cjk i eJk (73) 

between the Legendre polynomials PI and Ikenberry's (1961, equation 1) symmetric 
and tracefree tensorial spherical harmonics y(l) we can write the expansion (71) 
as 

( AI A ) ~ (2l - I)!! ( )y(I)(AI) y(l)(A ) 
O'jk Cjk, ejk . ejk = ~ , 0'1 Cjk ejk i ejk 

1=0 l. 
(74) 

with (2l - I)!! := (2l - 1)(2l - 3) ... 1 as the double factorial of an odd number. 
Next we need the representation of the Hermite polynomials in terms of 

spherical harmonics y(m) and Laguerre-Sonine polynomials Lz.:~~~/2 (Ikenberry 
1962, equations 2, 5, 11 and 31) 

n r , 

He(n) (0:; x) = n!o:n/2 L2 L(n,m;x2j20:)L(n-m)/2y(m)(x) (75) 
m=O,l 

with the polynomials 

L(n,m;x2j20:):= (_1)(n-m)/2 (2m+1)!!2m/2 (x2)(m/2) L::~l (X2) 
m!(n + m + I)!! 20: -,--- 20: 

(76) 

and I(n-m)/2 as the (n - m)j2 fold tensorial power of = 1(2), the unit tensor of 
second order. The sum over m means m = 0,2, ... n for n even and m = 1, 3 ... n 
for n odd. Hence n - m is always even. 

With complex basis-vectors composed of cartesian ones Ikenberry's tensors 
y(l) (x) can be represented with conventional spherical harmonics Yim (x) (McCourt 

et al. 1991, equation 20.6-9a). The products of these with xl exp (_x2)Ll,;-j (x2) 
are often called Burnett functions and used as basis functions for the calcilation 
of collision integrals (Weinert 1978, equations 3.3 and 3.4). 

With the expansion (74) for the differential cross section O'jk and the use of 
(75) with (76) for H e(v) and H e(M) in (70) we write the collision tensor (44) in 
the form 

x 2J L V,u; ~ 2J L j.L,t; ~ W(V+2M+ M)(l,u,t) v ( c2) M ( c2) 
u=O,l 2Tjk t=0,1 2Tjk 

(77) 
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with v - u even and J1. - t even and with the angular part 

(78) 

For the integrations over the solid angles d2cjk and d2cJk we use the 
orthonormality of Ikenberry's spherical harmonics (McCourt et a1. 1991, equation 
20.6-9c) 

(79) 

The 'detracer' (Pirani 1965, equation 2.44; Thorne 1980, equation 2.2) 

[//2] ( 1 ) ( 1 ) [1/2] , " 
D(2/) = '" (_l)m m 2m D(2/) = '" (_l)m 1.(21 - 2m - 1).. D(2/) 

~o c:) m ~o (I - 2m)!(2m)!!(21 - I)!! m 

(80) 

with 

= (l(lll) . l2m). S(l) 
2m= 1 

(81) 

sorts out the tracefree part (deviator) of the completely symmetric tensor S(l). 
The double factorial of an even number is (2m)!! = 2mm!. The m fold trace of 
S(l) is defined as the 2m fold convolution of S(l) with the mth tensorial power 
Im of the unit tensor L The symmetrising symbol ,-A-.. was replaced by the 
~ontraction with the sy~metriser l(lll) (63). Then the distributive law 

T(l) i (U(2n) ~ V(l)) = (T(l) ~ U(2n») i V(l) with n::::; 1 (82) 
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for multiple contractions was employed. Examples are 

D(S) = 1(414) _ Q. 1( 414) . 12 + .l. 1( 414) . 14 
7 2= 35 4= ' 

D(10) = 1(515) _ 10 1(515) . 12 + ...§.. 1(515) . 14 . 
9 2= 21 4= 

(83) 

The integration over d2c;k in (78) yields with (79), recalling that Ikenberry's 
spherical harmonics y(l) are already tracefree, 

= f d2c· 8 l!41l' I(v-u)/2y(l) (c· )'I(/l-t)/2y(t) (c )'. S(p) seq) 
Jk lu (2l + I)!! = Jk = Jk /l 

with O!y(O) /1!! = 1. 
For the application of the orthogonality relation (79) on the integration 

over d2cjk we observe that the J-L-fold post-contraction of the J-Lth order tensor 
~ 

