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Abstract

The recent observation of a two-dimensional (2D) metal–insulator transition in semiconductor
devices and the strong influence of a magnetic field on the metallic phase has attracted a great
deal of interest. This gives rise to the important theoretical question about the nature and the
magnetic order of insulating and conducting phases. In the present paper we calculate (both
analytically and numerically) the exchange constant for a two-dimensional Wigner liquid— the
state with destroyed long-range order but preserved short-range order. It is demonstrated that
there is an antiferromagnetic spin–spin interaction between nearest electrons. We also discuss
a possible pairing of the electrons in a 2D Wigner crystal by the spin-Peierls mechanism.

It was shown long ago by Wigner (1934) that at sufficiently low density
the electron gas (or electron fluid) of particles with 1/r repulsion undergoes a
transition into a crystal state. This is because at low density the Coulomb
interaction dominates over the kinetic energy and the correlated state becomes
energetically favourable.

We consider a two-dimensional electron gas at zero temperature in the presence
of a uniform neutralising background. Analysis of the lattice dynamics shows
that the stable crystal structure in 2D is the triangular lattice (Bonsall and
Maradudin 1977). The Wigner crystallisation has been observed for electrons
at the surface of liquid helium (Grimes and Adams 1979). Another 2D system
for which the electron density can be easily controlled is an inversion layer at a
semiconductor surface (Chaplick 1971; for a review see Ando et al . 1982).

Theoretically, Wigner crystallisation has been studied using Monte Carlo
simulations (Ceperley 1978; Tanatar and Ceperley 1989; Kwon et al . 1993).
These calculations are quite reliable as far as the critical density is concerned.
However, there is some controversy about a possible ferromagnetic Fermi liquid
at a density slightly higher than the crystallisation density (Overhauser 1959,
1962; Rapisarda and Senatore 1996).

The interest in Wigner crystallisation has been renewed recently after observation
of the insulator–conductor transition in dilute 2D electron systems (Kravchenko
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et al . 1996). Although this transition probably takes place in the liquid phase,
it is very close to the point of crystallisation. A very interesting feature of
the transition is suppression of the conducting phase by the in-plane magnetic
field (Simonian et al . 1997) which influences only the spin degrees of freedom.
Therefore, the question about magnetic order (sign and magnitude of the exchange
constant) is very important for understanding the nature of the transition.

In the present work we calculate the effective spin–spin interaction in a 2D
Wigner crystal. This calculation is also valid for the Wigner liquid—the state
with destroyed long-range order but preserved short-range order (Hansen and
McDonald 1986).

To avoid misunderstanding let us note that our calculation does not show
any magnetic phase transition in the liquid state (i.e. there is no ferromagnetic
Fermi liquid between normal Fermi liquid and Wigner crystal). The state which
we call a Wigner liquid is just a strongly renormalised normal Fermi liquid with
an exponentially large effective carrier mass. We also keep in mind one of the
well-known models of a liquid as a set of clusters of variable size with the same
coordination number and symmetry as in the crystal. Nevertheless, magnetic
properties of the Wigner liquid (and Wigner crystal) are quite unusual and
somewhat similar to that of cuprate superconductors. There is a competition
between superexchange (electron correlation) which gives an antiferromagnetic
interaction between electron spins, and the usual exchange Coulomb interaction
which gives a ferromagnetic contribution. The superexchange is proportional to
t2/U , where t is the parameter which describes hopping of an electron to a nearby
site and U is the Coulomb repulsion for two electrons on the same site. As
a result, both the superexchange and exchange are proportional to the squared
overlap between the electron wave functions centred on the neighbouring sites
of the Wigner crystal. Therefore, simple estimates cannot answer the question
about the sign of the spin–spin interaction, and one needs to do more accurate
calculations. To provide better understanding and reliability of the results we
have performed these calculations in two ways, analytically and numerically.

