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Abstract

We discuss potential applications of quadratic optical solitons for all-optical switching in bulk
quadratic nonlinear media. Among the major phenomena investigated are soliton scattering,
spiralling, fusion, and also power exchange between the colliding solitons.

1. General Introduction

The communications network ... will enable the consciousness of our
grandchildren to flicker like lightning back and forth across the face
of this planet. They will be able to go anywhere and meet anyone at
any time without stirring from their homes. All the museums and
libraries of the world will be extensions of their living rooms.

Arthur C. Clarke, Voices from the Sky,
(Harper & Row, 1965)

The author of ‘2001: A Space Odyssey’ would no doubt be pleased that
his vision of a world connected by instantaneous communications did arrive as
predicted. This leap from vision to reality has been exponential, not gradual.
The most sweeping changes in communications over the past three decades have
been compressed into the short space of the past few years. Bit by bit, the
Earth’s surface is being criss-crossed by a network of optical fibres, connecting
countries across oceans, and connecting cities across vast distances. In the modern
‘information society’, large-capacity and reliable local, national and international
telecommunications networks pave the way for the convergence of computers,
advanced communications, information and entertainment. Before a national
information superhighway can emerge, the ‘roads’ must be widened and the
‘freight’ – text, data, images, voice or video signals – must be digitised, packaged
and tagged so that it can be bussed speedily and accurately from end to end.

Modern telecommunications networks rely on the unmatched capacity of
silica-based optical fibres to carry information. Currently optical fibre links are
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replacing traditional copper cabling in the world’s infrastructure. Copper coaxial
cables are inadequate for transmitting high-volume data, whereas optical fibres
have essentially unlimited capacity. In a practical network, the majority of
optical fibres are still interconnected by electronic devices, which provide necessary
switching and signal processing functions. Therefore, significant limitations on
the bit-rate capacity and cost of these hybrid networks are imposed by the speed
of electronic processing and the need to convert signals from light to electricity
and back to light again. This is one reason why current optical fibre systems
utilise only a minute fraction of available capacity.

An ultimate goal for fibre optics is the creation of all-optical networks that run
entirely in glass. Unlike existing fibre optic networks, which convert light signals
to electronic form in order to amplify or switch them, the all-optical network is
entirely photonic. It will carry information-bearing laser-light pulses in dozens of
wavelengths to create tens of thousands of channels that can be switched and
guided by simple photonic devices.

Historically, the new era in integrated photonics research started in 1969, when
the concept of integrated optics was proposed (Miller 1969). Research on optical
integrated circuits (OIC), where certain electronic functions were replaced with
photonic equivalents, started in the early 1970s, when various materials and
processing techniques for waveguides were investigated. Through this research,
the main features of glass, LiNbO3, polymer and semiconductor waveguides were
revealed. Recent developments in optical planar waveguides, especially in the
buried channel waveguide (BCW) technology (see e.g. Kawachi 1990) represent
a major step towards the super-capacity, super-fast ‘transparent’ optical fibre
networks of the future.

Nowadays the vast majority of optical fibres and passive optical processing
elements are used as linear devices (i.e. their characteristics do not depend on the
intensity of the incident signal) (Snyder and Love 1983). Linear optical devices
are very versatile and cover a broad range of network applications including
power splitting, coupling and wavelength multiplexing/demultiplexing of signals.
Although they are ideal for some processing duties, linear waveguide devices are,
by definition, unsuitable for power switching. The key to developing photonic
switches is the discovery of nonlinear optical materials whose refractive index can
vary rapidly in response to changing light intensity. Two principal schemes of
nonlinear switching devices are shown in Fig. 1. Clearly, an intensity-dependent
response is necessary in both of the cases presented.

Initially the optical materials with a cubic nonlinear response (so-called Kerr
or χ(3) materials) were proposed for ultra-high-speed signal processing (see e.g.
Stegeman et al . 1988). By now many types of nonlinear all-optical devices
[e.g. nonlinear optical couplers (Jensen 1982; Friberg et al . 1988), nonlinear
Mach–Zehnder interferometers (Baek et al . 1995) and nonlinear mode-mixers
(Wa et al . 1988) etc.] have been designed and implemented experimentally.
Despite all this progress it has been realised that the overall material properties
required for the applications mentioned are very stringent, and to date only
a few suitable materials have been identified. Unfortunately, the value of the
Kerr-type nonlinearity of conventional (silica-based) optical materials is very
small, and this makes it difficult to design and produce highly efficient and
compact nonlinear optical devices for use at acceptably low intensities. Among
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the organic χ(3) optical materials (polymers) the situation is encouraging, but
far from perfect: organic materials with high electronic Kerr nonlinearities are
lossy and not environmentally stable. For this reason researchers have not been
very optimistic about effective signal processing using Kerr-type nonlinear devices
under realistic conditions.

