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Abstract

Electron impact ionisation of one-electron atoms or ions is well described in the near threshold
region by Wannier’s theory based on estimating the classical phase space available to two
outgoing electrons in the Coulomb field of the residual ion. The relation between classical
dynamics and quantum mechanics in the near threshold region becomes more complicated and
interesting in ‘non-Wannier situations’, where classical ionisation is either strictly forbidden
or strongly inhibited. This paper focusses on two examples of such situations, which have
been receiving increasing attention in recent years, namely the s-wave model and the case
where the exponent in Wannier’s law diverges.

1. Introduction

An accurate description of the ionisation of a ground state hydrogen atom by
electron impact,

e− + H −→ e− + e− + H+ , (1)

has occupied atomic physicists for half a century. At energies somewhat above
the ionisation threshold, E = 0, the correct reproduction of the observed total
ionisation cross section σ(E) (Shah et al . 1987) proved very difficult, and
standard approximation techniques as well as large scale numerical calculations
were unsuccessful for a long time. The breakthrough came when Bray and
Stelbovics (1993) applied their ‘convergent close coupling’ (CCC) technique to
calculate σ(E) ab initio. The success of their calculation and also the failure of
other elaborate efforts is demonstrated in Fig. 1. Another focus of attention has
been the behaviour of σ(E) in the immediate vicinity of the threshold. Wannier
(1953) investigated how the volume of classical phase space allowing the reaction
(1) grew with increasing energy and thus derived his famous threshold law,

σ(E) ∝ EνW , νW = 1
4

(√
100Z − 9
4Z − 1

− 1
)
. (2)
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The explicit form (2) of the threshold law refers to a system with an infinitely
heavy nucleus of charge Z and two outgoing electrons, and we shall, for simplicity
confine the discussion to these conditions. Generalisations of Wannier’s classical
theory have been formulated to describe the general three-body Coulomb problem
and, quite recently, for the break-up of a system into any number of particles
interacting exclusively via Coulomb forces (Kuchiev and Ostrovsky 1998). Many
authors have formulated quantum mechanical theories of near threshold ionisation
involving various degrees of classical or semiclassical assumptions (Rau 1971;
Feagin 1984; Macek and Ovchinnikov 1996) and, with some exceptions (Temkin
1991), most such investigations support Wannier’s result.

Fig. 1. Total ionisation cross sections for the reaction (1). The open circles
are the experimental results from Shah et al . (1987) and the solid line is
the result of the ab initio calculation of Bray and Stelbovics. The crosses
and the long-dashed line show the results of other elaborate theoretical
calculations, published in 1979 and 1990 respectively. [From Bray and
Stelbovics (1993).]

Simple classical phase space arguments are not so useful in ‘non-Wannier’
situations which occur, e.g., when ionisation is classically either strictly forbidden
or strongly inhibited in the near threshold region. Examples are the s-wave
model and the situation where the charge of the light particles (the ‘electrons’) is
four times the charge of the heavy particle (the ‘residual ion’), which effectively
corresponds to a nuclear charge Z = 1

4 . The aim of this paper is to draw
attention to these non-Wannier situations where the relation between classical
and quantum mechanics is a bit more subtle.
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All systems discussed consist of particles interacting exclusively via Coulomb
forces, and simple scaling rules apply in such systems with homogeneous potentials.
These scaling rules allow an unambiguous definition of the semiclassical limit as
explained in Section 2. Section 3 briefly reviews the collinear model, where the
classical approximation and Wannier’s theory work well, and the subsequent two
sections discuss examples of non-Wannier systems where the traditional Wannier
theory breaks down.