The Hamiltonian of the system under consideration is

H =
∑
i

p2
i

2
+
∑
i<j

1
|ri − rj|

+ const, (1)

where pi and ri are 2D momentum and coordinate respectively. We use effective
atomic units which means that all distances are measured in units of the effective
Bohr radius a∗B = h̄2ε/m∗e2, and energies in units of m∗e4/h̄2ε2. Here m∗ is the
effective electron mass, and ε is the dielectric constant which we assume to be
independent of frequency. The number density of the electrons n is fixed by the
condition of electroneutrality. An average distance rs between the electrons is
defined by πr2

s = 1/n. It is well established (Tanatar and Ceperley 1989) that the
crystallisation to the triangular lattice occurs when rs ≈ 37. In the presence of
‘disorder’ further localisation of the electrons stabilises the Wigner crystal at higher
densities, rs ≈ 10 (Eguiluz et al . 1983; Chui and Tanatar 1995). The distance

between the nearest sites in the lattice is equal to a =
√

2π/
√

3rs ≈ 1 ·90rs.
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The electrostatic potential acting on the electron near the equilibrium position
in the lattice is

U1(r) ≈ const +
γ

2
r2

a3 , (2)

where r ¿ a is the deviation from the equilibrium position. To find γ let us freeze
all other electrons in their equilibrium positions and calculate U1(r). Accounting
for the six nearest sites gives γ = 3, and summation over the entire lattice gives

γ = 3
∞∑
n=1

n−1∑
k=0

1
(n2 + k2 − kn) 3

2
= 5 ·5171 . (3)

The ground state electron wave function in the potential (2) is

ψ(r) =
1√
πc
e−r

2/2c2 , c =
a

3
4

γ
1
4
. (4)

In the above calculation we assume that the size of the wave function is much
smaller than the lattice spacing, c¿ a, or (aγ) 1

4 À 1. This parameter, in fact,
corresponds to the inverse Lindemann ratio,

a√
〈r2〉

=
a

c
= (γa)

1
4 .

For the crystallisation point this parameter equals (aγ) 1
4 = 4 ·4 and, therefore, the

approximation is well justified in the crystal state. We stress that the parameter
appears in the exponent and therefore 4 ·4 is a very large value. Moreover, the
approximation is justified in the liquid phase as soon as (aγ) 1

4 À 1. The point
is that the sum in equation (3) is saturated by two or three coordination circles
and it is independent of the presence or absence of the long-range order. For the
conditions in the experiments by Kravchenko et al . (1996) this parameter equals
(aγ) 1

4 = 3 ·1.
To find the magnitude of the spin–spin interaction constant (the constant J

which can be substituted into the Heisenberg Hamiltonian J
∑
〈i,j〉

~Si ~Sj), we have
to solve a two-particle problem, freezing all the electrons except the nearest two,
which are shown by crosses in Fig. 1.

The Hamiltonian of the problem is

Ĥ =
p2

1

2
+

p2
2

2
+ U(r1) + U(r2) +

1
|r1 − r2|

, (5)

where U(r) is the potential of all frozen electrons (dots in Fig. 1). The splitting
between the ground states for total spin S = 1 and S = 0 gives us the constant
J :

J = (ES=1
g − ES=0

g ) ≡ (EA − ES) , (6)
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ĤΨS = ESΨS , (7)

ĤΨA = EAΨA . (8)

Because of Fermi statistics the two-electron wave function is antisymmetric
with respect to permutation. Therefore, the symmetric coordinate wave function
corresponds to spin S = 0 and the antisymmetric one to S = 1.

y’

x’

x

y

Fig. 1. Boundary conditions for the two-particle problem.

Of course the accurate solution of the problem can only be found (and has been
found) numerically. However, to find the sign and the basic dependence J on
a distance parameter a we performed an approximate analytical calculation. To
this end, we follow the procedure, suggested long ago by Gor’kov and Pitaevskii
for the calculation of the term splitting in hydrogen molecule (see Gor’kov and
Pitaevskii 1964; Herring and Flicker 1964).

