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Abstract

The effect of bulk viscosity on the evolution of the spatially flat Friedmann–Lemaitre–
Robertson–Walker (FLRW) models in the context of open thermodynamical systems, which
allow for particle creation, is analysed within the framework of Brans–Dicke (BD) theory.
The BD field equations are modified with the incorporation of a creation pressure and bulk
viscous stress. A class of physically plausible models has been taken into consideration. The
behaviour of the particle number density and bulk viscosity is discussed with the evolution
of the Brans–Dicke scalar field.

1. Introduction

Recently there has been growing interest in alternative theories of gravitation,
especially scalar–tensor theories of gravity, which are very useful tools in
understanding early universe models. In a pioneering work Mathiazhagan and
Johri (1984) and La and Steinhardt (1989) showed that the old inflationary
idea with a first order phase transition can be made to work if one considers
Brans–Dicke (BD) theory instead of Einstein’s theory. Hyperextended inflation
(Steinhardt and Accetta 1990) generalises the results of extended inflation in BD
theory and solves the graceful exit problem in a natural way, without recourse
to any fine tuning as required in relativistic models. The renewed interest in
BD theory is also due to the inadequacy of general relativity to contribute to
the super unification of the basic interactions and to explain satisfactorally the
evolution of galactic structure.

It has been shown by Padmanabhan and Chitre (1987) that the presence of bulk
viscosity leads to inflationary-like solutions in general relativity. Another peculiar
characteristic of bulk viscosity is that it acts like a negative energy field in an
expanding universe (Johri and Sudharsan 1988). There are many circumstances
during the evolution of the universe in which bulk viscosity could arise (Maartens
1995, and references therein): (i) when neutrinos decouple from the cosmic
fluid; (ii) when photons decouple from matter; (iii) at the time of formation of
galaxies; and (iv) during particle creation in the early universe. These various
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processes giving rise to bulk viscosity could lead to an effective mechanism for
entropy production. Some authors have already obtained cosmological solutions
with bulk viscosity in BD theory (Johri and Sudharsan 1989; Pimentel 1994;
Beesham 1996). Cosmological models with non-causal and causal thermodynamics
have been reviewed by Grøn (1990) and Maartens (1995) respectively. Recently
Banerjee and Beesham (1996) have considered Brans–Dicke cosmology with a
causal viscous fluid.

In recent years a phenomenological macroscopic approach for particle production
in terms of bulk viscous stresses has been described in the literature (Hu 1982;
Barrow 1988; Sudharsan and Johri 1994; Triginer and Pavon 1994). Prigogine
et al . (1989) have investigated the role of irreversible processes in the creation
of matter out of gravitational energy which may play an important role in the
evolution of the early universe. Detailed studies of the thermodynamics of matter
creation have been under taken by Calvao et al . (1992) and Johri and Kalyani
(1994). In this context, it is relevant to consider other effects which are important
in the evolution of the early universe within the framework of BD cosmological
theory.

In this paper we have investigated the role of particle creation and bulk viscosity
as separable irreversible processes in the framework of BD theory. As argued in
Triginer and Pavon (1994), we have considered the adiabatic particle production
processes in which the entropy per particle σc associated with matter creation
processes is constant and only dissipative processes can change the entropy per
particle in the cosmic fluid.

2. Basic Equations

The effective energy–momentum tensor of the cosmic fluid in the presence of
the creation of matter and bulk viscosity includes the creation pressure term pc
and the bulk viscous stress Π, and may be written as

Tab = (ρ+ Peff)uaub − Peff gab . (1)

Here ρ is the energy density and Peff stands for the effective pressure which may
be defined as

Peff = p+ pc + Π , (2)

where p, pc and Π represent the equilibrium pressure, creation pressure and
bulk viscous stress respectively. The creation pressure pc is associated with the
creation of matter out of the gravitational field (Prigogine et al . 1989).

The gravitational field equations with usual notation in BD theory have the
form

Gab = −8π
φ
Tab −

ω

φ2 [φ;aφ;b − 1
2gabφ;cφ

;c]− 1
φ

[φ;a;b − gabM2φ] , (3)

M
2φ =

8φ
3 + 2ω

T . (4)
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For a homogeneous and isotropic model of the universe, represented by the FLRW
metric

ds2 = dt2 −R2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2θdφ2)
]
, (5)

with the barotropic equation of state

p = γρ, 0 ≤ γ ≤ 1 , (6)

the BD field equations (3) and (4) now become

3

(
Ṙ

R

)2

+ 3
k

R2 + 3
Ṙφ̇

Rφ
− ω

2

(
φ̇

φ

)2

=
8πρ
φ

, (7)

2
R̈

R
+

(
Ṙ

R

)2

+
φ̈

φ
+
ω

2

(
φ̇

φ

)2

+ 2
Ṙ

R

φ̇

φ
+

k

R2 = −8π
φ

(γρ+ pc + Π) , (8)

φ̈

φ
+ 3

Ṙ

R

φ̇

φ
=

8π
(3 + 2ω)φ

[ρ− 3(γρ+ pc + Π)] . (9)

Equations (7)–(9) lead to the continuity equation

ρ̇+ (1 + γ)ρΘ = −(pc + Π)Θ , (10)

where Θ = ua;a = 3Ṙ/R stands for the expansion scalar and ua is the four velocity
vector.

