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Abstract

The angular distribution and spin polarisation of the resonantly photoexcited Xe∗(4d−1
5/2 6p3/2)

N5O2,3O2,3 Auger spectrum is investigated. The two-step model has been used which allows
us to independently determine the dynamic parameters of the primary excitation and the
Auger emission process. Assuming either a fully circularly or linearly polarised photon beam
the dynamic parameters determining the primary photoexcitation become constant numbers
independent of the matrix elements. Applying a relativistic distorted wave approximation
the relevant numbers describing the Auger decay dynamics, i.e. relative intensities, angular
distribution and spin polarisation parameters have been calculated, and are compared with
experimental and other theoretical data. With this, predictions for the spin polarisation
vector are possible. A large degree of dynamic spin polarisation has been found for all Auger
transitions to a final state with Jf = 1

2 . This is in contrast to earlier calculations for diagram
Auger transitions. Recently, we have given an explanation for this deriving propensity rules
for resonant Auger transitions. The propensity rules allow for predictions for which Auger
line a large dynamic spin polarisation can be expected. The predictions are in accord with
our multiconfigurational Dirac–Fock calculations for the resonant Xe N5O2,3O2,3 and Ar
L3M2,3M2,3 Auger multiplets. It is demonstrated that the effect of a large spin polarisation
is caused by a large shift of the scattering phase of the emitted εs1/2 partial waves, whereas
a small spin polarisation is due to a cancellation between the Coulomb and scattering phases
of the partial waves.

1. Introduction

The observation of the angular distribution and spin polarisation of Auger
electrons has been recognised as a useful tool to obtain more refined information
about the Auger emission process. As has been pointed out for example by
Kessler (1985), such experiments can be seen as a step further towards a so-called
complete experiment.

While the Auger spectrum has been investigated theoretically and experimentally
by many groups—a good overview may be found in the review by Schmidt
(1992)—and several investigations focused on the angle resolved spectrum (see
Schmidt 1992 and more recently e.g. Lohmann and Fritzsche 1996), the number
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of investigations concerning the spin polarisation of Auger electrons is still small
(e.g. Klar 1980; Hahn et al . 1985; Kabchnik et al . 1988; Merz and Semke 1990;
Kuntze et al . 1993; Lohmann et al . 1993; Müller et al . 1995; Lohmann 1996).
Expanding the spin polarisation vector in terms of its cartesian components, the
process of generating a non-zero spin polarisation of the emitted Auger electrons is
different for the in-reaction plane components and the components perpendicular
to the reaction plane, respectively.

Fig. 1. Coordinate frame and reaction plane. The reaction plane is spanned by the incoming
synchrotron beam axis kγ and the direction of Auger emission ka.

Restricting ourselves to the case of photoionisation/excitation, the components
of the spin polarisation vector of Auger emission in the reaction plane (see
Fig. 1), defined by the incoming synchrotron beam axis and the direction of
Auger emission, can be only observed if the incoming synchrotron beam is
circularly polarised and are therefore denoted as intrinsic. From a physical point
of view this is due to the fact that a non-zero spin polarisation of the emitted
Auger electrons can be only generated via polarisation transfer . This has been
investigated e.g. by Kuntze et al . (1993), Lohmann et al . (1993), Müller et al .
(1995) and Lohmann (1996).

The component of the spin polarisation vector perpendicular to the reaction
plane is usually denoted as dynamic spin polarisation. This case is physically
interesting. Here, the spin polarisation of the Auger electrons is generated via
dynamic effects during the Auger emission. As has been pointed out by Klar
(1980), its observation should be possible even if the target and the photon
beam are unpolarised. The first experiment by Hahn et al . (1985), using electron
impact ionisation, reported an almost vanishing dynamic spin polarisation for the
so-called diagram or normal Auger transitions. This has also been confirmed by
theoretical calculations (Kabachnik et al . 1988; Lohmann et al . 1993). Recently,
experiments have been done to measure the dynamic spin polarisation for so-called
resonantly excited Auger transitions, and a large dynamic spin polarisation has
been found for certain Auger lines (Snell et al . 1996a, 1996b).
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The aim of this work is to review the theory and to provide further theoretical
data to compare with other theories and experiments. In addition, we give
predictions for the spin polarisation vector and, by applying our recently derived
propensity rules (Lohmann 1998a), give predictions whether a large dynamic spin
polarisation can be expected for certain lines of the resonantly excited Auger
spectrum, or not. This is actually the first time that, with respect to Auger
transitions, theory has been able to fulfill a basic request of experimentalists
(Kessler and Merz 1984): to predict whether measurable numbers can be expected
from an angle and spin resolved Auger emission experiment. Due to the feasibility
of such experiments, the need for a synchrotron line, Mott chamber, etc. there
has been an urgent need for such guidelines.