We multiply equation (7) by ΨA and (8) by ΨS , take the difference between the
results and calculate the integral over some region in four-dimensional configuration
space of the electrons. We choose the integration volume in which x1 ≤ x2 [i.e.
to the left of the hyperplane Σ(x1 = x2)]. Using the Hamiltonian (5) we obtain

(ES − EA)
∫ ∫

Ω

ΨAΨS dr1 dr2 =
∮

Σ

(ΨS∇ΨA −ΨA∇ΨS) dΣ . (9)

The kinetic energy term on the right-hand side is reduced to the surface integral
using

ΨS∇2ΨA −ΨA∇2ΨS = ∇(ΨS∇ΨA −ΨA∇ΨS)

and an integration by parts.
Now we introduce combinations of the functions Ψ1,2 =

√
1
2 (ΨS ±ΨA). They

correspond to the states of ‘distinguishable’ particles when, for example for
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Ψ1(r1, r2), the first electron is principally located near its equilibrium position
x = −a/2 and the second electron near x = a/2. A simple calculation gives∫ ∫

Ω

ΨSΨA dr1 dr2 = 1
2

∫ ∫
Ω

(Ψ2
1 −Ψ2

2) dr1 dr2 ≈ 1
2 .

Substituting the wave functions Ψ1,2 into (9) and taking into account that
under r1 ↔ r2 permutation the wave functions Ψ1 ↔ Ψ2, we obtain

J = −4
∫ [

Ψ2
∂Ψ1

∂x1

]
x1=x2

dx2 dy1 dy2 . (10)

The formula (10) shows that the main contribution to the exchange constant is
given by the region where the electrons are close to each other. Indeed, the
x coordinates of both electrons coincide (x1 = x2), however, the y coordinates
may be different. In this case there are strong correlations between the positions
of the electrons due to Coulomb repulsion. This means that we should go
beyond the approximation where the two-particle wave function of the electrons
is represented as a product of single-particles wave functions.

It is easy to take into account the effect of the correlations in the quadratic
approximation. Assuming that the particles are distinguishable and oscillate near
their equilibrium positions, we write the Hamiltonian in the following form:

Ĥ = − ∆1

2
− ∆2

2
+
ω2

2

[
(x1 + a/2)2 + y2

1 + (x2 − a/2)2 + y2
2

]
+

{
1

|r1 − r2|
− 1
|r1 − a/2| −

1
|r2 + a/2|

}
. (11)

Here the frequency is ω =
√
γ/a3.

The Hamiltonian (11) is valid at small displacements xi and yi from their
equilibrium positions. Expanding the last term in the curly brackets near
x̃1,2 = x1,2 ∓ a/2, we finally get the following Hamiltonian in the quadratic
approximation:

Ĥ = −∆1

2
− ∆2

2
+
ω2

2

(
x̃2

1 + y2
1 + x̃2

2 + y2
2 −

4
γ
x̃1x̃2 +

2
γ
y1y2

)
+O(x̃3/a4) . (12)

Using an obvious change of variables

u, v =
y1 ± y2√

2
, ξ, η =

x1 ± x2√
2

, (13)
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we separate the Hamiltonian (12) into four independent oscillators with frequencies
ωu,v =

√
(γ ± 1)/a3 andωξ,η =

√
(γ ∓ 2)/a3. Thus, the ground state wave functions

are

Ψ1(u, v, ξ, η) =
(ωuωvωξωη) 1

4

π
exp

(
−1

2 [ωuu2 + ωvv
2 + ωξξ

2 + ωη(η + a/
√

2)2]
)
,

Ψ2(u, v, ξ, η) = Ψ1(u, v, ξ,−η) . (14)

Substituting equation (14) in (10) we obtain

J = + 2ωηa
∫

[Ψ2Ψ1]x1=x2
dx2 dy1 dy2 =

√
2
π
ω

3
2
η a e

−ωηa2/2 (15)

= (γ + 2) 3
4

√
2
π
a−5/4e−

√
(γ+2)a/2 . (16)

This formula is presented in atomic units. In regular units it can be written as

J = +
e2

εa

[
a∗B
a

4(γ + 2)3

π2

] 1
4

exp

(
−
√
γ + 2

4
a

a∗B

)

= 3 ·62
e2

εa

[
a∗B
a

] 1
4

exp

(
−1 ·37

√
a

a∗B

)
. (17)

The plus sign in the exchange constant shows that the system is antiferromagnetic.
It is worth while noting that the exponent in (15) is different from exp(−√γa/2),
which appears if states Ψ1,2 are represented by a product of independent
single-particle wave functions (4).