(a)

Fast  pulse train

(b)

Fast  pulse train

Control  pulse

������
���
���Fig. 1. Two principal schemes for nonlinear switching devices.

However, recent studies of nonlinear wave propagation in a different medium,
namely quadratic (or χ(2)) optical materials, have made many researchers more
optimistic. The second-order nonlinearity is traditionally associated with second-
harmonic generation (SHG; Schubert and Wilhelmi 1986), and was not, until
recently, seen as a source of self-guiding and switching phenomena. This view
has now changed, and it has been demonstrated (De Salvo et al . 1992) that
under certain conditions χ(2) nonlinear materials can behave very similarly to
conventional Kerr materials, due to so-called cascaded χ(2) nonlinear effects,
producing very high effective nonlinearities. The newly discovered cascading
phenomenon is opening up opportunities for novel nonlinear switching schemes.

The active experimental research on cascaded χ(2) nonlinear effects renewed
interest in the fundamental concept of guiding light by light itself , which had been
suggested and developed in the 1980s (see e.g. Azimov et al . 1987; Shen et al .
1988). This concept takes advantage of spatial solitons, which are self-guiding
optical beams existing due to the balance between diffraction and nonlinearity.
Stable spatial solitons open up exciting prospects of creating reconfigurable
guiding structures in nonlinear optical materials. Spatial solitons have attracted
substantial research interest because of their potential applications in all-optical
switching (see e.g. Segev and Stegeman 1998). In general it is well known that
(1+1)-dimensional solitons [see Fig. 2, which presents the schematics of (1+1)-
and (2+1)-dimensional solitons] are expected to interact (attract, repel, etc.) as
effective particles (Gorshkov and Ostrovsky 1981; Karpman and Solov’ev 1981).
However, the most promising schemes for all-optical switching can be based on
non-planar soliton collisions and steering in a bulk medium (Steblina et al .
1998), where full advantage can be taken of the three-dimensional geometry.
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Although (2+1)-dimensional solitons of a pure Kerr medium are unstable and
cannot be employed for soliton switching, recent experimental discoveries of
stable (2+1)-dimensional solitons in different nonlinear media (Torruellas et al .
1995; Duree et al . 1993; Tikhonenko et al . 1995) have renewed interest in
three-dimensional interactions between solitary beams.

Slab  waveguide Bulk  material

(1+1)-dimensional soliton (2+1)-dimensional soliton

Fig. 2. Qualitative pictures of (1+1)- and (2+1)-dimensional spatial solitons.

Among other types of spatial self-guiding beams, χ(2) solitons are especially
attractive for all-optical switching, because the nonlinear response of quadratic
media occurs on an ultra-fast time scale of femtoseconds (see e.g. the recent review
by Stegeman et al . 1996). Head-on (planar) collisions of (2+1)-dimensional χ(2)

solitons have previously been investigated numerically (Buryak et al . 1995; Leo
et al . 1997a, 1997b); it was shown that soliton collisions depend strongly on the
initial relative phase between the beams, similar to the case of one-wave non-Kerr
solitons described by the generalised nonlinear Schrödinger equation. When the
relative phase between the two colliding solitons is zero, they attract each other
and finally fuse into a single soliton of a larger amplitude. The amplitude of
this ‘fused’ soliton oscillates due to the excitation of a soliton internal mode
(Etrich et al . 1996). However, when the two interacting solitons are significantly
out of phase, the interaction between them can be repulsive, and both solitons,
after exchanging some energy, survive after the collision. Switching in slab χ(2)

waveguides and bulk crystals based on head-on soliton collisions has been recently
observed experimentally (Baek et al . 1997; Costantini et al . 1998). Non-planar
collisions of χ(2) solitons have not been addressed previously, except our earlier
Letter (Steblina et al . 1998).