2. Semiclassical Limit

Consider a physical system with any number f of degrees of freedom, whose
kinetic energy is T =

∑f
i=1 p

2
i /2mi and whose potential energy is described by a

homogeneous function V (x1, . . . xf ) of the coordinates,

V (ξx1, . . . , ξxf ) = ξdV (x1, . . . , xf ) . (3)

If the trajectory (xi(t), pi(t)) describes the classical motion at the (conserved)
total energy E, then the scaled trajectory (ξxi, ξd/2pi) describes mechanically
similar motion at the energy E′ = ξdE (Landau and Lifshitz 1971). Hence the
classical dynamics depends only on the sign of E and not on its magnitude. The
quantum mechanics obtained by quantising the classical dynamics with Planck’s
constant h̄ at energy E is equivalent to that obtained by quantising the scaled
dynamics at energy E′ with an effective Planck’s constant h̄′ (Friedrich 1998a;
see also Sect 5 ·3 ·4 in Friedrich 1998b):

h̄′ = ξ1+d/2h̄ =
(
E′

E

)1/d+1/2

h̄ . (4)

For a given (constant) energy E′ in the scaled system, the semiclassical limit
corresponds to h̄′ → 0. For the equivalent quantum mechanics in the physical
system (h̄ constant), this corresponds to (E′/E)1/d+1/2 → 0. The semiclassical
limit in a homogeneous potential of degree d is thus reached for

|E| → ∞ if d > 0 or d < −2 , (5)

but it is reached for

|E| → 0 if − 2 < d < 0 . (6)

For all systems of particles interacting exclusively via Coulomb forces, the potential
energy is homogeneous of degree d = −1, so the semiclassical limit is not at high
energies but for vanishing total energy of the system. This applies to all atoms,
ions and molecules, as long as the atomic nuclei are treated as point particles
and nonclassical interactions such as those involving spin are ignored.

In a collision process, the initial state consists of a projectile and a target which
are well separated. The initial binding energy Eb of the target is positive for a
stable target and is, e.g., equal to Z2/2n2 (in atomic units) for a one-electron
atom (or ion) of nuclear charge Z in an eigenstate of principal quantum number n.
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The incoming kinetic energy Einc of relative motion of the projectile and the
initial binding energy Eb of the target combine to make up the total energy
E = Einc−Eb. Choosing a particular initial binding energy Eb defines a reference
energy and the classical dynamics is not independent of E for fixed Eb. However,
due to the scaling properties in the homogeneous potential, the classical dynamics
depends not on E and Eb independently, but only on the ratio E/Eb, which we
shall call the scaled energy ε:

ε = E/Eb . (7)

This applies to all observables calculated in the classical framework, e.g. to the
(differential or integrated) classical ionisation cross section:

σcl(E,Eb) = σcl(ε) . (8)

The threshold behaviour of the classical ionisation cross section is the behaviour
of the function σcl(ε) as ε→ 0.

Fig. 2. (a) Plane spanned by the total energy E and the initial target binding energy Eb

as determining variables of a projectile–target collision. If the potential is homogeneous, the
classical dynamics of the collision depends only on the scaled energy, ε = E/Eb, and is invariant
along the lines of constant ε, shown as rays from the origin. For a Coulombic potential, the
semiclassical limit is reached by approaching the origin on one of these rays. (b) The same
plane spanned by the alternate variables ε, which determines the classical dynamics, and

√
E,

which plays the role of an effective Planck constant h̄′ and determines how close we are to
the semiclassical limit. The semiclassical limit is now reached by approaching the ordinate
on horizontal lines. Approaching the threshold E → 0 for a fixed initial binding energy Eb

corresponds to approaching the origin on a half-parabola, ε = (h̄′)2/Eb. In each part of the
figure, the thick long dashed line marks the range covered by the classical calculation shown
in Fig. 4, see Section 3. In the area bounded by the abscissa and the thin dashed line,
ionisation of hydrogen is classically forbidden in the s-wave model, see Section 4.
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The quantum mechanical (differential or integrated) ionisation cross section
σqm(E,Eb) depends on both variables E and Eb, which span the plane shown
in Fig. 2a. Alternate variables are the scaled energy (7), which determines the
classical dynamics, and the effective Planck constant (4), which determines how
close we are to the semiclassical limit, see Fig. 2b. Remembering that d = −1
and choosing E′ in (4) to be unity we have (h̄ = 1)

h̄′ =
√
E . (9)

The semiclassical limit at a given scaled energy ε is reached for h̄′ → 0 implying
E → 0 (and Eb → 0). This corresponds to approaching the origin on one of the
rays in Fig. 2a or to approaching the ordinate horizontally in Fig. 2b.