In order to check the importance of correlations and find the correct exponent
for J we have performed numerical calculations of the problem over a rectangle
area (see Fig. 1). To be absolutely correct we have to impose periodic boundary
conditions in the rectangle. However, the wave function is very small at the
boundary and so the results are not sensitive to the boundary condition. It is
much more convenient to make the wave function vanish at the boundary and
this is the condition which we use in the present work.

The single particle basis set is given by (see Fig. 1)

φi(r) ≡ φnm(x′, y′) =
2√
AB

sin

(
π

A
nx′
)

sin

(
π

B
my′

)
,

εi ≡ εnm =
π2

2

[
n2

A2 +
m2

B2

]
, (18)
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where A = 3a and B =
√

3a. Hence, for the two-electron problem the set is

|i〉 ≡ |i1i2〉 = Ci1i2 [φi1(r1)φi2(r2)± φi1(r2)φi2(r1)] , Ei = εi1 + εi2 . (19)

The + sign corresponds to S = 0 (antiferromagnetic) and the − sign to S = 1
(ferromagnetic). The normalisation coefficient is Ci1i2 = 1

2 if i1 = i2; otherwise

it equals
√

1
2 . The matrix element of the Hamiltonian (5) is of the form

〈i|Ĥ|j〉 = Eiδij + 〈i| ˆV (1)|j〉+ 〈i| ˆV (2)|j〉 , (20)

where 〈i| ˆV (1,2)|j〉 are matrix elements of the single-particle potential and the
two-particle interaction respectively:

〈i| ˆV (1)|j〉 = 2 Ci1i2Ci3i4

[
V

(1)
i1i3

δi2i4 ± V
(1)
i1i4

δi2i3 ± V
(1)
i2i3

δi1i4 + V
(1)
i2i4

δi1i3

]
,

〈i| ˆV (2)|j〉 = 2 Ci1i2Ci3i4 [Vi1i2i3i4 ± Vi1i2i4i3 ] . (21)

To find J , which is exponentially small, we need a very large basis set. The
most time consuming part is the computation of the two-particle matrix element
〈i| ˆV (2)|j〉, which formally is a four-dimensional integral. Fortunately, this integral
can be reduced to one which is effectively one-dimensional. This reduction, which
is given in the Appendix, allows us to perform computations with a Hilbert space
size of up to N = 1380.

The numerical solution of the problem was performed for two different cases.
Firstly, we considered all the frozen electrons (points at Fig. 1) as point-like
charges, which means that the mean-field potential in this case is just the sum
of the Coulomb potentials:

U(x, y) =
∑
kl

u0(|rkl − r|); u0(r) = 1/r . (22)

The sum runs over sites of the triangular lattice.
Secondly, we considered the density of the frozen electrons to be distributed

according to (4) and hence

U(x, y) =
∑
kl

u1(|rkl − r|); u1(r) =
√
π

c
e−r

2/2c2I0(r2/2c2) , (23)

where I0(x) is the modified Bessel function. In both cases all the results are
very close and therefore we present plots only for the second case.

The matrices (20) for the ferromagnetic and antiferromagnetic cases were
calculated and diagonalised. The Hilbert space was truncated at some high
energy state. To be confident that the ground state was found with reasonable
accuracy we used two basis sets with dimensions N = 975 and N = 1380, where
N is the total number of two-particle states.
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Fig. 2. Profiles of the density operator ρ(r) for the antiferromagnetic (two upper plots) and
ferromagnetic (lower plots) ground states for a = 45 (rs = 24). The dot–dash curves show the
analytical results in quadratic approximations (formula 25).