In spite of all this recent progress, no systematic theory of non-planar soliton
interactions in a bulk medium has been developed so far. In the majority of
previous investigations, the theoretical analysis has been limited to direct numerical
simulations only, which, on their own, usually fail to give general predictions or
conclusions. In this paper we generalise the effective particle approach (EPA) of
Gorshkov and Ostrovsky (1981) to describe non-planar collisions of optical beams
in a bulk nonlinear medium, taking the case of (2+1)-dimensional χ(2) solitons as
an important and practical example. We demonstrate several regimes of non-planar
soliton collisions, including scattering, spiralling, fusion and power exchange.
Our model allows significant simplification of the analysis of beam interactions,
and also provides an important physical insight. On the other hand, very good
agreement is achieved with the results obtained by direct numerical modelling.
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2. Model Formulation and Summary of Stability Results

We consider beam propagation in lossless χ(2) nonlinear media under appropriate
conditions for type I SHG (two-wave parametric mixing). In esu, the system of
equations that describes the interaction of the first fundamental (ω1 = ω) and
second (ω2 = 2ω) harmonics in a weakly anisotropic medium with χ(2) nonlinear
susceptibility has the following form [see Menyuk and Torner (1994) for details
of the derivation]:

2ik1
∂E1

∂z̃
+∇2

⊥E1 +
8πω2

1

c2
χ(2)E2E

∗
1e
−iδkz̃ = 0,

2ik2
∂E2

∂z̃
+∇2

⊥E2 +
16πω2

1

c2
χ(2)E2

1e
iδkz̃ = 0,

(1)

where E1 and E2 are the complex scalar electric field amplitude envelopes, the
asterisk denotes complex conjugation, ∇2

⊥ = ∂2/∂x̃2 for the (1+1)-dimensional
case of slab waveguide geometry, or ∇2

⊥ = ∂2/∂x̃2 +∂2/∂ỹ2 for (2+1)-dimensional
bulk media; δk ≡ (2k1 − k2) ≡ 2[n(ω) − n(2ω)]ω/c is the wavevector mismatch
between the first and second harmonics, n is the linear refractive index of the
medium; z̃ is the longitudinal coordinate parallel to the direction of propagation,
x̃ and ỹ are the transverse coordinates, and the χ(2) coefficient is proportional to
the relevant element of the corresponding nonlinear susceptibility tensor. Note
that the system (1) is only valid when the spatial walk-off is negligible, although
this can also be taken into account (see e.g. Menyuk and Torner 1994; Buryak
and Kivshar 1995).

Normalising the transverse coordinates in terms of the beam radius R0 (it can
be defined in various ways, e.g. as the half-width at the 1/e intensity point), then
x̃ = R0x, ỹ = R0y. The longitudinal coordinate is normalised as z̃ = Rdz, i.e. in
units of the diffraction length Rd ≡ 2R2

0k1. If we define R0 as the half-width at
the 1/e intensity point, then a Gaussian-shaped beam |E1|2 ∼ exp[−(x̃2 + ỹ2)/R2

0]
will spread as R2

0(z̃) = R2
0(0)[1 + (2z̃/Rd)2] in a linear isotropic medium. Finally,

the fields E1 and E2 are normalised according to

E1 =
vc2

16πω2
1χ

(2)R2
0

,

E2 =
wc2

8πω2
1χ

(2)R2
0

eiδkRdz,

(2)

to get the normalised system

i
∂v

∂z
+
∂2v

∂x2 +
∂2v

∂y2 + wv∗ = 0,

iσ
∂w

∂z
+
∂2w

∂x2 +
∂2w

∂y2 − σ∆w +
v2

2
= 0,

(3)
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where ∆ ≡ Rdδk is the dimensionless mismatch parameter, and σ ≡ k2/k1 = 2 ·0
for the case of spatial solitons. We will call σ and ∆ the system parameters.
These parameters are fixed by the experimental setup. We note that we use
equations (3), rather than other forms of normalised equations [e.g. the form
used by Buryak et al . (1995)], because the former system leads to much simpler
equations for soliton interaction.

Although the system (3) is not integrable analytically, it possesses several
integrals of motion. Among these integrals, the Manley–Rowe (power) invariant
is especially important for our analysis:

Q =

∞∫
−∞

∞∫
−∞

(
|v|2 + 2σ|w|2

)
dx dy . (4)

There are also two momentum-type invariants and a Hamiltonian invariant.
The number of integrals of motion of the evolution system is closely related

to the number of internal parameters of the respective soliton families (Gorshkov
and Ostrovsky 1981). Usually each of the energy- and momentum-type invariants
corresponds to the existence of one internal soliton parameter. In this instance
we can expect equations (3) to have a three-parameter bright soliton family. In
order to find this three-parameter family explicitly, we represent the v and w
components as

v(x, y, z) = V (x− Cxz, y − Cyz, z)eiβz,

w(x, y, z) = W (x− Cxz, y − Cyz, z)e2iβz,
(5)

and then find (e.g. numerically) complex stationary , i.e. z-independent, localised
solutions of the system

∂2V

∂x2 +
∂2V

∂y2 − iCx
∂V

∂x
− iCy

∂V

∂y
− βV +WV ∗ = 0,

∂2W

∂x2 +
∂2W

∂y2 − iσCx
∂W

∂x
− iσCy

∂W

∂y
− σ(2β + ∆)W +

V 2

2
= 0 . (6)

In equations (6) we have introduced the real internal soliton parameters β, Cx
and Cy, which, in contrast to the system parameters σ and ∆, may change
during soliton evolution and interactions. The soliton parameter β is the
nonlinearly-induced shift of the propagation constant, whereas Cx and Cy are
two components of the soliton velocity.