In order to reach the semiclassical limit, experiments or quantum mechanical
calculations should be performed at constant values of the scaled energy (7).
This is analogous to the technique of ‘scaled energy spectroscopy’, which has
become a widely used tool in the analysis of atoms in external fields (Friedrich
1998a, 1998b; Friedrich and Eckhardt 1997; Schmelcher and Schweizer 1998). In
the semiclassical limit, h̄′ → 0, the quantum mechanical ionisation cross section
will converge to a generally finite value given by the classical (semiclassical)
calculation. This is true for all values of the scaled energy (7), in particular
near threshold, so the classical (semiclassical) threshold behaviour should be
reproduced if we proceed in this way.

However, most experimental (and theoretical) investigations of near threshold
ionisation study the behaviour of σqm(E,Eb) for fixed initial binding energy Eb

and small total energy, E → 0. This corresponds to approaching the abscissa on
a vertical line in Fig. 2a or to approaching the origin on one of the half-parabolas,

ε =
(h̄′)2

Eb

, (10)

in Fig. 2b.
Even if we assume that the quantum mechanical ionisation cross section

σqm(E,Eb) ≡ σqm(ε, h̄′) is well approximated by the classical expression σcl(ε) in
a region around the origin in Fig. 2b, the explicit form of the threshold behaviour
can depend on how we approach the origin. If σcl(ε) behaves as a power of ε
near ε = 0, then the Eb-dependence of the ionisation cross section simply factors
out,

σcl(ε) ∝ εν =⇒ σqm(E,Eb) ≈ σcl(E/Eb) ∝ E−νb × Eν , (11)

and the quantum mechanical threshold behaviour of the cross section for any
fixed initial binding energy Eb is given by the same power law; the dependence
on the initial binding energy merely affects the constant of proportionality. This
is not the case for a more general behaviour of σcl. Take for example the
exponentially damped case,

σcl(ε) ∝ e−a/ε
ν

=⇒ σqm(E,Eb) ≈ σcl(E/Eb) ∝
(

e−a/E
ν
)Eνb

. (12)
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Changing Eb now affects the whole shape of the cross section as function of
energy, and not just a proportionality constant. The appropriate threshold law
does not depend only on whether ionisation is described classically or quantum
mechanically. It depends crucially on how the threshold is approached. If the
cross section is calculated for fixed scaled energy E/Eb, it should approach
the classical (semiclassical) result near threshold, E ≡ (h̄′)2 → 0. However, the
limiting behaviour of σqm(E,Eb) along one of the half-parabolas (Eb constant,
E → 0) need not be the same as along the ordinate (h̄′ = 0, ε→ 0).

3. The Collinear Model

The electron impact ionisation of a one-electron atom involves two electrons
moving in the Coulomb field of the nucleus. The important coordinates are
the separations r1, r2 of the two electrons from the nucleus and the angle θ
between the corresponding radius vectors. Directly at threshold, the two electrons
can only escape if they asymptotically approach the ‘Wannier configuration’,
r1 = r2, θ = π. The classical motion in this configuration is stable against bending
away from the collinear configuration θ = π, but unstable against deviations in
the direction r1 6= r2. This makes it meaningful to study the classical motion of
the collinear configuration, in which both electrons are on opposite sides of the
nucleus (θ = π), as has been done in considerable detail by Rost (1994, 1998).

The model has two degrees of freedom, r1 and r2, and is described by the
potential energy

VCOL(r1, r2) = −Z
r1

− Z

r2

+
1

r1 + r2

, (13)

which is illustrated for the case of a hydrogen target (Z = 1) in Fig. 3.
In the initial state, the inner electron oscillates on a linear Kepler orbit
corresponding to the hydrogen ground state (Eb = 1

2 ), while the outer electron
approaches from +∞ with asymptotic kinetic energy E + 1

2 , E ≥ 0. In this
one-dimensional world, reaction cross sections are replaced by dimensionless
probabilities, and the probability for ionisation is given by the fraction of ionising
trajectories.