Fig. 3. Profiles of the density operator ρ(r) for the antiferromagnetic (two upper plots) and
ferromagnetic (lower plots) ground states for a = 15 (rs = 7 ·9). The dot–dash curves show
the analytical results in quadratic approximations (formula 25).
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The plots of the ground-state electron density

ρ(r) = 〈0|δ(r− r1) + δ(r− r2)|0〉 (24)

for a = 45, which corresponds to the limit of our calculations, are given in
Fig. 2. Similar plots for for a = 15, which corresponds to the conditions of the
experiments by Kravchenko et al . (1996), are given in Fig. 3. The fact that
the maxima coincide with the lattice sites tells us about the self-consistency of
the method. The shape of the density operator near the equilibrium positions
also corresponds to the expected Gaussian electron density, obtained from the
combinations of the wave functions in (14):

ρ(x, y)S,A = NS,A
2
π

√
ωuωvωξωη

(ωu + ωv)(ωξ + ωη)
e−ω̃yy

2

×
[
e−ω̃x(x+a/2)2

+ e−ω̃x(x−a/2)2 ± 2e−ωηa
2/2e−ω̃xx

2
]
. (25)

Here NS,A = [1 ± e−ωηa2/2]−1 is the normalisation coefficient due to the non-
orthogonality of the functions Ψ1 and Ψ2, while ω̃y = 2ωuωv/(ωu + ωv) and
ω̃x = 2ωξωη/(ωξ + ωη).

We found that for the whole region of the strength parameter a the
antiferromagnetic ground state is always below the ferromagnetic one. We
obtained the following values of the constant J(a) for the parameters of the
Kravchenko et al . experiments (ε = 8, m∗ = 0 ·19me):

J(15) = 6 ·66× 10−4 = 0 ·6 K, J(45) = 1 ·48× 10−6 = 1 ·4× 10−3K . (26)

The experiments correspond to a ' 15. The behaviour of J , as expected,
has an exponential dependence ∼ e−δ

√
a. The plot of ln(J) versus

√
a in Fig. 4

summarises our results. Diamonds and crosses show the magnitude for different
basis sets and nicely depict the truncation effects for large a and for a small
number of basis states. The dot–dash line represents the theoretical curve (15)
and the solid line is the best fit. We fitted our data by two different functions.
For the first one we fixed the power of a in the pre-exponential factor [the
analytical formula (15) gives a−5/4]:

ln(J) = C − δ
√
a− 5

2 ln(
√
a)

and got C = 2 ·25 and δ = 1 ·595.
In the second case we looked for the best parameters for

ln(J) = C − δ
√
a− β ln(

√
a),

and we obtained C = 2 ·02, δ = 1 ·74 and β = 1 ·88.
The analytical formula for J in equation (15) and more accurate fits of the

numerical calculation data allows us to estimate the value of J for the Wigner
crystal and Wigner liquid states in the region of large densities.
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Fig. 4. Dependence of ln(J) on
√
a. Diamonds and crosses represent data for large (N = 1380)

and shortened (N = 975) bases correspondingly. The dot–dash curve shows the theoretical
curve of equation (15). The solid line is the best fit by y = C − δ√a− β ln(a).

It is worth while stressing that the numerical computations were performed
for the exact anisotropic crystalline potential, while our analytical solution (15)
was obtained for the approximate quadratic Hamiltonian (12). The difference
between the numerical and analytical exponential factors is

δfit − δan = 0 ·22 (≈ 14%),

where δan =
√
γ + 2/2 = 1 ·37. This difference comes from the higher order terms

in the expansion of the Hamiltonian (11). Of course, our analytical method has
a limited accuracy since, strictly speaking, there are no grounds for neglecting
these terms [because the main contribution to the integral (15) is given by the
region where x/a ∼ 1/2]. Nevertheless, the very good agreement between the
analytical and numerical results for the electron densities (Figs 2 and 3) and for
the functional dependence J(a) (Fig. 4) implies that our analytical treatment
incorporates the main features of the problem. The recent numerical calculations
of the exchange constant based on Monte Carlo simulations (Chakravarty et al .
1998) show good agreement with our result.

It would be instructive to discuss the difference between the exchange constant
of the hydrogen molecule H2 (Gor’kov and Pitaevskii 1964) and the Wigner crystal
(or Wigner liquid). In the former case the exponent of the two-particle wave
function is determined by the attraction of electrons to their nuclei (i.e. by the
exponent of the wave function in the H atom). In this case the electron–electron
interaction only has an effect on the factor before the exponential function in
J , and not on the exponential itself. In the Wigner crystal case each electron
makes a potential well for the other. Therefore, the exponent in the exchange
constant is modified by the correlations.