In the next section an outline of the theoretical background will be given.
By applying a two-step model the general equations for angular distribution and
spin polarisation of Auger emission after photoexcitation will be discussed. The
dynamics of the primary photoexcitation and the subsequent Auger emission
are discussed in more detail for different polarisation states of the incoming
synchrotron beam. A brief outline of the calculational model will be given. In
Section 3 our results for the resonant Xe N5O2,3O2,3 Auger transitions will be given
and discussed. The relevant numbers of relative intensities, angular distribution
and spin polarisation parameters will be compared with other theoretical and
experimental data in Section 4. We will consider the dynamic spin polarisation
in more detail. Particular attention will be given to the question of large versus
small dynamic spin polarisation, i.e. under which conditions a large dynamic spin
polarisation can be expected. We will derive and discuss the propensity rules
which allow for the first time predictions for a large dynamic spin polarisation
in resonant Auger transitions. Our numerical results of a large dynamic spin
polarisation for an unresolved final state will be compared to recent experimental
data. Predictions for the spin polarisation vector will be given for certain Auger
lines. Some concluding remarks will be given in the last section.

Fig. 2. The primary photoexcitation.
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Fig. 3. The resonant Auger emission process.

2. Theory

(2a) General Considerations
The present understanding of the Auger emission is that of a two-step process

(e.g. see the review by Mehlhorn 1990). What is commonly known as Auger
transitions are the so-called diagram transitions, i.e. the target atom is, in a
first step, ionised in an inner electronic shell and decays subsequently via Auger
emission leaving behind a doubly ionised atom. In this paper we consider the
resonant Auger emission in more detail. Considering a primary photoexcitation
process the resonant Auger process can be written as

γ +A −→ A∗ (1)

↘ A∗ −→ A+∗ + eAuger . (2)

In a first step, which is shown in Fig. 2, an inner shell electron is excited via
photoabsorption into a Rydberg level. After a certain lifetime, the excited atom
decays via Auger emission while the excited electron remains in its Rydberg level
leaving the target atom in a singly ionised excited state. The resonant Auger
emission is illustrated in Fig. 3.

(2b) Angular Distribution and Spin Polarisation of Resonant Auger Electrons

The general equations of angular distribution and spin polarisation of Auger
electrons have been recently derived by Kleiman et al . (1999) assuming a primary
photoionisation. Adopting their results the expressions for angular distribution
and spin polarisation of a resonant Auger emission after primary photoexcitation
can be derived. The general expression for the angular distribution may be
written as

I(θ) =
I0

4π

(
1 + α2

[
A20 P2(cos θ) +

√
3
2 ReA22 sin2 θ

])
, (3)



Resonant Auger Transitions 401

where I0 denotes the total intensity integrated over the solid angle. Since we are
applying a two-step model the angular distribution parameters can be factorised
into two terms. The parameters AKQ contain information about the dynamics of
the primary excitation process. They are related to the state multipoles of Blum
(1996) and are basically a function of the beam energy and of the polarisation
states of the incoming beam and the target. In the following, we assume the target
atom to be unpolarised. For a primary photoexcitation the dipole approximation
can be applied. This yields a general restriction for the state multipoles and,
thus, only excitation parameters AKQ with rank K ≤ 2 can contribute to the
general expressions for angular distribution and spin polarisation. In particular,
the second rank tensor parameter A20 and the first rank tensor A10 are known
as alignment and orientation parameters, respectively.

The angular distribution parameter α2 contains information solely about the
Auger decay dynamics. It is basically a function of Auger transition amplitudes
and scattering phases. Explicit expressions may be found e.g. in Lohmann and
Fritsche (1994).

Observing the angle resolved intensity at an angle θ 6= 0◦ defines a reaction
plane. The related coordinate frame is illustrated in Fig. 1. Then, the cartesian
components of the spin polarisation vector, with respect to the helicity system
of the emitted Auger electrons, i.e. z-axis ‖ ka, can be written as

px(θ) =
(ξ1A10 +

√
6 ξ2 ImA22) sin θ

1 + α2(A20 P2(cos θ) +
√

3
2 ReA22 sin2 θ)

, (4)

py(θ) =
− 3

2 ξ2(A20 −
√

2
3 ReA22) sin 2θ

1 + α2(A20 P2(cos θ) +
√

3
2 ReA22 sin2 θ)

, (5)

pz(θ) =
δ1A10 cos θ

1 + α2(A20 P2(cos θ) +
√

3
2 ReA22 sin2 θ)

. (6)

As for the angular distribution, the spin polarisation parameters factorise into
two terms. The photoexcitation dynamics is again described by the tensor
parameters AKQ. In addition to the alignment parameter A20, the in-reaction
plane components px(θ) and pz(θ) also depend on the orientation parameter
A10. All components depend on the real and imaginary parts of the additional
alignment parameter A22. Both are related to certain polarisation states of the
incoming synchrotron beam which will be discussed later. In addition, the px(θ)
component of the spin polarisation vector also depends on the imaginary part
of the excitation parameter A22.