The classical ionisation probabilities, integrated over the energy distribution
of the two outgoing electrons, were calculated by Rost (1994, 1998) and are
shown in Fig. 4; they were scaled by a constant factor to fit the experimental
data (McGowan and Clarke 1968) at one energy (5 ·84 eV). Calculated and
experimental ionisation rates agree excellently over a range of parameters which
reaches far beyond the immediate vicinity of the threshold, where the Wannier
threshold law (2) applies (cf. the dashed line in Fig. 4). We can assume that
both the classical and the collinear approximations work excellently in this range,
which is indicated by the thick long dashed lines in Figs 2a and 2b. It is
always difficult to verify an analytical threshold law on the basis of numerical
results in the near threshold region, but it does seem reasonable to assume that
the good agreement of Fig. 4 is maintained when we approach the threshold
E → 0 while keeping the initial binding energy of the target fixed at Eb = 1

2 ,
which corresponds to continuing to the origin on the appropriate half-parabola
in Fig. 2b.
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Fig. 3. The potential (13) for Z = 1.

Fig. 4. Total ionisation cross sections for the reaction (1). The
circles are the experimental data from McGowan and Clarke (1968),
the solid line is the classical ionisation probability calculated in the
collinear model (13) and scaled to agree with the data at one point
(5 ·84 eV). The dashed line shows the proportionality to E1 ·127

according to Wannier’s threshold law (2). [From Rost (1998).]

There are, however, situations where the behaviour of the quantum mechanical
ionisation cross section for E → 0 at fixed Eb differs significantly from the
classical result. Such cases are the subject of the next two sections.



330 H. Friedrich et al .

Fig. 5. The potential (14) for Z = 1.

4. The s-wave Model

A drastic simplification of the problem of two electrons in the field of an
atomic nucleus is achieved by assuming spherical symmetry of each electron’s wave
function. Like the collinear model (13), this ‘s-wave model’ has two variables,
viz. the radial distances r1 and r2 of the spherical electrons from the (infinitely
heavy) nucleus, but the potential now is

VSW(r1, r2) = −Z
r1

− Z

r2

+
1
r>

, (14)

where r> is the larger of the two radii, r1 and r2. It is illustrated in Fig. 5 for the
case of a hydrogen target (Z = 1). The s-wave model implies a spherical world
with one (radial) dimension, and this is different to the picture developed by
Temkin (1962) and Poet (1978, 1980, 1981) where the concept of three-dimensional
spatial variables is retained, but the electron–electron interaction is restricted to
single-electron s waves, so the potential also has the form (14). All nonvanishing
matrix elements of the interaction are the same in both models, but in the
Temkin–Poet model there is an ionisation cross section with the dimensions of
an area, as in the real case. The ionisation probability σSW of the s-wave model
is related to the ionisation cross section σTP of the Temkin–Poet model by (Ihra
et al . 1995)

σTP(E) =
π

k2σ
SW(E) =

π/2
E + Eb

σSW(E) , (15)

where k is the wave number of the projectile electron, Einc = k2/2 (in atomic
units). The factor in front of σSW in (15) is essentially the area occupied by the
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zero angular momentum component of the incoming wave front, and it expresses
the decrease of the relative contribution of this s wave to the incoming plane
wave as the energy Einc of the projectile electron increases.