Due to geometric frustration collinear long-range antiferromagnetic order is,
strictly speaking, not possible on a triangular lattice. The possible solution
in this case is a system spin wave function which in the zero approximation
consists of spin zero pairs. The antiferromagnetic interaction increases when the
distance between the electrons decreases. Therefore, there should be a tendency
for nearby electrons coupled to spin zero pairs to move slightly toward each
other. This phenomenon is usually called the ‘spin-Peierls’ mechanism. For
a three-dimensional Wigner crystal the pairing mechanism was discussed by
Moulopoulos and Ashcroft (1993).

We can make a simple estimate of this effect in the two-dimensional case. For
these purposes let us consider the following picture. The energy of the electron
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pair when placed on the lattice sites is [i.e. in the minima of its potential wells
(2) and where the distance between the electrons is a]

W (0) = −J(a, 0) . (27)

Here we have (see equation 15)

J(a, 0) ≡ J0 =

√
2
π
ω

3
2
η a e

−ωηa2/2 . (28)

If the distance between the electrons decreases by a small amount 2x, the potential
energy of each electron increases but the magnitude of the exchange constant
becomes larger as well, since the single electron wave functions overlap more
strongly:

J(a, 2x) =

√
2
π
ω

3
2
η (a− 2x) e−ωη(a−2x)2/2 . (29)

Thus, the energy of the pair is

W (x) = 2×
ω2
ηx

2

2
− J(a, 2x) . (30)

Introducing a relative displacement u = x/a (u ¿ 1), we rewrite (30) in the
following form:

W (u) = ω2
ηa

2u2 − J0 (1−−2u) e2ωη(u−u2) . (31)

Then the optimal magnitude of the displacement is given by the condition of the
minimum of W (u):

∂W (u)
∂u

= 0 =⇒ umin ≈
J0

ωη

[
1− 1

ωηa
2

]
=
J0δ

ωη
, (32)

and the change in the energy is

∆W = W (umin)−W (0) = −J2
0a

2δ2 . (33)

Thus, the reduction in energy is of second order in J0. It is a very small correction
and in real systems this effect might be suppressed by other mechanisms. The
parameters of the experiments (Kravchenko et al . 1996; Simonian et al . 1997)
correspond to umin = 1 ·5× 10−2 and ∆W ≈ 10−4 = 8× 10−2 K.

However, the value of the spin–spin interaction constant itself in those
experiments J = J(15) is comparable with the energy µH. Here H is the critical
magnetic field destroying conductivity. We can speculate that this field effectively
transforms the system to a ferromagnetic state. In the ferromagnetic state the
conductivity should be smaller than in the antiferromagnetic state. Indeed, in
the antiferromagnetic state hopping of electrons with opposite spins from one
site to another is allowed by the Pauli principle. The magnetic field rearranges
spins in the same direction. In this case such hopping is suppressed by Pauli
blocking. This possibly destroys the conductivity.
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Appendix: Matrix Elements of the Interaction

The eigenfunctions and eigenvalues for the single-electron problem in the
two-dimensional rectangle with sides A = 3a and B =

√
3a are given by equation

(18). The matrix element of the Coulomb interaction between two unfrozen
electrons is given by the integral over the rectangle’s area

Vi1i2i3i4 =
∫
φi3(r′1)∗φi4(r′2)∗

1
|r′1 − r′2|

φi1(r′1)φi2(r′2)d2r′1d
2r′2. (A1)

It is convenient to change variables (see Fig. 1):

u = x′1 − x′2, v = y′1 − y′2, x′′2 = x′2, y′′2 = y′2. (A2)

Introducing the notation ũ = πu/A, ṽ = πv/B, and

Fn1n2n3n4(x̃1, x̃2) = 4 sin(x̃1n1) sin(x̃1n3) sin(x̃2n2) sin(x̃2n4),

Wn1n2n3n4(ũ) =
∫ π−ũ

0

Fn1n2n3n4(x̃2 + ũ, x̃2)dx̃2,

Jn1n2n3n4 = 1
2

[
1 + (−1)n1+n2+n3+n4

]
, (A3)
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the matrix element (A1) can be rewritten as

Vi1i2i3i4 = Jn1n2n3n4Jm1m2m3m4

4
ABπ2

×
∫ A

0

∫ B

0

Wn1n2n3n4(ũ)Wm1m2m3m4(ṽ)
du dv√
u2 + v2

. (A4)

In this transformation we use the following relation:∫ π−ũ

0

Fn1n2n3n4(x, x+ ũ) dx = (−1)n1+n2+n3+n4

∫ π−ũ

0

Fn1n2n3n4(x+ ũ, x) dx.