Further information on the Auger decay dynamics can be obtained from the
spin polarisation parameters δ1, ξ1 and ξ2. Expressions for them may be found
in e.g. Lohmann et al . (1993) or Kleiman et al . (1999). In particular, the
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δ1 and ξ1 are related to the in-plane components of the spin polarisation
vector. They can be observed only if the incoming synchrotron beam is circularly
polarisation and are therefore denoted as intrinsic. The spin polarisation parameter
ξ2 is basically related to the component py(θ) of the spin polarisation vector
perpendicular to the reaction plane. In principle, its observation should be possible
even if the target and the photon beam are unpolarised, and ξ2 is therefore
denoted as a dynamic spin polarisation parameter, i.e. it can only be observed
if the alignment of the intermediate excited state is dynamically transferred into
a spin polarisation of the emitted Auger electron. As has been shown by Blum
et al . (1986), this can only happen if explicit spin dependent forces are present
during the Auger emission.

From their structure, the equations of angular distribution and spin polari-
sation of Auger emission are similar to relations obtained for the emission of
photoelectrons.

(2c) Special Cases

Let us consider some special cases in more detail. For this, we first discuss
the primary excitation process with respect to different polarisation states of the
incoming synchrotron beam. Then, we consider the Auger emission in order to
see how the general equations of angular distribution and spin polarisation are
reduced for these cases.

Photoexcitation. For a primary photoexcitation process

γ +A −→ A∗ (7)

the neutral initial atomic state is excited via photoabsorption. The photoexcitation
is illustrated in Fig. 2. The intermediate excited atomic state A∗ is fully described
by the set of tensor parameters

AKQ =
〈T (J)+

KQ〉
〈T (J)+

00〉
, (8)

and, as has been pointed out in Section 2b, the dynamics of the photoexcitation
is contained in the state multipoles 〈T (J)+

KQ〉. The state multipoles describing
the intermediate excited atomic ensemble can be related to the state multipoles
〈T +
Γγ〉 of the incoming photon beam by (Lohmann 1998b)

〈T (J)+
KQ〉 = Bex(K) 〈T +

Γγ〉 δK,Γ δQ,γ , (9)

where Bex(K) denotes the anisotropy parameter of photoexcitation, Γ and γ are
rank and magnetic component of the photonic state multipoles and δij denotes a
Kronecker symbol. This relation is similar to the one which has been obtained
recently by Kleiman et al . (1999) for the case of photoionisation.
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Applying the dipole approximation and using standard methods of angular
momentum algebra the photoexcitation parameter may be eventually expressed
as

Bex(K) =
1

2J0 + 1
(−1)1+J+J0+K

{
1 1 K
J J J0

}
J ||d̂||J0|2 , (10)

where d̂ denotes the dipole operator and J0 and J denote the total angular
momenta of the initial and intermediate excited state, respectively. From equation
(10), it is evident that Bex is a real quantity. In particular, considering an
initial atomic state with total angular momentum J0 = 0, i.e. the rare gases,
the symmetry relations of the 6j-symbols yield J = 1 and equation (10) can be
further reduced to

BJ0=0
ex (K) = BJ0=0

ex (0) = 1
3 |1||d̂||0|

2 . (11)

Thus, the anisotropy parameters become constant numbers, independent of their
rank K. This case is of importance for photoexcitation and subsequent Auger
decay of the rare gases. The tensor parameters of photoexcitation are therefore
directly proportional to the state multipoles describing the polarisation state of
the incoming synchrotron beam.

Generally, circularly polarisation synchrotron radiation has a linearly polarisation
admixture and vice versa. Therefore, besides the usual alignment and orientation
parameters A20 and A10, additional tensors AKQ with Q 6= 0 can occur. This
is because the reduced density matrix cannot be diagonalised for arbitrarily
polarisation synchrotron radiation. The specific occurrence of additional para-
meters depends however on an explicit choice of the quantisation axis. For the
following we will choose the quantisation axis parallel to the incoming synchrotron
beam axis, i.e. z-axis ‖ kγ .

Commonly, the polarisation of a photon beam is described in terms of Stokes
parameters. They can be easily related to the associated state multipoles which
are shown in Table 1. Note that, e.g. the parameter 〈T +

11 〉, which is zero in our
case can be non-zero if a different quantisation axis is chosen.

Considering a fully circularly polarisation photon beam, i.e. η2 = 1, we obtain

A10 =
√

3
2 , A20 =

√
1
2

and A22 = 0 . (12)

For this case only the two common tensor parameters of orientation and alignment
are non-zero while the parameter A22 vanishes. From the discussion above, and
applying the results of equations (9) and (11), it is evident that the expressions
for orientation and alignment are fully analytic for photoexcitation from the
ground state of the rare gases.

On the other hand, assuming a fully linearly polarisation photon beam, i.e.
η3 = ±1, we obtain

A10 = 0, A20 =
√

1
2 ,

ImA22 = 0 and ReA22 = ∓
√

3
2 . (13)
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While the orientation parameter A10 vanishes in this case, the real part of the
parameter A22 becomes non-zero.

Table 1. State multipoles of an arbitrarily polarisation photon
beam and their connection to the Stokes parameters

The photon beam axis has been chosen as the quantisation axis.
Multipoles of rank K > 2 must be zero due to dipole-selection

rules. [From Lohmann (1998b).]