The simplest and most commonly used linear relation between the bulk viscous
stress Π and the divergence of the four velocity vector ua as given in Eckart
theory is

Π = −ξua;a = −ξΘ . (11)

Here the bulk viscosity coefficient ξ is in general a function of time. Although Eckart
theory has some shortcomings, in contrast to extended irreversible thermodynamics
(EIT), we are considering it as a first step to study the role of bulk viscosity
in adiabatic particle production processes under the framework of scalar–tensor
theory. A more complete analysis of the EIT of dissipative process with adiabatic
particle creation within the framework of BD theory is under investigation.

The particle number density flow and entropy flow vectors take the form

Na = nua; Sa = σnua , (12)
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where n is the particle number density and σ is the entropy per particle. The
particle number density flow vector Na is supposed to satisfy the balance equation

Na
;a = ṅ+ nΘ = Γ . (13)

The source term Γ will be positive or negative depending on whether there is
production or annihilation of particles. This term plays an important role in
models with particle non-conservation. In the case of particle conservation, the
source term Γ vanishes.

The second law of thermodynamics suggests

Sa;a = nσ̇ + σΓ ≥ 0 . (14)

The Gibbs equation for an open thermodynamical system can be written as

nT σ̇ = ρ̇− (ρ+ p)
ṅ

n
, (15)

where T is the fluid temperature. Using equations (10), (11) and (13), from
equation (15) we get the entropy rate per particle

σ̇ = −pcΘ
nT

+
ξΘ2

nT
− (1 + γ)ρ

n2T
Γ . (16)

As stated above, in the adiabatic particle production processes the entropy per
particle associated with matter creation is constant (refer to Triginer and Pavon
1994), so that only viscous phenomena may change the entropy per particle, and
hence

pc = − (1 + γ)ρ
nΘ

Γ = − (1 + γ)ρ
Θ

[
Θ +

ṅ

n

]
. (17)

This is the mathematical expression of the adiabatic criterion, relating the pressure
arising from matter creation to the rate of particle production.

By use of (17), equation (16) reduces to

σ̇ =
ξΘ2

nT
. (18)

Further, using this relation, we have

Sa;a = σΓ +
ξΘ2

T
, (19)

and the second law of themodynamics (14) implies

Γ ≥ −ξΘ
2

Tσ
. (20)
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By a combination of equations (10), (11) and (17), we obtain

ṅ

n
=

1
(1 + γ)ρ

[ρ̇− ξΘ2] , (21)

which on integration gives

n1+γ = Lρ

[
exp

(
−
∫
ξρ−1Θ2dt

)]
. (22)

Here L is an integration constant.
Maartens (1996) has suggested that the Gibbs integrability condition shows

explicitly that one cannot independently specify an equation of state for the
pressure and temperature. If the equation of state for pressure is barotropic [i.e.
p = p(ρ)] then the equation of state for temperature should be barotropic [i.e.
T = T (ρ)] and may be written as

T ∝ exp
∫

dp

ρ(p) + p
, (23)

which with the help of equation (6) gives

T = T0ρ
γ/(γ+1) , (24)

where T0 is a proportionality constant.
From equations (18) and (24) we get

σ̇ =
ξΘ2

nT0ρ
γ/(γ+1)

. (25)

This equation gives the entropy rate per particle for corresponding values of ξ,
Θ, n and ρ. Further, equation (25) shows that if the bulk viscosity is zero then
the entropy per particle is constant which is the case in Prigogine et al . (1989)
and has been pointed out by Calvao et al . (1992).