I(/l-t)/2y(t) has 'scalarised' that tensor. Now we can combine it with the first 
symmetrised tensor product, as required in the orthogonality relation (79). We 
obtain, recalling the selection rule p + q = M + J-L in (61), 

with lJ + J-L even. 
With this result for the angular part W(v+2M+/l) in the expression (77) for 

the collision tensor the infinite sum over the l-dependent factors reduces to the 
single term at!(2t + 1) - aD. In the resulting expression we change t to l, define 
the 'transfer collision frequencies' (Suchy and Rawer 1971, equation 2.2), cf. (72), 
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and introduce the collision rates 

l!47r 100 
2 ( CJk) ( CJk) (I) Kjk(V, 1", l) := tn. , , \11 dCjkCjkWL V, l; -- L 1", l; -- Vjk (Cjk) 

o 2~k. 2~k 

= Kjk(J.L, V, l) . (87) 

Then we can write the collision tensor (77) as 

V(II+N+M+I') . s(p)s(q) = _n 8MN ~ K"k(V I" l);+I')/;-ID(21)'. S(P)S(q; 
M 3 M' L.; 3 " -+1' . 1=1,2 - I' 

(88) 

with I" - l even and V + I" even. 
The last task is the evaluation of the collision rates (87). 

7. Calculation of the Collision Rates 

The collision rates (87) contain products of two polynomials L(v, l; f.jk)L(J.L, l; f.jk) 
(76), where we have introduced with (29) the normalised kinetic collision energy 

2 2 C"k J.LjkC"k f.jk:= _3_ = __ 3_. 

2Tjk 2kT 
(89) 

The most important factor in the calculation of L(v, l; f.jk)L(J.L, l; f.jk) is the 
product of two Laguerre polynomials 

m+n 
L~(f.jk)L~(f.jk) = L a(m,n;a,s)L~(f.jk) (90) 

s=O 

with the coefficients (Weinert 1975, equations A3.3, A3.15 and A3.17) 

a(m, n; a, s) 

( n+a) 
m+n m+a n m+n-k 

:=(_l)m+n+s s:a B (m-n+k) (m+n-k) ( s-k ) 
( s ) k=lm-nl 2 2 

= a( n, m; a, s) for non-negative m and n. (91) 

The summation index k runs through all even/odd numbers between 1m - nl and 
m + n if m + n is even/odd. Examples are 

a(O, n; a, s) = Dns , a(l, n; a, s) = Dn-1,s + (n + l)(a + 1) 
n+a-1 n+a+1 Dn+1,s. (92) 
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Now we can write the product of the two polynomials L(v, l; €jk)L(J.L, l; €jk) in 
(76) in the integrand of the collision rate (87) as 

v+p,/2)-1 ((2l + I)!!) 2 (2€jd 
L(v, l; €jk)L(J.L, l; €jk) = (-1)( l! (v + l + 1)!!(J.L + l + I)!! 

(p,+v/2)-1 (v - l J.L -l 1) I+! 
x I: a -2-' -2-;l + 2's Ls (€jk) 

s=o 
(93) 

with J.L -l, v -l even and non-negative. 
With the definitions (89) for €jk and (31) for W(Cjk) we transform the integration 

in (87) as 

100 2! 100 
1 dCjkC]kW(Cjk) = --3 d€jk€]k exp( -€jk) , 

o (271")"2" 0 
(94) 

introduce 'transport collision frequencies' (Suchy and Rawer 1971, equations 3.5 
and 3.6) 

(Is) (-l)Ss! 100 I+! I+! (I) { !} Vjk (Tjk) := (l 1), d€jk€jk exp( -€jk)L s (€jk)V jk (2Tjk€jk) (95) 
+s+ 2' 0 

as coefficients in the orthogonal expansion of the transfer collision frequencies 
(86) 

00 

v;~ {(2Tjk€jk)!} = I:(-l)Sv;~S)(Tjk)L~+!(€jk) 
8=0 

(96) 

and obtain for the collision rate (87) with (93), (94) and (96) the expression 

(v+p,/2)-1 
Kjk(V,J.L,l) = I: a(v,J.L,l,s)V;~)(Tjk)' 

The coefficients are calculated as 

a(v, J.L, l, s) 

s=o 
(97) 

( 
v±l±1 ) ( d ) (d.l!:.-l-k) (2l ± 1)!! (,,+,../2)-1 2 2 2 

.- (v ± l ± 1)!!(jt -l)!!l! ~ ~ + !s. d.l!:. _ L±..k s - k 
k=191 4 2 4 2 

= a(jt,v,l,s) (98) 

with J.L -l, v -l even and non-negative. The third binomial coefficient requires a 
lower bound Iv - J.L1/2 for s. Together with the upper bound {(J.L + v)/2} -l in 
the expression (97) we obtain the restriction 

