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Abstract 

A new form of coupled nonlinear evolution equation is derived for a plasma with negative 
ions in (2+1) dimensions. This system of equations can be considered to be an extension of 
the usual Davey-Stewartson equation. A modified version of reductive perturbation has been 
used. It is also shown that this set of equations can sustain both cnoidal type and the usual 
solitary wave-like solution. Such an equation can have important applications in describing 
nonlinear wave propagation in a dusty plasma. 

1. Introduction 

The study of nonlinear wave propagation in plasmas forms an important part 
of theoretical research in plasma physics. Perhaps the initiation of such a study 
was the pioneering paper of Washimi and Taniuti (1986). After that various 
modifications have been incorporated to explain different kinds of wave phenomena 
taking place in a plasma. Some noteworthy attempts are those of Moj!1llhus and 
Wyller (1988), Ichikawa and Watanabe (1977), Mukherhjee and Roy Chowdhury 
(1.995) and many more (see e.g. Das and Paul 1985; Rizzato 1988; Yu and Luo 1992). 
In this communication we show that by adopting a modified form of reductive 
perturbation we can deduce a new form for a set of coupled nonlinear equations for 
a nonrelativistic plasma with negative ions. It can easily be demonstrated that this 
new set of equations does have cnoidal type and also solitary wave-like solutions. 

The present set of equations can be thought of as an extended version of the 
Davey-Stewarston (1974) equation. It is actually a multicomponent generalisation 
which considers the negative ion to be important on various accounts. Firstly, 
in the ionospheric plasma, the presence of negative ions is an established fact. 
Furthermore, there is now widespread interest in the study of dusty plasmas. A 
dusty plasma (de Angelis 1991) can be modelled in various ways. The simplest is 
to consider the presence of a typical dust grain, either with positive or negative 
charge, though in nature the fluctuation of a dust charge does occur due to the 
collision of these particles with the streaming electrons and ions. Furthermore, a 
dust particle is usually considered to have a mass greater than or equal to the ion. 
So we can think of the third species as being either a dust particle or negative ion. 
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2. Formulation 

Let us consider a nonrelativistic plasma consisting of electrons and both positive 
and negative ions. We also assume that a hydrodynamic description is possible 
for our plasma. Then the equations of motion describing our plasma can be 
written as 

ana a a 
fit + ax (naua) + oy (na Vol.) = 0, (Ia) 

( OUa OUa OUa ) o¢ ana 
na fit + Ua ax + Vol. oy + na ax + Ta ax = 0, (Ib) 

( OVa OVa ova) o¢ ana 
na at + Ua ax + CVa oy + na oy + Ta oy = 0, (Ic) 

on~ a a 
fit + ax (n~ U~) + oy (n~ u~) = 0, (ld) 

( OU~ OU~ OU~ ) n~ o¢ T~ on~ 0 
n~ -+u~-+v~- ---+---= , 

at ax oy Q ax Q ax 
(Ie) 

( OV~ OV~ OV~) n~ o¢ T~ on~ 0 
n~ -+u~-+v~- ---+---= , 

at ax oy Q oy Q oy 
(If) 

o2¢ o2¢ 
ox2 + oy2 = e'" + n~ - na , (Ig) 

where the subscript a stands for a positive ion and (3 for a negative ion, (ua, Vol.) 
are the (x, y) components of the velocity of the positive ion and (u~, v~) those of 
the negative ion, T 01., T ~ are respectively their temperatures, and the electrons are 
assumed to form the background. The velocities (ua, up) and densities (na, np) 
are all properly normalised. Here ¢ denotes the electrostatic potential. The 
explicit form of the normalisation for the various physical quantities is as follows: 

For each na, np 

na/naO ---+ na, n~/n~o ---+ n~ j 

for the electrostatic potential ¢ 

e¢/ KTe ---+ ¢ j 

for the coordinates (x, y) 

(x, y)/>'de ---+(x, y) 

where >'~e = kTe/47rno e2j for the time coordinate t 

tOj ---+t, 



Nonlinear Equation in (2+1) Dimensions 1161 

with n~ = 47rno e2 / Mj, and with Mi the ion mass. Lastly the velocity v is 
normalised as 

v / Co ------+ v, Co = Adeni. 