Stokes State
parameters multipoles

I =
√

3〈T +
00〉

Iη2 =
√

2〈T +
10〉

0 = 〈T +
1±1〉

I =
√

6〈T +
20〉

0 = 〈T +
2±1〉

Iη3 = −2Re〈T +
22〉

Iη1 = 2Im〈T +
22〉

It is worth noting that the alignment parameter A20 is always different from
zero, independent of the choice of quantisation axis and of the polarisation state
of the incoming synchrotron beam. This is caused by the fact that photons
are spin-one particles and are therefore, due to the transverse character of the
electromagnetic field, always aligned. During photoexcitation, this alignment is
eventually transferred to the excited target.

A physical interpretation of the parameter A20 has been given earlier by Hertel
and Stoll (1977) who have shown that a non-zero alignment results in an anisotropic
deformation of the electronic charge cloud into a cigar-like shape which is axially
symmetric to the incoming photon beam axis. Using a linearly polarisation
photon beam, and thus having a non-vanishing parameter A22, yields a further
deformation of the ionic charge cloud, i.e. the cigar-like shape of the electronic
charge cloud is further compressed with respect to one of its principal axes.

Eventually, we note an interesting relation between the alignment parameters
A20 and A22 (Kleiman et al . 1999):

A22 = A20

√
3
2

(
− η3 + iη1

)
. (14)

This result is of physical importance since it demonstrates the fact that, besides
the intrinsic alignment A20, which is generally transferred from the unpolarisation
photon beam to the intermediate ionic state, any additional alignment, generated
from linearly polarisation photons, can always be directly related to the usual
alignment A20.

Auger emission. After a certain lifetime the resonantly excited intermediate
atomic state decays via Auger emission:

A∗ −→ A+∗ + eAuger , (15)

leaving a singly ionised target behind.
The Auger decay dynamics are described by the relative intensities I0, the

angular distribution parameter α2, and the spin polarisation parameters δ1,
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ξ1 and ξ2 where the first two are the intrinsic parameters related to polarisation
transfer and the latter to the dynamic spin polarisation.

As has been discussed in the previous section the intermediate excited atomic
state is described by different sets of tensor parametersAKQ for different polarisation
states of the incoming synchrotron beam. Considering some polarisation states
in more detail and applying these results to the general equations (3)–(6), the
expressions for angular distribution and spin polarisation can be reduced.

By considering the case of a fully circularly polarisation photon beam, i.e.
|η2| = 1, the angular distribution may be written as

I(θ) =
I0

4π

(
1 +

α2√
2
P2(cos θ)

)
,

(16)

and the cartesian components of the spin polarisation vector can be reduced to

px(θ) =

√
3 ξ1 sin θ√

2 + α2 P2(cos θ)
,

(17)

py(θ) =
− 3

2 ξ2 sin 2θ√
2 + α2 P2(cos θ)

,

(18)

pz(θ) =

√
3 δ1 cos θ√

2 + α2 P2(cos θ)
.

(19)

Thus, besides the angular distribution, all components of the spin polarisation
vector can be measured in this type of experiment. As a matter of fact, a
circularly polarisation synchrotron beam has been used in a number of experiments
focusing on the determination of the intrinsic spin polarisation parameters δ1
and ξ1 (e.g. Kuntze et al . 1993; Müller et al . 1995).

On the other hand, assuming a fully linearly polarisation photon beam with
η3 = 1 we get

I(θ) =
I0

4π

(
1 +

α2√
2

[
2P2(cos θ)− 1

])
, (20)

px(θ) = pz(θ) = 0 , (21)

py(θ) =
−3 ξ2 sin 2θ√

2 + α2

(
2P2(cos θ)− 1

) . (22)
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This will be our major case of interest in the remainder of this work. Here,
besides the angular distribution, only the component py(θ) of the spin polarisation
vector perpendicular to the reaction plane can be experimentally observed. The
two in-reaction plane components must be zero due to symmetry principles, i.e.
a linear polarisation of the photon beam cannot create an in-reaction plane spin
polarisation. However, as it ensures a maximum alignment the dynamic spin
polarisation parameter can be best observed for this case. A typical experimental
setup is to observe the dynamic spin polarisation at the magic angle, θm = 54 ·74◦,
i.e. the second Legendre polynomial vanishes, which yields

py(θm) =

√
8 ξ2

α2 −
√

2
. (23)

As pointed out in the introduction py is found to be small even for most of
the resonant Auger transitions, which is mainly caused by the fact that the
α2 parameter is commonly at least a magnitude larger than the dynamic spin
polarisation parameter ξ2. Thus, the spin polarisation is best observed as a
function of ξ2, only. We suggest observing the spin polarisation at the angle
θξ = 35 ·26◦. For this angle the denominator becomes independent of α2 and we
obtain a simple relation between the spin polarisation vector component py and
the dynamic spin polarisation parameter ξ2, i.e.

py(θξ) = −2 ξ2 . (24)

Considering the opposite case, i.e. η3 = −1, we obtain the, at a first glance,
surprising result of an isotropic angular distribution and a vanishing spin
polarisation:

I(θ) =
I0

4π

(
1 +

α2√
2

)
, (25)

px(θ) = py(θ) = pz(θ) = 0 . (26)

This can however be explained as a direct outcome of the dipole approximation.
Here, any information about the origin of the incident photons vanishes. Therefore,
we only have to consider the direction of the electric field vector which oscillates
perpendicular to the reaction plane. Thus, the system is invariant under reflection
within all three planes, the x − y, the y − z and the x − z plane. Hence, all
components of the spin polarisation vector vanish.