- <s<---l V-J.L\ v+J.L 
2 - - 2 

(99) 

for the summation over s in (97). 
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Since the transfer collision frequencies v;~) in (86) vanish and therefore also 

the transport collision frequencies v;~s) in (95) we need only the coefficients 
a(v, p" l, 8) in (98) for l2: 1. Examples are 

a(O, p" l, 8) = 0, a(l l) = 811152S,/l-1 
,p" ,8 (p,-1)!!' (100) 

(101) 

a 4 l 8 _ ~ 1 8 2s ,/l 81482s,/l-4 { ( 2) } 
( ,p" , ) - 2. 2! 7· (p, - 4)!! 8 - J! ~ 4 + (p, _ 2)!! + 4!(p, _ 4)!!' (102) 

a(5, p" l, 8) 

011 { 1 
= 2· 2! 2·5· 7· (J.L - 5)!! 

+ + 28,1-'+3 ( 4) 1 (2) {5 } 
S - Jl: ~ 5 5· (J.L - 3)!! s - Jl: ~ 1 2· (J.L - I)!! 

{ ( 2) } 813 1 8 2s "-1 8158 2s ,,-5 +-- -5 + ,,., + "., 
2·3! 3·3·(p,-5)!! 8-T- (p,-3)!! 5!(p,-5)!!· 

(103) 

Because the transport collision frequencies v;~) in (95) are coefficients of 
an orthogonal expansion (96) they form a null sequence with increasing 8. Its 
convergence is fastest for Maxwell interaction with transfer collision frequencies v;~ 
in (86) independent of the kinetic collision energy. Because of the orthogonality 

property of the Laguerre-Sonine polynomials L~+! (fjk) the definition (95) of the 
transport collision frequencies yields 

for Maxwell interaction. (104) 

For rigid spheres one obtains (Suchy 1984, equations B.7a and B.7c) 

(l+~)! ~! _ r(l+~) r(~) 
(l+~+8)! (~-8)!-r(l+~+8) r(~-8)· 

(105) 

With increasing 8 the factor (l + ~ + 8)! in the denominator increases very 
fast, whereas (~- 8)! increases also and in addition changes sign. Hence for 
short-range interactions a fast convergence is secured with increasing 8. For the 
long-range (screened) Coulomb interaction the expression for v;~s) is much more 
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involved (Suchy 1996, equation 7.10) and the convergence is much slower than 
for short-range interactions (Suchy 1984, figure 23). 

The transport collision frequencies v(ls) in (95) are linear combinations of 
omega integrals n(l)(r), introduced by Chapman and Cowling (1970, equation 
9.33,2), as was shown by Weinert et al. (1978, equations A.16 and A.19). But 
the n(l) (r) in general do not decrease with increasing r, and therefore the v(ls) 

are more suitable for estimates in connection with the truncation of the series 
expansion (24) for the Hermite polynomials. 

Since the collision tensor V(v+N+M+Jt) in (88) is proportional to the Kronecker 
delta 8MN the Maxwell~Boltzmann tensor B(n+p+q)(j, k) in (68) can now be 
written as 

B (n+p+q) ( . k) - n/2 """ """ I': T (N . 0) ], - T j ~~UN+v,n jk ,v,n, 
N v 

X L8MN L8Jt+M,P+qTjk(M,/1;p,q)V(V+N+M+Jt). (106) 
M Jt 

The three Kronecker deltas allow the reduction of the fourfold sum to a single 
sum over N and the replacements 

v = n - Nand /1 = P + q - N. (107) 

The requirement v + /1 even in (88) leads then to the requirement n + p + q 
even in the double sum (24) for the collision integral of the Hermite polynomial 
He(n)(j). 

Because of the vanishing of the coefficients a(O, /1, l, s) and a(v, 0, l, s), compare 
(l00) with (98), the collision rates Kjk(O, /1, l, s) and Kjk(v, 0, l, s) in (97) also 
vanish and (88) leads to 

V(O+N+M+Jt) = 0 = V(v+N+M+O) . (108) 

Then (107) yields the smaller of the numbers n - 1 and p + q - 1 as the upper 
limit in the sum over N : 

0::; N ::; min(n -l,p + q -1). (109) 

The particular Maxwell~Boltzmann tensor B(o+p+q)(j, k) in (106) requires 
N + v = 0 and therefore contains only the vanishing collision tensors V(o+Jt) in 
(108) . Therefore 

(110) 

Since B(o+p+q)(j, k) represents the collision integral (24) for the Hermite tensor 
H e(O) (j) = 1 of zeroth order, its vanishing expresses the conservation of particles 
of species j during (non-reactive) collisions, as it should be. 