The s-wave model is unrealistic, because it ignores all angular degrees of
freedom. It does, however, in the radial degrees of freedom, retain the effects
of long-range Coulomb interactions and electron correlations. It is probably
the simplest model where these effects can be investigated, and it has recently
become a rather popular and widely studied system (Ihra et al . 1995, 1997a;
Handke et al . 1993a, 1993b; Bray and Stelbovics 1994; Rudge 1996; Macek
and Ihra 1997; Scott et al . 1997; Robicheaux et al . 1997). The quantum
mechanical ionisation probabilities were obtained by Ihra et al . (1995) using
a time-dependent approach, and the equivalent ionisation cross sections of the
Temkin–Poet model have been calculated by Bray and Stelbovics (1994) using
the convergent close coupling method. At this point it is worth mentioning that
the s-wave model, as unrealistic as it may be, does rather accurately reproduce
the energy dependence of the experimental integrated cross section for ionisation
of hydrogen by electron impact. This is demonstrated in Fig. 6 showing the
calculated ionisation probability from Ihra et al . (1995), which was scaled to
agree with the experimental cross section at the maximum. The good agreement
seems to indicate that the integrated cross sections are rather insensitive to the
effects of angular correlations, which are completely absent in the s-wave model.
For comparison, the short dashed line in Fig. 6 shows the ionisation cross section
σTP obtained in the Temkin–Poet model (Bray and Stelbovics 1994), which is
of course too small in comparison with experiment, because it only includes the
contribution of the s waves. For a fair comparison with the solid curve in Fig. 6
we include a rescaled version of σTP (long dashed line) which reproduces the
correct height at maximum. Note that, even after rescaling, σTP differs strongly
from the experimental cross section (Shah et al. 1987), because the factor
1
2π/(E + Eb) exaggerates the fall-off towards higher energies, see equation (15).

The difference between the one-dimensional picture (s-wave model) and the
three-dimensional picture (Temkin–Poet model) based on the potential (14) is not
important when studying the threshold behaviour of the ionisation probability
(cross section) at fixed initial binding energy Eb, because the prefactor proportional
to 1/(E + Eb) in (15) remains finite at E = 0. Note, however, that for fixed
scaled energy (7) we have E + Eb = E(1 + ε)/ε, so the relation (15) can be
written as

σTP(E) =
ε π/2

E(1 + ε)
σSW(E) , (16)

and the threshold behaviour does differ by one power of E in the s-wave and
the Temkin–Poet pictures.

The classical s-wave model is naturally defined as the classical one-dimensional
two-particle system with the potential (14). It is not so clear that a classical
version of the Temkin–Poet model can be defined consistently. If, for example,
the cross sections of a classical Temkin–Poet model were related to that of the
classical s-wave model via equation (15), then it would violate the classical scaling
rules, because the factor 1

2π/(E+Eb) is not just a function of the scaled energy.
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Fig. 6. Total ionisation cross sections for the reaction (1). The diamonds are
the experimental data from Shah et al . (1987), the solid line is the quantum
mechanical ionisation probability calculated in the s-wave model (14) and
scaled to agree with the data at the maximum. The short dashed line is the
ionisation cross section (15) according to the Temkin–Poet model, and the
long dashed line is obtained by scaling this cross section to have the correct
height at the maximum.

The classical ionisation probability in the s-wave model, σSW
cl (E), was calculated

by Handke et al . (1993b), and it has the interesting feature that it vanishes in
a finite range of scaled energies, because all trajectories at these scaled energies
fall back into the regime where one electron is bound. The energy range where
this occurs defines a dynamical ionisation threshold below which ionisation is
forbidden classically. The dynamical threshold is determined by a transcendental
equation involving the nuclear charge Z (Handke et al . 1993b); for hydrogen
(Z = 1) it is at ε = 1

3 , i.e.

σcl(ε) = 0 for ε = E/Eb ≤ 1
3 . (17)

The region above threshold where ionisation is forbidden in the classical s-wave
model is bounded by the thin dashed lines in Figs 2a and 2b.

So far, the only analytical analysis of the quantum mechanical threshold
behaviour in the s-wave model is based on a recently proposed semiclassical
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theory of ionisation due to Macek and Ovchinnikov (1996). It is formulated in
terms of the hyperspherical representation of the electron–nucleus separations,
R =

√
r2
1 + r2

2, α = arctan (r2/r1), so the potential energy of the two electrons
in the field of the nucleus is

V (R,α, . . .) =
C(α, . . .)