This effect is well-known for the case of photoionisation and has been widely
used for the production of unpolarisation photoelectrons (Kleinpoppen 1997).
However, with respect to Auger emission, this effect has not been experimentally
demonstrated until today and, only recently, has been theoretically investigated
in more detail (Kleiman et al . 1999).

Note that for the angular distribution this case is different to the integrated
intensity over the solid angle. Here, we still have a dependence on the total
intensity I0 and the angular distribution parameter α2.
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(2d) Calculational Model

For obtaining the numerical data we employ a relativistic distorted wave
approximation (RDWA). Here, the bound state wavefunctions of the excited
intermediate and the ionised final state of the atom are constructed using the
multiconfigurational Dirac–Fock (MCDF) computer code of Grant et al . (1980).
Intermediate coupling has been taken into account. The mixing coefficients have
been calculated with the MCDF code of Grant et al ., applying the average level
calculation mode. The calculation of the Auger transition matrix elements is done
applying a relaxed orbital method. Thus, the bound electron wavefunctions of the
intermediate state are calculated in the field of the excited atom. On the other
hand, the bound electron wavefunctions of the final state are calculated in the
field of the singly ionised atom. Eventually, the continuum wavefunction of the
Auger electron is evaluated by solving the Dirac equation with an intermediate
coupling potential where electron exchange with the continuum has been taken
into account. The intermediate coupling potential is constructed from the mixed
configuration state functions (CSF) of the final ionic state. Thereby, we take
into account that the ejected electron moves within the field of the residual ion.
With this, the Auger transition matrix elements are obtained for calculating the
anisotropy and spin polarisation parameters, respectively. Our present calculation
exceeds the spectator model (see e.g. Kämmerling et al . 1990; Lohmann 1991;
Hergenhahn et al . 1991), by fully taking into account the variation of the
intermediate ionic charge cloud through the spectator electron. In particular, we
carried out two types of calculations. In the first we neglect exchange, while our
second calculation takes exchange interaction with the continuum into account.

3. Results: Resonant Xe N5O2,3O2,3 Auger Transitions

We have calculated the transitions of the resonantly excited Xe N5O2,3O2,3

Auger spectrum. In particular, we consider the resonant Auger transitions

γ + Xe (1S0) −→ Xe∗ (4d−1
5/2, 6p3/2)

J=1
(27)

↘ Xe+∗(5p−2
1/2,3/2, 6p3/2)

Jf=1/2,...,7/2
+ eAuger . (28)

As a rare gas, the Xe atoms have a closed shell structure. Thus, their ground
state is a 1S0. Therefore, after a primary photoexcitation the intermediate excited
state must have a total angular momentum J = 1 due to the dipole selection
rules. Our main focus is the Auger lines which stem from an intermediate
4d−1

5/2 inner shell hole. Thus, for a 4d → 6p excitation only the intermediate
(4d−1

5/2, 6p3/2)J=1 state can be populated. Of course, a photoexcitation of the
(4d−1

3/2, 6p1/2,3/2)J=1 states is possible, too. However, due to the fine structure
splitting the 4d−1

5/2 hole is well separated from the 4d−1
3/2 fine structure state. The

latter refers to the resonantly excited Xe N4O2,3O2,3 Auger transitions instead.
The full set of parameters, i.e. relative intensities, angular anisotropy, and spin

polarisation parameters has been calculated. Our data are shown in Table 2.
We have only listed our numerical results where exchange has been taken into
account. Our MCDF calculation includes for 13 CSF, i.e. all transitions according
to equation (28). Since our calculation does not include the spin-flip transitions
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which can, in principle, create a final 6p1/2 electron, we have not been able
to calculate all lines of the spectrum. In Table 2, the Auger lines have been
identified by their leading jj-coupled configuration state function. The resonantly
excited Xe N5O2,3O2,3 Auger spectrum has been also investigated by Aksela
et al . (1995). As shown in Table 2, we adopt their notation of line numbers to
identify the different final states for the remainder of this work.

Table 2. Energies, relative intensities, angular distribution and spin polarisation parameters
for the Xe∗(4d−1