We consider next the time evolution of the wave packets of a perturbation 
and use the following stretched variables: 

e = €(x - Vgt), rJ = €y, T = €2 t , (2a, b, c) 

where V g is the group velocity. At this point we may add some comments 
regarding the form of this stretching. Note that if we forget the y coordinate 
then we have a two-dimensional problem. In that case to deduce a nonlinear 
Schrodinger equation in two dimensions one uses stretching similar to that given 
in equations (2a) and (2c) (Verheast 1988; Tagare and Das 1975; Watanabe 1984), 
along with a Fourier-like expansion of the dependent variable. We have modified 
it slightly by adding the stretching of the y coordinate, but have kept intact 
the expansion of the variables no" n{3 etc. (Sato et al. 1990). We also expand 
the physical variables as follows (Mukhopadhyay et al. 1994; Mukhopadhyay and 
Roy Chowdhury 1995): 

00 00 

na = naO + L €m L n~(l)(€, rJ, T) exp(iX), (3) 
m=l 1=-00 

00 00 

n{3 = n{3o + L €m L nif(l)(€, rJ, T)exp(iX), 
m=l 1=-00 

( ua ) (uao ) ~ ~ (U~(l)(€' rJ, T)) = + ~ €m ~ exp(iX), 
Va VaO m=l 1=-00 v;;"(l)(€, rJ, T) 

( U{3) (U{30) ~ ~ (Uif(l)(€, rJ, T)) = + ~ €m ~ exp(i X) , 
V{3 V{30 m=l 1=-00 vi3(l)(€, rJ, T) 

where X = l(kx-wt). The following relations are imposed: 

V(m)* = _v(m). n(m)*(l) = n(m)(-l)· -+.(m)*(l) = ¢(m)(_l) (4) 
1 -1 , a,{3 a,{3' 'I' , 

where the asterisk denotes complex conjugation, to ensure reality of the physical 
variables. Also we have set 

00 00 

¢= L€m L ¢~m)(€,rJ,T)exp(iX). 
m=l 1=-00 

Substituting these expressions in the basic equations (la) to (lg) and transforming 
the independent variables as in equations (2), we equate various powers of € and 
coefficients exp(i X) for different l. 
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From the terms which are first order in € we get 

viI) (l) = v1(l) = 0, 

n(I)(l) = k2nao ",(1) 
a p2 _ k2Ta 'PI , 

n (1) (l) = k2n[3o ",(1) 
[3 k2T[3 _ p2Q 'PI , 

U(1) (l) = k(kvx - w) ¢(1) 
a k2Ta _ (kvx _ W)2 1 , 

U(I) (l) = k(kvx - W) ",(1) 
[3 (kvx _ W)2Q _ k2T[3 'PI , 

along with the dispersion relation 

where p = kvx-w. 

(5) 

(6) 

For second order in € we can proceed in the same fashion and obtain explicit ex-
. 2 2 (2) (2) ( (2) () (2) (2) (2) (2) presslOns for na(1), n[3(l), u[3 (1), Va 1), v[3 1, na (2), Ua (2), n[3 (2), u[3 (2), 

v12)(2), etc. in terms of ¢(1), ¢(2), ¢~2), n~I), n11)(1). Since these expressions are 
quite lengthy we do not reproduce them here. 