For fixed σ and ∆, complex stationary soliton solutions of equations (6)
are defined by values of the internal soliton parameters β, Cx and Cy, and
can be written down as Vs(β,Cx, Cy;x, y), Ws(β,Cx, Cy;x, y). If all possible
zero-velocity stationary solitons Vs(β, 0, 0;x, y), Ws(β, 0, 0;x, y) are known [such
soliton solutions have been found both numerically and semi-analytically (Buryak
et al . 1995; Steblina et al . 1995)] then for σ = 2 we can find non-zero velocity
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solitons of equations (6) using the well-known gauge invariance property (Buryak
et al . 1995). Indeed, by direct substitution, one can show that

Vs(β,Cx, Cy;x, y) = Vs

(
β − C2

x

4
−
C2
y

4
, 0, 0;x, y

)
ei(Cxx+Cyy)/2,

Ws(β,Cx, Cy;x, y) = Ws

(
β − C2

x

4
−
C2
y

4
, 0, 0;x, y

)
ei(Cxx+Cyy). (7)

The ‘moving’ solitons given by equations (7) can be used as initial conditions in
numerical analysis of soliton collisions.

The full-scale theoretical analysis of the existence and stability of single bright
solitons described by equations (3) is beyond the scope of this work. However,
for completeness of the presentation, we present major results below. Detailed
analysis of this and similar problems can be found in Buryak et al . (1995, 1996)
and Pelinovsky et al . (1995).

It is possible to show that the domain of soliton existence is given by(
β − C2

x

4
−
C2
y

4

)
> max

(
0,−∆

2

)
. (8)

Using an analysis similar to that reported by Buryak et al . (1996), one can show
that for the most interesting and physically relevant case of σ = 2, the condition
of soliton stability is given by the simple formula

∂Q̃

∂β
> 0 , (9)

where Q̃ ≡ Q(β − C2
x/4 − C2

y/4, 0, 0), which means that one has to calculate
the invariant (energy) on a fundamental family of radially symmetric stationary
soliton solutions {Vs(β −C2

x/4−C2
y/4, 0, 0;x, y),Ws(β −C2

x/4−C2
y/4, 0, 0;x, y)}.

Analysis of the behaviour of the power invariant Q̃ (verified by direct numerical
simulations) shows that the unstable χ(2) spatial solitons can only exist for
∆ < 0, whereas for ∆ ≥ 0 all solitons are stable. This result holds both for
(2+1)-dimensional (Buryak et al . 1995) and (1+1)-dimensional (Pelinovsky et al .
1995) cases.

3. Different Regimes of Soliton Interactions

Using the methods of Gorshkov and Ostrovsky (1981), we can derive a general
system of ordinary differential equations (ODEs) for the soliton parameters,
describing the adiabatic interaction of two almost identical solitons in a bulk
χ(2) medium. This is based on two major assumptions: (i) that the relative
distance R between solitons is large (RÀ 1, the approximation of well-separated
solitons), and (ii) the relative soliton velocity C is small (C ¿ 1). Below we give
an outline of the derivation procedure, omitting the technical details which can
be found in Buryak and Steblina (1999).
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We take two well-separated one-soliton solutions of equations (3) as the zeroth
approximation of a nonstationary two-soliton solution. Then we allow all internal
parameters of both solitons to depend on a slow variable Z (where Z ≡ εz)
and look for an asymptotic two-soliton solution of equations (3) in the form of
infinite series, with ε being a small parameter of the asymptotic procedure. This
approach is self-consistent only if certain compatibility conditions are satisfied.
These compatibility conditions lead to a system of ODEs that is a lot simpler
than the original model (3), but is still too complex to provide immediate
physical insight. However, this system can be simplified further using additional
assumptions.