8. Concluding Remarks 

According to (24) the Maxwell~Boltzmann tensors B(n+p+q)(j, k) in (106) are 
the expansion coefficients of the collision integral (19) for the Hermite polynomial 
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He(n)(j) in (10) with respect to the Hermitian moments He(p)(j) He(q)(k) of the 
colliding particle species j and k. The first factor T}/2 in (106) is a power of the 
ratio Tj := kT/mj in (10). The transformation factors Tjk(N,v; n,O)Tjk(M,f..L;p,q) 
in (66) are (dimensionless) functions of the mass ratios r;:= mj/(mj +mk) and 
r~ := mk/(mj + mk) in (34). The collision tensor V(v+N+M+I') in (88) with (97) 
contains linear combinations of transport collision frequencies v;~s) (Tjk) in (95), 
depending on the ratio Tjk := kT/f..Ljk in (29). 

The appearence of Talmi coefficients was avoided due to the decomposition 
(37) of the Hermite polynomials for peculiar velocities into Hermite polynomials 
for centre-of-mass and relative velocities, in comparison to the corresponding 
decomposition of spherical harmonics (Kumar 1966, equation 88). 

The use of the mean-mass-velocity v in (2) as the centre of the local 
Maxwellians (22) and the mean temperature T in (7) for its width was important 
for the achievement of a closed expression (106) with (66) and (88) for the 
Maxwell-Boltzmann tensor B(n+p+q)(j,k) in (25), as it was for a relatively short 
expression for the dynamical (left-hand) side of the balance equation for He(n)(j) 
(Suchy 1995, equation 4.2). In contrast to the procedure with the velocity average 
Cj as the centre of the local Maxwellian and the species temperature Tj in (16) 
for its width (Balescu 1988, equation 4.2.6), the (infinite) set of coupled balance 
equations (24) contains automatically a balance equation for the diffusion velocity 
C j = He(1)(j) in (14), whereas it has to be introduced additionally in the other 
procedure (Balescu 1988, equations 4.3.16 and 4.4.5). 

In (14) and (18) it was illustrated that the traces of the Hermitian moments 
H e(2) (j) and H e(3) (j) play an important role to represent physical quantities. 
To extract them from the infinite hierarchy of coupled balance equations for 
the Hermitian moments He(n)(j) (Suchy 1995, equation 4.2) one has to take 
(multiple) traces of these equations. To avoid this one could introduce these 
traces already in the expansion (20) of the velocity distribution function. This 
would lead to a double sum with a doubly infinite number of summands (Balescu 
1988, equation 4.3.11). For the first members of this double sum the balance 
equations were calculated stepwise by Balescu (1988, Sections 3.4, 4.5 and 4.6). 

Balescu (1988, Section 5.4) has shown that for long-range interactions Grad's 
(1949b, equation 5.4) 13 moment approximation is too crude for the calculation 
of the electrical conductivity of a plasma. The additional taking into account of 
the trace free part of the single trace of H e( 4) and the double trace of H e(5) in a 
21 moment approximation (Balescu 1988, equation 4.3.21) improves the results 
considerably, whereas the further taking into account of the tracefree part of the 
double trace of H e(6) and the triple trace of H e(7) in a 29 moment approximation 
(Balescu 1988, equation 4.3.22) makes only marginal improvements. Therefore 
the 21 moment approximation seems to be a sufficiently accurate approximation 
for highly ionised plasmas. The neglect of the tracefree parts of H e(3), H e(4) 

and H e(5) can be understood with an investigation of the dynamical (left-hand) 
parts of the balance equations for He(n) with n ;::: 3 (Suchy 1995, Section 5). 

A comparison of the rapidity of the convergence of Balescu's procedure and 
that presented here has not yet been made, because it would require considerable 
numerical computations. Since the difference between the two procedures rests 
mainly in the centring and widening of the local Maxwellians, it is difficult 
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to assume that one procedure converges faster than the other. But it is very 
likely that for predominant short-range interactions the convergence is faster than 
for predominant long-range (Coulomb) interactions, cf. (104) and (105) and the 
following remarks, and Grad's 13 moment approximation is sufficient. 
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