R
, (18)

and its dependence on the angular degrees of freedom and on the hyperangle α
is contained in the function C. Both for the collinear model (13) and for the
s-wave model (14), the only variable besides the hyperradius R is α. For the
collinear model we have

CCOL(α) = − Z

cosα
− Z

sinα
+

1√
1 + sin 2α

≈ −4Z − 1√
2
− 12Z − 1

2
√

2

(
α− π

4

)2

for α ≈ π/4 . (19)

For the s-wave model we have,

CSW(α) =
{
−Z/ sinα for α < π/4 ,
−Z/ cosα for α > π/4

≈ −Z
√

2− Z
√

2

∣∣∣∣∣α− π

4

∣∣∣∣∣ for α ≈ π/4 . (20)

The lower lines in (19) and (20) represent the expansion around the ‘Wannier
ridge’ r1 = r2 corresponding to α = π/4.

In its simplest adiabatic form, the theory of Macek and Ovchinnikov describes
the outgoing electrons via a WKB-type wave function. For the collinear or the
s-wave model (Macek and Ihra 1997) it has the form

Ψ(R,α) =
ψ(R)√
R
φR(α) , ψ(R) =

1√
K(R)

exp

[
i
∫ R

R0

K(R′) dR′
]
. (21)

The hyperradial momentum K(R) is related to the available kinetic energy as
a function of R; this is determined by the potential energy along the Wannier
ridge, r1 = r2, and the energy of motion in the hyperangle degree of freedom,
which is contained in the hyperangle wave function φR and depends on R as
a parameter. In the Macek and Ovchinnikov theory, the hyperradius R is not
restricted to the positive real axis, and the hyperangle wave function φR for
large negative R is taken to be the ground state in the (binding) potential,
obtained via (18) from the lower lines in (19) (collinear model) or in (20) (s-wave
model). Analytic continuation to large positive values of R leads to a complex
energy of the hyperangle wave function and to a complex hyperradial momentum
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K(R), and the imaginary part of K(R) is a key to describing the near threshold
behaviour of the ionisation current associated with the wave function (21).

Both for the full three-dimensional case (Macek and Ovchinnikov 1996) and
for the collinear model (Macek and Ihra 1997) this theory yields a power law as
in (2), but with a slightly modified exponent νMO:

νMO = 1
4

(√
96Z − 8
4Z − 1

− 1
)
. (22)

The exponent νMO is close to, but not equal to the Wannier exponent νW; in
particular, it does not converge to unity as expected (Friedrich 1998b) for Z →∞.

The theory of Macek and Ovchinnikov was applied to the s-wave model by
Macek and Ihra (1997) and by Ihra et al . (1997a), and it predicts an exponential
supression of the quantum mechanical ionisation cross section as E → 0 for fixed
Eb. For hydrogen (Z = 1) the prediction is

σSW
qm (E) ∝ exp

(
−aE−1/6 + bE

1
6

)
, (23)

with a = 6 ·870 and b = 2 ·770 (Ihra et al . 1997a).
The constants a and b appearing in the threshold law (23) (Macek and Ihra

1997; Ihra et al . 1997a) were derived on the basis of an Airy function for the
hyperangle motion, as this is the ground state wave function in the binding
(for negative R) linear potential derived from (18) and the lower line of (20).
Improvements are conceivable based on better approximations of the hyperangle
potential C(α)/R (R < 0, fixed), e.g. by a Coulomb potential reproducing the
correct 1/α-behaviour near the axis α = 0. If the resulting ground state wave
function is again approximated by an Airy function, the exponent aE−1/6 + bE

1
6

in (23) keeps its structure, but the constant b is changed when the calculation is
based on the more realistic slope of the Coulomb potential at the turning point.
In a more sophisticated treatment beyond the Airy function approximation, it is
not obvious that Macek and Ovchinnikov’s theory will give a result of the form
(23).