Let us consider two initially identical solitons, which are located symmetrically
about the coordinate centre (0, 0) in the (x, y) plane, and have opposite
initial velocities. In other words, initially C

(1)
x = −C(2)

x , C
(1)
y = −C(2)

y , with
superscripts (1) and (2) referring to first and second solitons respectively. Using
these assumptions we can obtain the following analytic system for adiabatically
changing soliton parameters:

−∂Q̃
(1)

∂β(1)
φ̈(1) + 1

2

∂U

∂φ(1)
= 0,

−∂Q̃
(2)

∂β(2)
φ̈(2) + 1

2

∂U

∂φ(2)
= 0,

Q̃(1)

2
ẍ(1) + 1

2

∂U

∂x(1)
= 0,

Q̃(2)

2
ẍ(2) + 1

2

∂U

∂x(2)
= 0,

Q̃(1)

2
ÿ(1) + 1

2

∂U

∂y(1)
= 0,

Q̃(2)

2
ÿ(2) + 1

2

∂U

∂y(2)
= 0,

(10)

where φ(j)(z), x(j)(z) and y(j)(z) denote soliton phases and centre positions, and
the potential U can be written in terms of soliton overlap integrals. The exact
definition of the potential U will be given below.

(3a) Effective Particle Approach

System (10) has the form of the classical mechanics problem for two
particles interacting in three-dimensional space. However, each of these effective
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particles has a variable anisotropic mass, and M
(j)
φ 6= M

(j)
x = M

(j)
y . In addition,

M
(j)
φ ≡ −2∂Q̃(j)/∂β(j) is always negative, because the stability condition (9) for

single solitons requires ∂Q̃(j)/∂β(j) > 0.
We now multiply the first of equations (10) by ∂Q̃(2)/∂β(2) the second by

∂Q̃(1)/∂β(1), and subtract the resulting equations from each other. Applying a
similar procedure to the other two pairs of equations in the system (10), we
obtain

Mφφ̈+
∂U

∂φ
= 0,

MXẌ +
∂U

∂X
= 0,

MY Ÿ +
∂U

∂Y
= 0,

(11)

where Mφ ≡ −2Q(1)

β(1)Q
(2)

β(2)/(Q
(1)

β(1) + Q
(2)

β(2)), Q
(j)

β(j) ≡ ∂Q(j)/∂β(j), MX = MY ≡
Q(1)Q(2)/(Q(1) +Q(2)), φ ≡ φ(2) − φ(1), X ≡ x(2) − x(1) and Y ≡ y(2) − y(1), i.e.
φ is the relative phase between the solitons, X and Y being the separations
between solitons in the x and y directions respectively.

The reduction of equations (10) to (11) is self-consistent if Mφ, MX , and
MY depend only on ∆β ≡ β(2) − β(1) or are constants. In this subsection we
assume all effective masses to be constants, i.e. Mφ = Mφ(β0), MX = MX(β0)
and MY = MY (β0), where β0 ≡ β(1)(z = 0) = β(2)(z = 0), prohibiting power
exchange between the solitons. Violation of this assumption and soliton power
exchange are addressed in the next subsection.

Following the standard methods of classical mechanics (see e.g. Goldstein 1980),
the dimensionality of equation (11) can be reduced using cylindrical coordinates
(R,φ), where R ≡

√
X2 + Y 2 is the relative distance between the interacting

beams. The final equations can then be presented in the form

Mφφ̈+
∂Ueff

∂φ
= 0; MRR̈+

∂Ueff

∂R
= 0 , (12)

which corresponds to the effective two-dimensional Lagrangian

L = 1
2MR Ṙ

2 + 1
2Mφ φ̇

2 − Ueff(R,φ) . (13)

The elements of the effective mass matrix for the case of two identical solitons
are defined as

MR ≡ π
∞∫

0

{|Vs(r)|2 + 2σ|Ws(r)|2}rdr,

Mφ ≡ − 2∂MR/∂β , (14)
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where the integrand is calculated for the fundamental one-soliton stationary
solutions of radial symmetry that are involved in the interaction. The effective
potential energy has the form

Ueff(R,φ) =
MRS

2C2
0

2R2 + U1(R) cos (φ) + U2(R) cos (2φ) , (15)

where the overlap integrals U1 and U2 are given by

U1(R) ≡ −2

∞∫
−∞

∞∫
−∞

[
W (2)
s V (2)

s V (1)
s +W (1)

s V (1)
s V (2)

s

]
dx dy,

U2(R) ≡ −
∞∫
−∞

∞∫
−∞

[
V (2)
s

2
W (1)
s + V (1)

s

2
W (2)
s

]
dx dy,

where V
(1)
s = Vs(β, 0, 0;x − R/2, y), W

(1)
s = Ws(β, 0, 0;x − R/2, y), V

(2)
s =

Vs(β, 0, 0;x+ R/2, y) and W
(2)
s = Ws(β, 0, 0;x+ R/2, y). The impact parameter

S defines the distance between the trajectories of non-interacting solitons, and
C0 ≡ Ṙ(z = 0) is the relative velocity between the solitons prior to the interaction.