3. The Models

We consider a power law relation between the scale factor R and the scalar
field φ of the form

φ = KRα , (26)

where K is a proportionality constant and α is the power index. This commonly
used assumption leads to constant deceleration parameter models which are the
most well known models in both general relativity and BD theory (Berman and
Gomide 1988; Berman and Som 1990; Beesham 1993; Johri and Kalyani 1994).
This gives us the motivation to study such models.
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Using equations (11) and (26), a combination of field equations (7)–(9) for
the FLRW flat (k = 0) model yields

R̈

R
+ β

(
Ṙ

R

)2

= 0 , (27)

where

β =
ωα2 + 4ωα− 6

2(ωα− 3)
= constant . (28)

Equation (27) may be rewritten as

β = −RR̈
Ṙ2

. (29)

Here β has a definition similar to the constant deceleration parameter q.
The solution to equation (27) is given by

R = (A+MDt)1/M , (30)

where M = 1 + β ; β 6= −1 and A and D are integration constants. This will
give us a number of models. For β = −1, equation (27) gives an exponential
inflationary model of the unverse. Polynomial inflation in models is possible if
−1 < β < 0. By virtue of equation (28), this constrains α to lie either in the
range

−2 + 2

(
1 +

4
3ω

) 1
2

< α < −3 + 3

(
1 +

4
3ω

) 1
2

(31)

or in the range

−3− 3

(
1 +

4
3ω

) 1
2

< α < −2− 2

(
1 +

4
3ω

) 1
2

. (32)

When α = −2± 2[1 + (3/2ω)] 1
2 , we have β = 0 and from (30) we can see that R

grows linearly with time. The behaviour of R is independent of ω.
By use of (30), equation (26) gives

φ = K(A+MDt)α/M . (33)

Using equations (30) and (33), from (7) we get

ρ =
KD2

8π

(
3 + 3α− ω

2
α2

)
(A+MDt)(α−2M)/M . (34)
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With the help of (34), from equation (24) we get an expression for the temperature
in all models

T = T0

[
KD2

8π

(
3 + 3α− ω

2
α2

)
(A+MDt)(α−2M)/M

]γ/(γ+1)

. (35)

As α/M ≤ 1, equations (34) and (35) indicate the energy density and temperature
are decreasing with the evolution of the universe.

With the scale factor R(t) given by equation (30), the energy density and
temperature in general relativity take the form

ρ =
3

8πG
D2

(A+MDt)2 ,

T = T0

(
3D2

8πG

)γ/(γ+1)

(A+MDt)−2γ/(γ+1) .

Assuming that α lies in the range given by the relation (31), equation (33)
shows that the scalar field is increasing, while (34) and (35) indicate that in BD
theory the energy density as well as the temperature are decreasing slower than
in general relativity. When α is considered to lie in the range mentioned by the
relation (32), the scalar field decreases, and the energy density as well as the
temperature are decreasing more rapidly than in general relativity.

As we have only six basic equations, viz. (6), (7), (22), (24), (26) and (27),
and seven unknowns, viz. R, φ, ρ, p, n, T and ξ, in order to solve for ξ and
n, we require one more physically reasonable relation (condition) amongst the
variables. In the following subsections, we consider, in turn, a viscosity energy
density, a uniform particle density, an ideal gas and a second order correction
term separately.

(3a) Models with Bulk Viscosity Energy Density Law

In most of the investigations involving bulk viscosity, the coefficient of bulk
viscosity is assumed to be a simple power function of the energy density (see
e.g. Pavon et al . 1991; Zimdahl 1996; Maartens 1996):

ξ = ξ0ρ
m ,

where ξ0 and m are positive constants. If m = 1, then this may correspond to
a radiative fluid, whereas m = 1 ·5 may represent a string dominated universe
(Murphy 1973; Santos et al . 1985). In this subsection we assume the bulk
viscosity energy density relation above, which from equation (34), leads to

ξ = ξ0

[
KD2

8π

(
3 + 3α− ω

2
α2

)
(A+MDt)(α−2M)/M

]m
. (36)
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With the help of (30), (34) and (36), equation (22) yields

n = L1(A+MDt)(α−2M)/(1+γ)Mexp
[
L2(A+MDt)[(m−1)(α−2M)−M ]/M

]
, (37)

where L1 and L2 are given by

L1 =

[
LKD2

8π

(
3 + 3α− ω

2
α2

)]1/(1+γ)

,

L2 =
9MDξ0[KD2(3 + 3α− 1

2ωα
2)]m−1

(8π)(m−1)(1 + γ)[(m− 1)(α− 2M)−M ]
.

Further, as α/M < 1, equations (36) and (37) suggest the bulk viscosity and
particle number density are decreasing with the evolution of the universe. If we
take ξ0 = 0, then our solution reduces to that of Johri and Kalyani (1994).