The threshold behaviour of numerically calculated ionisation cross sections
σTP

qm (E,Eb = 1
2 ) has been studied by Scott et al . (1997), who found that the

expression (23) fits the calculated data well when choosing a = 11 ·916 (and
b = 0), which is close to being the square of the function based on a = 6 ·870
(see Macek and Ihra 1997; Ihra et al . 1997a). The fit by Scott et al. (1997) was
also hardly distinguishable from a fit to a quadratic energy dependence, which is
favoured by Rudge (1996) and Robicheaux et al . (1997). Exponential suppression
of quantum mechanical near threshold ionisation seems plausible, considering that
ionisation is forbidden classically in the finite range of energies, E/Eb <

1
3 (for

Z = 1) (Handke et al . 1993b). In this energy range there are no (real) classical
paths contributing to the semiclassical transition amplitude and ionisation can
only proceed via a form of tunnelling. In a recent fit of numerically calculated
ionisation cross sections to the expression exp(−aE−1/6), Miyashita et al . (1999)
obtain values of 6.65 and 6.75 for a, which is quite close to the prediction of
Ihra et al .
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Fig. 7. The potential (13) (a) for Z = 1
4 and (b) for Z = 1

8 .

5. The Case Z = 1
4

The exponent νW in Wannier’s threshold law (2) diverges when the nuclear
charge approaches 1

4 . Such a situation effectively corresponds to a system in
which the electrons in (1) are replaced by other particles with an equal charge
which is four times the magnitude and of opposite sign as the charge of the
‘nucleus’, e.g. two beryllium nuclei in the field of a singly charged heavy negative
ion. The breakdown of the traditional Wannier treatment in this case can already
be understood in the simple collinear model (18), (19). For Z = 1

4 , the constant
term in the lower line of (19) is zero, so the potential (18) vanishes on the
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‘Wannier ridge’, α = π/4 (corresponding to r1 = r2), see Fig. 7a. For Z < 1
4 , the

constant term in (19) is positive so there is a repulsive Coulomb potential on
the ‘Wannier ridge’, see Fig. 7b. For ionisation to take place, a trajectory now
has to reach the flat part of the potential shown in Fig. 7b by moving around or
tunnelling through the repulsive Coulomb barrier without getting caught in the
deep side ditches, α ≈ 0 or α ≈ π/2, which correspond to direct and exchange
scattering respectively.

Ihra et al . (1997b) have applied Macek and Ovchinnikov’s theory to the case
Z = 1

4 , and, taking the limit E → 0 for fixed initial binding energy Eb, they
obtained an exponential threshold law

σ(E) ∝ E−1/6 exp
[
−κE−1/6

]
, (24)

with an analytically given constant κ whose numerical value is ≈ 6 ·758. The
term proportional to E−1/6 in the exponent can be understood by a simple
scaling argument in this case. The term proportional to 1/R in the potential (18),
(19) vanishes for α = π/4. The (complex) zero-point energy in the hyperangle is
proportional to R−3/2 and the leading contributions to the hyperradial momentum
K(R) are proportional to R−3/4 when the total energy E can be neglected. Thus
the integral in (21) is proportional to the fourth root of its upper limit Rl, and
this in turn is chosen as the boundary of the region where the total energy is
still negligible compared to the zero-point energy mentioned above, R−3/2

l ≈ E,
which implies R

1
4
l ≈ E−1/6, and this is the power of E appearing in the exponent

(see Ihra et al . 1997b).
When the expressions derived from the Macek and Ovchinnikov theory are

analysed for fixed values of the scaled energy (7), we can use the relations

E ≈ const.Eb ≡
const.′

R0

R0 À 1

À const.′

R
3/2
0

, (25)

where R0 is some length characteristic of the spatial extension of the initial bound
state of the target. Taking the classical limit, E → 0, Eb → 0 for fixed E/Eb,
implies R0 →∞, so the total energy E can be assumed to be much larger than
the contributions of the potential (∝ R−3/2) to the hyperradial momentum K(R)
in the whole range of the integral in (21). On the basis of these inequalities, Ihra
et al . (1997b) derived the following near threshold behaviour (ε = E/Eb → 0)
for the ionisation probability in the classical limit:

σcl(ε) ∝ exp

(
− λ√

ε

)
. (26)

Classical ionisation probabilities in the collinear model have been obtained by
Chocian et al . (1998) by numerically solving the classical equations of motion. For
Z = 1

4 the best fit to the form σcl ∝ exp (−λ/√ε) was obtained for λ = 1 ·7288.
Dimitrijević et al . (1994) performed classical trajectory calculations for Z = 1