When the distance between the interacting solitons is relatively large, the
soliton interaction is determined by their tail asymptotics, which can be found
analytically (except for constant factors A and B) as V (j)(r) = (A/

√
r) exp (−

√
βr),

W (j)(r) = (B/
√
r) exp [−

√
σ(2β + ∆)r] for σ(2β + ∆) ≤ 4β, and W (j)(r) =

A2/{r[σ(2β + ∆) − 4β]} exp (−2
√
βr) for σ(2β + ∆) > 4β. The asymptotic

expressions for the functions U1 and U2 can be also estimated analytically, e.g.

U1(R) ≈ −K1A
2(β)1/4 exp (−

√
βR)/

√
R , (16)

where the positive parameter K1 is fitted numerically. We found that for a large
range of parameters ∆ and β, K1 = 20 ·8 ± 0 ·2. The situation with U2(R) is
more complicated. For

√
σ(∆ + 2β) < 2

√
β (i.e. ∆ < 0 for σ = 2), the potential

U2(R) ∼ exp [−
√
σ(∆ + 2β)R], whereas for

√
σ(∆ + 2β) ≥ 2

√
β (i.e. ∆ ≥ 0 for

σ = 2), the potential U2(R) ∼ exp [−2
√
βR]. In both cases further numerical

fitting is necessary. We found that for the ∆ < 0, σ = 2 case,

U2(R) ≈ −K2B
2[2(∆ + 2β)]1/4 exp [−

√
2(∆ + 2β)R]/

√
R , (17)

where again the positive parameter K2 is fitted numerically to be K2 = 20 ·0 ±1 ·0,
although the accuracy of this approximation is clearly worse than that for equation
(16). For the ∆ ≥ 0, σ = 2 case, U2(R) ¿ U1(R) and usually can be ignored.
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However, for the combination of parameter values discussed in this paper (∆ = 1,
β = 0 ·5), we still adopted the following fitting formulas for both U1(R) and
U2(R):

U1(R) = − 2330 ·0 exp(−0 ·7071 R)/
√
R,

U2(R) = − 8216 ·0 exp(−1 ·4142 R) , (18)

which are a good approximation for R > 5 ·0.
The effective mechanical model defined by the Lagrangian (13) can be used to

generate a physical picture of soliton dynamics predicting the outcome of soliton
collisions. Importantly, interaction forces depend strongly on the relative phase
φ. For simplicity, we first consider the case when U2 ¿ U1 (which is always
true for ∆ > 0) and φ = 0, π. In the case of out-of-phase collisions (φ = π),
the ‘centrifugal force’ defined by the first term of the effective potential Ueff ,
and the direct interaction force defined by the second term U1(R) cos (φ), are
both repulsive. Therefore the effective particle cannot reach the force centre, i.e.
solitons cannot fuse (see Fig. 3a). The interaction scenario is very different for
in-phase soliton collisions (φ = 0). An interplay between a repulsive ‘centrifugal’
force and an attractive interaction force leads to two qualitatively different regimes
shown schematically in Fig. 3b. For low relative velocities (and/or sufficiently
large values of the impact parameter S), solitons cannot overcome the centrifugal
potential barrier, and they spiral about each other. At higher velocities (and/or
smaller values of the impact parameter S) solitons can closely approach each
other and fusion may occur.

2
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Ueff
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R
20 8 12 16 20

reflection

(a)

  φ = π

fall onto the force centre

reflection

  φ = 0

(b)

-0.5
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0.5

1

-1

Ueff

R

Fig. 3. Qualitative sketch of the effective interaction potential
Ueff(R,φ) for (a) the out-of-phase interaction (φ = π) and (b) the
in-phase interaction (φ = 0).