(3b) Models with Uniform Particle Number Density (n = n0)

As suggested by Triginer and Pavon (1994) in this subsection we consider
the particle number density to be uniform (ṅ = 0) during evolution of the
universe, which leads to the result that the particle production source term (Γ)
is determined by the expansion rate,

Γ = n0Θ . (38)

Using the condition ṅ = 0, equation (21) yields

ξ =
ρ̇

Θ2 . (39)

With the help of (30) and (34), equation (39) reduces to

ξ =
KD

72π
(α− 2M)

(
3 + 3α− ω

2
α2

)
(A+MDt)(α−M)/M . (40)

Equations (40) suggest that the bulk viscosity is decreasing while the universe
is expanding.

(3c) Models for an Ideal Gas

In this subsection we consider

Na
;a = ṅ+ nΘ = 0 . (41)

This is the equation for conservation of total particle number in standard
cosmology. Equation (41) with (30) leads to

n = CR−3 = C(A+MDt)−3/M . (42)
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As the total particle number is conserved, the source term Γ and hence the creation
pressure pc vanish in this case and therefore we are dealing with cosmological
models with bulk viscosity only.

By use of (41), equation (21) becomes

ξ =
ρ̇

Θ2 + (1 + γ)
ρ

Θ
, (43)

which with the help of equations (30) and (34) reduces to

ξ =
KD

72π
[(3 + 3γ + α− 2M)

(
3 + 3α− ω

2
α2

)
](A+MDt)(α−M)/M . (44)

It can be very easily seen that in these models particle number density and bulk
viscosity are decreasing functions of time. If we put α = M , then our solution
reduces to that of Beesham (1994), and hence our solution is a generalisation of
the latter.

(3d) Creation with Second Order Correction in H

To consider particle non-conservation in BD theory, we assume in this subsection
the simple relation

ṅ

n
+ 3H = bH2 , (45)

where b is a constant and H = Ṙ/R is the Hubble parameter. This is a simple
and physically reasonable expression which generalises the conservation of total
particle number in standard cosmology to the non-conservation of total particle
number by considering the Taylor expansion of ṅ/n = f(H) up to second order
in H (Triginer and Pavon 1994).

Using (45), equation (13) gives

Γ = bnH2 . (46)

Equation (46) suggests that for b > 0, b = 0 and b < 0, we have, respectively,
creation, no creation and annihilation of particles. In the context of open
thermodynamic systems, we have

ṅ

n
+ 3H =

Ṅ

N
=
Ṡ

S
≥ 0 . (47)

Here N is the number of particles in a given volume V . From equations (45)
and (47) it can be very easily seen that b ≥ 0, i.e. there is either creation or no
creation. Using (30), equation (45) after integration gives

n = C(A+MDt)−3/Mexp

[
− bD

M(A+MDt)

]
, (48)
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where C is an integration constant.
From (21) and (45) we obtain

ξ =
1

Θ2 [ρ̇+ (Θ− bH2)(1 + γ)ρ] . (49)

Now, using (30) and (34), equation (49) gives an explicit form of ξ as a function
of time:

ξ =
KD(6 + 6α− ωα2)

144π(A+MDt)1−(α/M)

[
3 + 3γ + α− 2M − bD(1 + γ)

(A+MDt)

]
. (50)

In this case also the viscous stress and particle number density are decreasing
with the evolution of the universe.

4. Conclusion

In the present paper, we have studied Brans–Dicke cosmological models with
non-causal thermodynamics of a dissipative homogeneous and isotropic universe
in the context of particle creation. In all models the energy density, creation
pressure, bulk viscosity, temperature and particle number density are decreasing
functions of time.

From equation (30), for A = 0, we get R(t) ∼ t1/M and these models have a
big-bang singularity. In this case particle horizons do not exist. On the other
hand, for A 6= 0 we have non-singular models of the universe and in contrast to
the singular models, particle horizons exist in this case.

Present observational data indicate that ω ≥ 500 (Will 1993). Taking ω = 500,
α = 0 ·0035 which is in the range of (31), and the age of the universe as
t ∼ 1010 yr ∼ 3 × 1017 s, equation (35) yields T ∼ 10−9 MeV for the present
value of the cosmic microwave background radiation temperature. This is in fair
agreement with the measured value.

When β = −1, equation (27) yields the exponential solution R ∼ eBt, where B
is an integration constant. In this case the system of equations (7)–(9) suggests
that the scalar field φ and energy density ρ are proportional to the power function
of scale factor Rα, with α = (−6ω ±

√
36ω2 − 48ω)/2ω and ω ≥ 4

3 . This value
of β leads to Ḣ = 0 which implies a greater value of the Hubble parameter and
a correspondingly faster rate of expansion of the universe as compared to the
relation (30). In the case of exponential inflationary models also one can see that
the BD scalar field, energy density, creation pressure, bulk viscosity, temperature
and particle number density are decreasing functions of time.
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