4
in three-dimensional space and fitted calculated ionisation cross sections to the
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ansatz σcl ∝ exp (−λ/√ε− ε0). Their best fit was for λ ≈ 1 ·868, and they also
found that the fit could be improved by introducing a nonvanishing threshold ε0

of the order of 10−3. This would correspond to a small range of energies, where
ionisation is strictly forbidden classically, and was interpreted by Dimitrijević
et al . (1994) as a consequence of the repulsive Coulomb barrier facing the incoming
electron in the initial stages of the collision. No evidence for such a strictly
forbidden region above threshold was seen in the (one-dimensional) calculations
of Chocian et al . (1998). In both cases (Chocian et al . 1998; Dimitrijević et al .
1994), the numerical calculations appear to be accurate enough to rule out a
power-law behaviour of the near threshold (ε → 0) ionisation cross section σcl,
see e.g. Fig. 8.

Fig. 8. Numerically calculated classical total ionisation probability
in the collinear model (13) for various nuclear charges Z in the
vicinity of Z = 1

4 . For Z > 1
4 the straight dotted lines correspond to

the power law (2). [From Chocian et al . (1998).]

For Z = 1
4 , ionisation is apparently not forbidden classically above the threshold,

but it is strongly inhibited. The damping of the classical ionisation probability as
exp (−c/√ε) is actually what one expects for the quantum mechanical tunnelling
probability near the base of a Coulombic potential barrier. The quantum
mechanical cross sections derived by Ihra et al . (1997b) show, as expected, a
weaker damping, with the power E−1/6 in the exponent rather than E−1/2. A
more detailed analysis of the dependence of the cross section on the initial binding
energy should make it possible to follow the transition from the quantum case
(fixed Eb, E → 0) to the classical limit (fixed E/Eb, E → 0).
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6. Summary

The classical dynamics of a collision process, in which a projectile collides
with a target of initial binding energy Eb, depends only on the scaled energy
ε = E/Eb if the potential energy is a homogeneous function of the coordinates.
The quantum mechanical properties of such a system depend on E and Eb

independently. For a system of particles interacting exclusively via Coulomb
forces, the square root of the total energy E plays the role of an effective
Planck constant and the classical (semiclassical) limit is reached for fixed values
of the scaled energy ε as

√
E ≡ h̄′ → 0. Quantum mechanical ionisation cross

sections σqm(E,Eb) ≡ σqm(ε, h̄′) are usually calculated or measured for fixed
initial binding energies Eb, and the threshold behaviour obtained for E → 0 can
differ from the classical threshold behaviour, σcl(ε). The limiting behaviour near
the origin in Fig. 2b depends on whether it is approached along the ordinate
h̄′ = 0 or along a half-parabola Eb = const. If we first calculate, in analogy to
scaled energy spectroscopy, σqm(E,Eb) for fixed E/Eb and then take the limit√
E ≡ h̄′ → 0, this should always lead to the classical (semiclassical) result.
In the traditional Wannier situation, near threshold ionisation is described via

allowed classical trajectories, and an estimate of the dependence of the available
phase space leads to a simple power law for the near threshold behaviour, see e.g.
equation (2). In such a power law, the dependence on the initial binding energy
affects only the proportionality constant and not the shape of the ionisation
cross section. The situation changes when near threshold ionisation is classically
forbidden, as in the s-wave model, or strongly inhibited, as in the case of two
light particles whose charge is four times as large and of opposite sign as the
heavy central particle, a situation which effectively corresponds to nuclear charge
Z = 1

4 in the electron–nucleus–electron picture. In both cases, recent theoretical
studies predict an exponentially damped (quantum mechanical) ionisation cross
section near threshold.

For a more complete understanding of the ionisation process in the interesting
‘non-Wannier’ situations, it is highly desirable to study in more detail the
dependence of the quantum mechanical ionisation cross sections on the initial
binding energy, as this should make a direct connection to the classical results
possible, at least in the near threshold regime. This will require more detailed
descriptions of the interaction of the electrons in the early stages of the collision.
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