It is convenient to calculate the double integral (A4) using polar coordinates ũ =
πu/A =

√
1
3r cos, ṽ = πv/B = r sin t. Taking into account that tan−1(B/A) = π/6

we find that

Vi1i2i3i4 = Jn1n2n3n4Jm1m2m3m4

4
3π3 [V1 + V2]

V1 =
∫ π/6

0

dt

∫ π
√

3/cost

0

Wn1n2n3n4(cos t/
√

3)Wm1m2m3m4(rsint) dr,

V2 =
∫ π/3

0

dt

∫ π/cost

0

Wn1n2n3n4(r sin t/
√

3)Wm1m2m3m4(rcost) dr . (A5)

In order to write down an analytical expression for the function Wn1n2n3n4(ũ)
let us introduce the following notation:

n = |n3 − n1|, n = 0, 1, 2, . . .
m = |n4 − n2|, m = 0, 1, 2, . . .
l = n3 + n1, l = 2, 3, . . .
k = n4 + n2, k = 2, 3, . . .

. (A6)

Using (A3) one can find that

Wn1n2n3n4(ũ) =



f1(n,m, l, k; ũ)
f2(n, l, k; ũ) if n = m 6= 0
f2(l, n,m; ũ) if l = k
−f2(n,m, l; ũ) if n = k (A7)
−f2(m,n, k; ũ) if m = l
f3(l, k; ũ) if n = m = 0
f4(n, l; ũ) if n = m 6= 0 and l = k
f5(l; ũ) if n = m = 0 and l = k,
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where

f1(n,m, l, k;u) =
n sin(nu)

(
k2 −m2

)(
n2 − k2

) (
n2 −m2

) +
m sin(um)

(
l2 − n2

)(
m2 − l2

) (
m2 − n2

) − l sin(lu)
(
k2 −m2

)(
l2 −m2

) (
l2 − k2

) ,
− k sin(uk)

(
l2 − n2

)(
−n2 + k2

) (
k2 − l2

) ,
f2(n,m, l;u) =

π − u
2

cos(nu) +
sin(nu)

2n

(
1 + 2

n4 −m2l2(
n2 −m2

) (
n2 − l2

)) ,
+

m sin(um)
(
n2 − l2

)(
m2 − l2

) (
m2 − n2

) +
l sin(lu)

(
n2 −m2

)(
l2 − n2

) (
l2 −m2

) ,
f3(n,m;u) = π − u− sin(um)n2(

m2 − n2
)
m
− sin(nu)m2(

n2 −m2
)
n
,

f4(n,m;u) =
π − u

2
[cos(nu) + cos(um)] +

sin(nu)
2n

3n2 +m2

n2 −m2 +
sin(um)

2m
3m2 + n2

m2 − n2 ,

f5(n;u) = π − u+
π − u

2
cos(nu) +

3
2n

sin(nu) . (A8)

This completes the description of the calculation procedure for the two-electron
Coulomb matrix element. The advantage is that each of the two integrals in (A5)
requires numerical work equivalent only to the computation of a 1D integral.

Calculation of the single-particle matrix element of the external potential U(r)
is much simpler. It is convenient to use x and y instead of x′ and y′ (see Fig. 1).
Then we get

V
(1)
i1i3
≡ V (1)

{n1m1,n3m3} =
4
AB

(−1)(n+m/2)Jn1n3Jm1m3

∫ A/2

0

∫ B/2

0

U(x, y)

×
{

cos
(
π

A
nx

)
− (−1)n2 cos

(
π

A
lx

)}{
cos
(
π

B
my

)

− (−1)m2 cos
(
π

B
ky

)}
dx dy , (A9)

where 
n = |n3 − n1|
m = |m3 −m1|
l = n3 + n1

k = m3 +m1.
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