5/26p3/2) N5O2,3O2,3 Auger transitions

Xe∗ (6p3/2) N5O2,3O2,3

Final states Energy Int. Ang. & spin pol. par.
(a) (b) (eV) I0† α2 δ1 ξ1 ξ2

|([5p25p2]26p1)5/2〉 22 39 ·73 7 ·433 0 ·704 -0 ·143 -0 ·041 0 ·003
([5p25p2]26p1)7/2〉 24 39 ·64 1 ·713 0 ·582 0 ·327 0 ·319 −0 ·041
|([5p25p2]26p1)1/2〉 23 39 ·54 1 ·403 −0 ·078 0 ·771 0 ·117 0 ·478
|([5p25p2]26p1)3/2〉 26 39 ·29 10 ·523 −0 ·726 -0 ·275 0 ·310 0 ·044
|([5p25p2]06p1)3/2〉 31 38 ·49 9 ·508 −0 ·654 0 ·060 0 ·626 0 ·004
|([5p15p3]16p1)5/2〉 32 38 ·47 0 ·189 0 ·214 0 ·833 0 ·710 0 ·007
|([5p15p3]16p1)1/2〉 36 38 ·37 6 ·984 −0 ·750 0 ·383 −0 ·751 −0 ·164
|([5p15p3]16p1)3/2〉 34 38 ·33 1 ·810 0 ·686 0 ·589 −0 ·049 −0 ·039
|([5p15p3]26p1)7/2〉 42 37 ·26 13 ·200 −0 ·109 0 ·348 0 ·719 −0 ·020
|([5p15p3]26p1)3/2〉 43 37 ·20 11 ·934 0 ·292 0 ·658 0 ·501 0 ·241
|([5p15p3]26p1)1/2〉 46 37 ·07 8 ·274 −0 ·291 0 ·648 0 ·509 −0 ·404
|([p15p3]26p1)5/2〉 44 37 ·01 6 ·052 0 ·668 1 ·041 0 ·206 0 ·053
|([5p05p4]06p1)3/2〉 67,68 34 ·52 20 ·977 −0 ·550 0 ·300 0 ·761 0 ·009

(a) The leading jj coupled configuration state function has been used to identify the state.
(b) Line numbers according to Aksela et al . (1995).
†The total intensity has been normalised to 100.

4. Comparison between Theory and Experiment

The resonantly excited Xe N5O2,3O2,3 Auger spectrum has been investigated
by several groups. In the following, we will therefore compare our results with
other theories and experimental data.

(4a) Intensities

We carried out two calculations for the relative intensities of the resonantly
excited Xe N5O2,3O2,3 Auger spectrum. Our results are given in Table 3 together
with other numerical and experimental data. Our calculation (b) neglects the
exchange interaction while the next column, calculation (c), takes exchange
with the continuum into account. In the next two columns, (d) and (e), the
experimental data of Aksela et al . (1995) and Langer et al . (1996) are given.
Columns (f) and (g) show the numerical data obtained by Aksela et al . and by
Chen (1993) respectively.

Aksela et al . (1995) calculated the Xe N5O2,3O2,3 Auger spectrum in a number
of different approaches of which they identify their so-called FE calculation as
best. (Further information may be found in the cited paper.) Thus, we only
compare our data to this calculation.
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Comparing our two calculations (b) and (c), the inclusion of exchange slightly
decreases the intensity of the Auger transitions to the most bound final states,
while transitions to states closer to threshold show a slight increase in intensity.
For the Auger lines of the most bound states, i.e. transitions to the (3P)6p 2D5/2,7/2

and 2S1/2 final states (lines 22–24), there is good agreement between all theoretical
calculations and the experimental data as well. However, for line no. 26, i.e. the
Auger transition to the (3P)6p 2P3/2 final state, this behaviour changes. Though
there is still good agreement between our calculations and that of Aksela et al .
(1995), both calculations underestimate the experimental results (Aksela et al .
1995; Langer et al . 1996) by a factor of ∼ 1 ·6. The experimental data for this line
are, however, well reproduced by the calculation of Chen (1993). The situation
becomes worse for the Auger transition to the (1D)6p 2F7/2 final state, i.e. line
no. 42. Here, our calculation including exchange is close to the calculation by
Chen, while the calculation of Aksela et al . yields a result twice as large. Besides,
none of the numerical calculations comes even close to the experimental results.
While the numerical data overestimate the experiment by at least a factor of
four, even the two experimental data deviate by a factor of ∼ 1 ·45.

Table 3. Comparison between experimental and theoretical data for the relative intensities of
the resonant Xe∗(6p3/2) N5O2,3O2,3 Auger transitions

Xe∗ (6p3/2) N5O2,3O2,3

Final states Energy Rel. intensity
(a) (a) (eV) (b) (c) (d) (e) (f) (g)

|(3P )6p 2D5/2〉 22 39 ·73 7 ·97 7 ·43 7 ·91 7 ·26 5 ·89 7 ·37
|(3P )6p 4D7/2〉 24 39 ·64 1 ·58 1 ·71 1 ·77 † 3 ·16 2 ·05
|(3P )6p 2S1/2〉 23 39 ·54 1 ·76 1 ·40 0 ·84 3 ·31† 1 ·10 1 ·09
|(3P )6p 2P3/2〉 26 39 ·29 11 ·35 10 ·52 19 ·75 19 ·36 11 ·63 19 ·71
|(3P )6p 2D3/2〉 31 38 ·49 9 ·86 9 ·51 8 ·53 8 ·29 7 ·14 7 ·94
|(3P )6p 4D5/2〉 32 38 ·47 0 ·20 0 ·19 0 ·003 0 ·25 0 ·22 0 ·31
|(3P )6p 4D1/2〉 36 38 ·37 7 ·47 6 ·98 3 ·30 3 ·78 2 ·43 3 ·75
|(3P )6p 4D3/2〉 34 38 ·33 1 ·95 1 ·81 3 ·69 4 ·28‡ 2 ·72 4 ·27
|(1D)6p 2F7/2〉 42 37 ·26 11 ·29 13 ·20 3 ·17 4 ·70 26 ·86 13 ·08
|(1D)6p 2D3/2〉 43 37 ·20 12 ·08 11 ·93 8 ·82 7 ·55 4 ·78 7 ·46
|(1D)6p 2P1/2〉 46 37 ·07 9 ·76 8 ·27 12 ·83 12 ·21 8 ·61 8 ·59
|(1D)6p 2D5/2〉 44 37 ·01 5 ·69 6 ·05 9 ·71 9 ·87 8 ·89 8 ·46
|(1S)6p 2P3/2〉 67,68 34 ·52 19 ·06 20 ·98 19 ·53 19 ·14 16 ·56 15 ·92