We now consider l = 0 terms in second order of € which leads to 

( ) 8n~2)(0) 8u~)(0) 8vi2) (0) 8 1",(1)12 _ 0 
Vx - Vg 8e + nOlO 8e + nOlO 8", + a 8e 'PI -, 

8U~2) (0) 8ni2) (0) 8n12) (0) 8 (1) 2 _ 
nao(vx - vg ) 8e + (Ta + nOlO) 8e - nOlO 8e + b 8e 1¢1 1 - 0, 

8vi2) (0) 8n~) (0) 8n12) (0) 8 (1) 2 _ 
nao(vx - Vg ) 8e + (nOlo + Ta) 8", - nOlO 8", + c 8", 1¢1 1 - 0, 

8n12) (0) 8u12) (0) 8v12) (0) 8 (1) 2 

(Vx - Vg ) 8e + n[30 8e + n[30 8", + d 8e 1¢1 1 ,= 0, 

8 (2) (0) 2 8 (2) (0) 
( ) U[3 n[30 8na(0) n[30 +T[3 n[3 8 1¢(1)12 _ 0 

n[30 Vx - Vg 8e - Q ~ + Q 8e + 9 8e 1 -, 

8V12) (0) /30 8n~(0) n[30 + Ta 8n12)(0) + h ~ 1",(1)12 = 0 
n[3o(vx - Vg ) 8e - Q ~ + Q 8fJ 8e 'PI ,(7) 
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where a, b, c etc, are constants given in the Appendix, On the other hand 
equating coefficients of terms of second order in € and with I = k we get 

(k ) 3() 'k 3() ( )on~)(1) Vx - w no: 1 + 1 no:o Uo: 1 = - Vx - Vg oe 

_ on~~(1) _ no:o (OU~~(1) + OV~~(1)) + i k[n~)(2) 

x u~I)*(1) + u~2)(2) n~I)*(1)]- ik[u~2)(0) n~I)(1) + n~2)(0) u~I)(1)], (Sa) 

ou(2)(1) 
= -no:o(vx-Vg ) 'Be +in(2)(2)u~I)*(1)(kvx-W) 

+ i k[n~I)(2) ¢i1)* - n~) (0) ¢i1)*] - no: (0) O¢~?) - i kno:o 

on(2)(1) ou{l) (1) 
x U(2) (0) U(I) (1) - T. 0: - n 0: - i(kv - w) 

0: 0: 0: oe 0:0 aT x 

(Sb) 

'(k ) (3)(1) '( )Ov~2)(1), 
1 Vx - W no:o Vo: = -1 no:O Vx - Vg Oe - 1 no:O 

(Sc) 

(Sd) 

Jl (2) Jl2",(I) 02",(1) 
(1 + k2)",(3) + n(3)(1) _ n(3)(1) = ik~ + _u _'1'1_ + _'1'1_ (Se) 

'1'1 (3 0: Oe Oe OfJ2' 

, (3), (3) _ on~) (1) 
l(kvx - w)n{31 + 1 kn{30 U{31 - -(Vx - CVg ) Oe 

on~I)(1) (OU~2)(1) + OV~2)(1)) +' k[ (2) (l)*(1) 
- aT - n{30 Oe OfJ 1 n{3 U{3 

+ u~) (2) n~I)* (1)] - ik[u~) (0) n~l) (1)(1) + n~) (0) U~I) (1)] , (Sf) 
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ou(2)(1) ou(l)(l) 
-n,6o(vx -vg ) ~~ -n,60 ~T +i(kvx-w)n~2)(2) 

X U~l)* (1) - (ik/Q) [n~2) (2) </>11) - n~2) (0) </>11)*] - i(kvx - w) 

X n~2) (0) U~l) + i kn,6o [u~2\2) u~l)* (1) - u~) (0) U~l)* (1)] 

T,6 on~2) (1) n,60 0</>12) 

-(j o~ +Q~' (8g) 

It is interesting to note that due to the existence of the dispersion relation it 
is possible to eliminate the unwanted quantities and we obtain the following 
equations (by using equations 7): 