The numerical analysis of this paper is based on the standard split-step beam
propagation method (see e.g. Taha and Ablowitz 1984), where we use a 256× 256
grid with periodic boundary conditions and step size ∆z = 0 ·005. Our direct
numerical modelling of equations (3) confirms the predictions of the approximate
model given by the Lagrangian (13). Figs 4a–4c present characteristic examples
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Fig. 4. Sequences of soliton positions in the (X,Y ) plane shown at different propagation
distances for (a) soliton scattering (φ = π, S = 3 ·6), (b) soliton reflection via spiralling
(φ = 0, S = 11 ·6), and (c) soliton fusion (φ = 0, S = 11 ·0). All results are obtained for
β = 0 ·5, ∆ = 1 ·0 and C0 = 0 ·2. Here and in subsequent figures only the positions of the
first harmonic components are shown (the second harmonic components always closely follow
the corresponding first harmonic components).
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of the soliton interaction, including soliton scattering (4a), soliton spiralling (4b),
and soliton fusion (4c). The corresponding three-dimensional views of soliton
spiralling and soliton fusion are shown in Fig. 5. All of the types of soliton
interaction predicted by the analytical model have been observed in the numerics.
To make a quantitative comparison, we integrated the dynamical model for
the relative coordinate and phase following from equation (13), applying the
techniques of the well-known scattering theory of classical mechanics (Goldstein
1980). Fig. 6 compares the results of our analytical model with those of a direct
numerical experiment, showing the dependence of the scattering angle θ on the
soliton impact parameter S. Good agreement is found even for the case of initial
relative velocity C0 = 0 ·2.

(a) (b)

Fig. 5. Three-dimensional view of soliton interactions. In (a) the parameters
are the same as in Fig. 4b; in (b) they are the same as in Fig. 4c).
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Fig. 6. Soliton scattering angle θ versus impact parameter S (see definitions in Fig. 4a)
for out-of-phase collisions (φ = π). Solid line: analytical results; dots: results of numerical
simulations. Results are obtained for β = 0 ·5, ∆ = 1 ·0, and C0 = 0 ·2.
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(3b) Power Exchange between Colliding Solitons

To describe the power exchange between the interacting solitons, we approximate
Q(1) and Q(2) as linear functions of β(1) and β(2), respectively. This leads to the
following dependences of Q(1) and Q(2) on ∆β [∆β ≡ β(2) − β(1)]:

Q(1) = Q− 1
2

∂Q

∂β0

∆β; Q(2) = Q+ 1
2

∂Q

∂β0

∆β , (19)

where ∂Q/∂β0 ≡ ∂Q/∂β|β=β0 , β ≡ (β(2) + β(1))/2 and Q ≡ Q(1)(β0) = Q(2)(β0).
Equations (19) are consistent with total energy conservation: Q(1) +Q(2) = 2Q =
const. Using (19), we find that

Mφ = −Qβ0 = const,

MX = MY = Q/2−Q2
β0

(∆β)2/8 . (20)

Thus for small changes of relative phase φ (implying that ∆β = φ̇ is also small),
all of the masses Mφ, MX and MY are constants, correct to order (∆β)2. These
qualitative arguments show why we can assume the masses to be constants in
equations (11).

We can calculate the small power exchange between harmonics by simply
integrating equations (12), and measuring ∆β = φ̇ at some z sufficiently far after
the collision region. In general, after the interaction we have ∆β 6= 0 for any
soliton collision with initial φ0 6= 0, π. The exchanged power is then given by

∆Q =
∂Q

∂β0

∆β , (21)

where ∂Q/∂β0 is calculated for either of the two identical solitons prior to their
interaction. Fig. 7 gives an example of soliton collision with significant power
exchange.

It is evident from Fig. 7 that, after the collision, the relative soliton velocity has
increased. This can be readily explained using dynamical invariants of equations
(12). Consider the total energy of the two particles approaching each other from
a sufficiently large distance:

Hin = 1
2MR Ṙ

2 + 1
2Mφ φ̇

2 . (22)

In equation (22) we have neglected the potential energy of interaction, Ueff(R,φ).
The total energy Hout long after the interaction has the same form as Hin and
must retain the same value as before the interaction. Accordingly, since φ̇2 > 0
and Mφ < 0, the growth of φ̇ has to be compensated for by the growth of
relative velocity Ṙ. This explains the widening of scattering angles after soliton
interaction which has been observed in our numerical simulations (e.g. Fig. 7) and
by others (e.g. Snyder et al . 1998), and provides us with a potentially important
tool for soliton acceleration.
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X
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Fig. 7. Sequences of soliton positions in the (X,Y ) plane, shown
at different propagation distances for soliton scattering (φ = π/8,
S = 3 ·2) with significant power exchange. Results are obtained for
β = 0 ·5, ∆ = 1 ·0, and C0 = 0 ·2.