Σ100 100 100 100 100 100

(a): The notation of Aksela et al . (1995) has been adopted for the states and line numbers.
Present result: (b) no exchange included; (c) exchange included.
Experiment: (d) Aksela et al. (1995); (e) Langer et al . (1996).
Theory: (f) Aksela et al. (1995), FE calculation; (g) Chen (1993).
†Line has not been resolved. ‡Line mix with 5d satellite.

A similar situation occurs for the Auger lines closer to threshold. Here,
deviations occur between the different numerical data, between the experimental
data, and between theory and experiment, respectively. Thus, the spectrum is
fairly well reproduced. At present, none of the theoretical approaches has been
able to provide good data for all of the lines of the resonant Xe N5O2,3O2,3

Auger spectrum. Though, the Auger transitions to the most bound final states
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are well reproduced by all theories. This clearly indicates that more advanced
studies, using larger basis sets of CSF, are necessary to obtain better numerical
data for resonantly excited Auger spectra.

Table 4. Comparison of angular distribution parameters

For an explanation see Table 3

Xe∗ (6p3/2) N5O2,3O2,3

Final states α2 par.
(a) (a) (c) (e)

|(3P )6p 2D5/2〉 22 0 ·704 0 ·703
|(3P )6p 4D7/2〉 24 0 ·582 0 ·488†
|(3P )6p 2S1/2〉 23 −0 ·078 †
|(3P )6p 2P3/2〉 26 −0 ·726 −0 ·919
|(3P )6p 2D3/2〉 31 −0 ·654 −0 ·516
|(3P )6p 4D5/2〉 32 0 ·214 −0 ·212
|(3P )6p 4D1/2〉 36 −0 ·750 −0 ·368
|(3P )6p 4D3/2〉 34 0 ·686 0 ·099‡
|(1D)6p 2F7/2〉 42 −0 ·109 0 ·078
|(1D)6p 2D3/2〉 43 0 ·292 0 ·083
|(1D)6p 2P1/2〉 46 −0 ·291 −1 ·174
|(1D)6p 2D5/2〉 44 0 ·668 0 ·460
|(1S)6p 2P3/2〉 67,68 −0 ·550 −0 ·827

†Line has not been resolved.
‡Line mix with 5d satellite.

(4b) Angular Distribution

The angular distribution parameter α2 has been recently measured in an
experiment by Langer et al . (1996). Our numerical results are compared to their
data in Table 4. The numbers for transitions with higher Auger energy are well
reproduced. In particular, good agreement has been found for the Auger lines
22–24, i.e. transitions to the (3P)6p 2D5/2,7/2 and 2S1/2 final states.

The transitions to the (3P)6p 2P3/2 and 2D3/2 states, i.e. lines 26 and 31,
show a somewhat larger deviation. For the Auger transition to the (3P)6p 2D5/2

final state (line 32) we obtain the same magnitude as Langer et al . (1996),
though our calculation yields the opposite sign. There are discrepancies for
transitions which are closer to the ionisation threshold. Note the large anisotropy
parameter α2 = −1 ·174 measured by Langer et al . for the Auger transition to the
(1D)6p 2P1/2 final state. Though we calculated a negative anisotropy parameter,
our calculation underestimates the experimental data by a factor of four.

Thus, the results for the angular distribution parameter confirm the need of
large basis sets for a more precise calculation of the Auger emission parameters.
The present approach is however sufficient to reproduce the anisotropy parameters
for the Auger transitions to the most bound final states.
(4c) Predictions for the Spin Polarisation Vector

Applying the equations of angular distribution and spin polarisation discussed
in Sections 2b and 2c and using the results of Table 2 for the intensities, angular
distribution and spin polarisation parameters we are able to give predictions for
the spin polarisation vector. We will discuss a few examples in more detail.
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Fig. 4. Cartesian components pi(θ), i = x, y, z and magnitude |P (θ)|
of the spin polarisation vector after circularly polarisation synchrotron
beam excitation (|η2| = 1) as a function of Auger electron emission
angle.

First, let us assume a 100% circularly polarisation synchrotron beam, i.e.
|η2| = 1. Thus, alignment and orientation of the intermediate excited state are
given by equation (12) and angular distribution and spin polarisation are given
by equations (16)–(19).