(9a) 

n,60 02n~2)(0) _ (h 0 2 ~) 1,.1.(1)1 2 = 0 (9b) 
+ Q OTJ2 OTJ2 + 84 oe 'f"1 , 

a 02,.1.(1) 02</>(1) 
i - ,.1.(1) + p ,.1.(1) + P _'f"_1_ + 'V __ 1_ + RI,.I.(1) 12,.1.1 + 8,.1.(1) n(2)(0) aT 'f"l 1 'f"l oe I OTJ2 'f"l 'f"l 'f"1 <l 

+ T</>11) n~2) (0) = 0, (9c) 

where we have set 

describing the evolution of the nonlinear wave inside the plasma. The constants 
in these equations are given as 
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_ (kvg - W)2 _ kVg - W (nf3o/Q nao) /D 
Pl - 2k2p k2 a4 _ k4Tf32/Q2 + a4 _ k4T; , 

nf3o/Q nao 
D = (a2 _ k2Tf3/Q)2 + (a2 _ k2Ta)2 ' 

DB _ 2nf3o k 3p k2 Ta + naO 
- Q2(v", - vg)(a2 - k2Tf3)/Q2 + a2 - k2Ta + v'" - Vg 

2k3p 

(10) 

with 

and similar expressions for E l , E2 and E3. It may be pointed out that if there 
was no dependence on 17 (that is the second space variable), then equations (9a) 
and (9b) could be integrated at once to obtain n~2) (0) and n~2) (0) in terms of 

l¢il )1 2 , and (9c) would lead to a single nonlinear Schrodinger equation describing 
the evolution of an envelope soliton. Such an NLS equation has been widely 
discussed in the literature. On the other right hand, if one of the species of 
ions is absent, that is na or nf3 is zero, then one of (9a) or (9b) drops out 
and we get back the Davey-Stewartson (1974) equation. Thus, our equation is 
a generalisation of such a system. 

3. Solution 
In our analysis we have deduced a new set of coupled nonlinear evolution 

equations for a plasma with negative and positive ions at different temperatures. 
This set of equation seems to be a multicomponent generalisation of a Davey-
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Stewartson type equation, which is already well-known. In the following we try 
to find an explicit form of the wave sustained by such an equation. 

Let us assume that 

(11) 

where (J = p~ + kry + nT is the wave front in three-dimensional space-time and ¢ 
is a phase factor. It is then easy to observe that (9a) and (9b) reduce to 

(12) 

leading to 

(13) 

where }'1, A2 are constants. On the other hand, the imaginary and real parts of 
(9c) lead to respectively 

or u'll zz + v'll + w'll3 = o. 

Upon integration this yields 

z 
-+c= 
Vii 

(14) 

(15) 

The integral on the right hand side can be expressed in terms of inverse elliptic 
functions through the formulae 

r du 1 
io (x 2 + a2 )(x2 + b2 ) = (l/a)sn- (u, a), 

a = tan- 1 (b/a) , (16) 
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whence we observe that W can be expressed as a cnoidal wave in (2+1) dimensions 
and, hence, also Y a and Y (3 through formulae (13). On the other hand, if k = 0 
in equation (15), v and ware both negative, then the integral can be evaluated 
in terms of the hyperbolic inverse functions 

w = Asech[2Vvl(z/JU + c)], 

which is simply the desired solitary wave. 

4. Discussion 

In our computations we have shown that, by taking recourse to a modified 
form of a reductive perturbation technique, a new set of nonlinear equations 
can be derived for a plasma with more than one ion species. This extra ion 
species could also be a dust grain present in the ionospheric plasma or elsewhere. 
Already the three component model has been used to simulate the phenomenon 
of dusty plasmas. Of course we have not used the exact features pertaining to a 
dusty plasma, but even so equations of the form (9) can be deduced. 
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Appendix 

Here we give the expressions for the parameters which we require in the 
dispersion relation: 

a= 
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