To verify our theoretical predictions we compare the power exchange results
given by equation (21) with the results of direct numerical modelling. Fig. 8
demonstrates that equation (21) can give approximately correct results even when
significant soliton power exchange occurs, and the condition ∆β ¿ 1 is violated.
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and C0 = 0 ·2.
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(3c) Stability of Spiralling Configurations

Using the analytical model, we can investigate the possibility of stable spiralling
configurations (or bound states) similar to those observed for incoherently interacting
photorefractive solitons (Shih et al . 1997; Buryak et al . 1999). For two (2+1)-
dimensional χ(2) solitons interacting coherently with a positive phase mismatch
and U1 À U2, the model (13) predicts the existence of a local minimum in R
of the effective interaction potential Ueff(R) at φ = 0 and R0 ∼ 1. However, the
approximate model (13) is valid only for weakly overlapping solitons when R is
large and, therefore, this minimum is physically unrealisable, being located in the
region of soliton fusion. In the opposite situation of negative phase matching,
U1 and U2 may become comparable, and in a certain range of parameters we
find a shallow local minimum of the potential Ueff(R) at φ = π and R0 À 1. A
spiralling configuration of two solitons, corresponding to such a local minimum,
would be stable if both mass coefficients (masses) were positive. Unfortunately,
stability of the single solitons involved in the interaction always requires that
Mφ < 0 [see the condition (9)], and therefore this extremum is a saddle point
in the space (R,φ), implying the instability of the corresponding bound states.
Indeed, we have not been able to observe such states in extensive direct numerical
modelling of equations (3). We expect this to be a rather general phenomenon,
valid for other types of solitary waves interacting coherently, which, however, has
not been previously addressed in the literature.

4. Physical Estimates

In order to provide parameter values for the experimental observation of χ(2)

soliton collisions, we need to estimate two key parameters, the minimum intensity
required for soliton formation and the minimum interaction length necessary for
the observation of switching.

An expression estimating the minimum intensity has recently been obtained
(Buryak et al . 1997), and is given by

Imin =
Gk1

ω5
1 [χ(2)]2R4

0

, (23)

where R0 is the soliton width [defined in Buryak et al . (1997) as full width
at half maximum for E2 harmonic amplitude], χ(2) is the effective quadratic
coefficient, k1 and ω1 are the wave-number and frequency, respectively, for the
fundamental harmonic, and G is a constant that does not depend on the material
or the experimental setup parameters. For example, let us take typical values for
type II SHG in KTP, similar to the ones reported by Torruellas et al . (1995):
R0 = 10µm, ω1/c = 6 ·13 × 104 cm−1, k1 = 10 ·5µm−1 and χ(2) = 6 pm V−1.
Using the formalism of Buryak et al . (1997), we obtain Imin ≈ 14 ·0 GW cm−2

for (2+1)-dimensional solitons.
Our numerical results indicate that the minimum interaction length Lmin

necessary for switching is about 10 normalised propagation distance units, i.e. of
the order of 10 diffraction lengths. Again, taking the experimental parameters
as R0 = 10µm and k1 = 10 ·5µm−1, we can calculate that Rd ≈ 2 mm. Thus the
minimum necessary crystal length in physical units is Lmin = 10Rd ≈ 2 cm.
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We point out that our values of Imin and Lmin give an estimate from below.
Our calculations are based on the assumption that the laser beams initially match
exactly each of the corresponding soliton components. Breaking this condition,
e.g. by generating χ(2) solitons without seeding of the second harmonic, should
slightly increase the required threshold intensity and interaction length. On the
other hand, the use of new materials and/or phase-matching techniques can lead
to much higher values of the effective χ(2) parameter which, in turn, significantly
decreases Imin, or (if R0 is decreased) Lmin. For example, the use of the so-called
quasi-phase-matching (QPM) technique (see e.g. Fejer et al . 1992; Miller et al .
1997) can increase the value of the effective χ(2) parameter for conventional
nonlinear crystals by up to 50 pm V−1, thus lowering the required laser intensity
to Imin ∼ 100 MW cm−2. The use of semiconductor optical materials (plus
quantum-well-based QPM) can lead to even higher effective χ(2) nonlinearities
(Ueno et al . 1997), thus reducing the required Imin further, potentially allowing
soliton-based all-optical switching to be achieved at the intensity level of just a
few MW cm−2.

5. Conclusions

In this paper we have analysed non-planar collisions of (2+1)-dimensional
χ(2) solitons and demonstrated a controllable soliton-based all-optical switching
determined by the initial soliton states, i.e. the soliton velocities, the relative
phase, and the impact parameter. We have derived an effective mechanical model
that provides a physical description of soliton collisions in terms of an effective
particle in a central force. This model has been fully confirmed by the results
of direct numerical simulations. The phenomena of χ(2) soliton scattering and
power exchange may find applications in ultra-fast all-optical signal processing
and switching in a bulk medium. Our approach can be readily generalised for
the analysis of interactions of higher-dimensional solitons (including the so-called
‘light bullets’; Malomed et al . 1997) in χ(2) materials and other types of nonlinear
media.
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