As an example, let us consider Auger line 22, i.e. the resonant transition to
the (3P)6p 2D5/2 final state. Our predictions for the cartesian components of the
spin polarisation vector and its magnitude |P (θ)| are plotted in Fig. 4 against
the angle of Auger emission. From our calculation we obtained small values
for all spin polarisation parameters. Thus, as shown in Fig. 4, we get only a
small overall spin polarisation of less than 13% for this transition. In particular,
the dynamic spin polarisation parameter ξ2 is small (ξ2 is two magnitudes less
than the angular distribution parameter α2). This results in an almost vanishing
component of the spin polarisation vector perpendicular to the reaction plane,
py(θ) ∼ 0.

On the other hand, a large degree of dynamic spin polarisation can be predicted
at certain angles for Auger transitions to Jf = 1

2 . We have plotted our results
for the components of the spin polarisation vector for the Auger lines 23 and 46,
i.e. Auger transitions to the (3P)6p 2S1/2 and (1D)6p 2P1/2 final states, in Figs 5
and 6.

Concentrating on the component py(θ) of the spin polarisation vector depending
on the dynamic spin polarisation parameter ξ2, we obtain values of ξ2 = 0 ·478
and ξ2 = −0 ·404 for the two transitions which yields a magnitude of more than
40% for the dynamic spin polarisation. Note that the maxima for the dynamic
component py(θ) are not at angles 45◦ and 135◦.

Though our calculation yields a slightly larger ξ2 value for line 23, we
suppose line 46, i.e. the (1D)6p 2P1/2 final state, to be the best candidate for an
experimental determination of a large dynamic component of the spin polarisation
vector (see Fig. 6). This is due to the fact that its intensity is approximately six
times larger than that of line 23 and covers around 10% of the total intensity of
the spectrum.
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Fig. 5. Cartesian components pi(θ), i = x, y, z, and magnitude
|P (θ)| of the spin polarisation vector as a function of Auger electron
emission angle (|η2| = 1, see Fig. 4) for the final state indicated.

Fig. 6. Cartesian components pi(θ), i = x, y, z, and magnitude
|P (θ)| of the spin polarisation vector as a function of Auger electron
emission angle (|η2| = 1, see Fig. 4) for the final state indicated.

(4d) Large Dynamic Spin Polarisation

The discussion in the last section leaves us with the suspicion that Auger
transitions to a Jf = 1

2 final state might have a large dynamic spin polarisation.
Our results for these transitions are listed in Table 5 together with theoretical
data obtained by Hergenhahn and Becker (1995). From our calculation we
obtain the ξ2 parameter for Auger transitions to Jf = 1

2 states of the same
magnitude or even larger as the angular distribution parameters and the intrinsic
spin polarisation parameters ξ1 and δ1, respectively. While our results for the
transitions to the (3P)6p 2S1/2 and (1D)6p 2P1/2 final states are of the same order
as those obtained by Hergenhahn and Becker, we get a different sign, though still
a large ξ2, for the transition to the (3P)6p 4D1/2 state (line 36). Hergenhahn and
Becker also obtained a large value of the ξ2 parameter for the transition to the
(1D)6p 2D3/2 state (line 43). This is confirmed by our calculation. In conclusion,



Resonant Auger Transitions 413

though there can be exemptions, from our calculation we obtain large dynamic
spin polarisation parameters for all Auger transitions to final states with a total
angular momentum Jf = 1

2 . In the following sections we will discuss the physical
reasons and explanations for this behaviour.

Table 5. Comparison of dynamic spin polarisation parameter ξ2

For an explanation see Table 3

Xe∗ (6p3/2) N5O2,3O2,3

(a) (a) (c) (h)

|(3P )6p 2S1/2〉 23 0 ·478 0 ·473
|(3P )6p 4D1/2〉 36 −0 ·164 0 ·280
|(1D)6p 2D3/2〉 43 0 ·241 0 ·247
|(1D)6p 2P1/2〉 46 −0 ·404 −0 ·516

Theory: (h) Hergenhahn and Becker (1995).

Reasons. Considering the possibility of interference effects between different
partial waves during the Auger emission it is obvious that destructive interference,
and thus a small spin polarisation parameter ξ2, can be expected if a large
number of partial waves are emitted. Thus, as a first and necessary propensity
rule, we need to restrict the number of partial waves to its minimum, i.e. two,∗

in order to minimise a decrease of dynamic spin polarisation due to destructive
interference.

For photoexcitation of the rare gases we have an intermediate total angular
momentum J = 1, see e.g. equations (27) and (28). Thus, for Auger transitions
to a Jf = 1

2 state the number of contributing partial waves is reduced to its
minimum due to angular momentum coupling rules. As a matter of fact only
two partial waves can be emitted for the case considered, i.e.

Jf + j = J −→ j = 1
2 ,

3
2 , (29)

where j denotes the total angular momentum of the Auger partial waves. Thus,
destructive interference between the emitted partial waves becomes less likely.

Inspecting the parity of the states we find negative parities πi and πf for
the intermediate excited and final ionic states, respectively. Note that for
photoexcitation of the rare gases the initial state generally has an odd parity.
Due to the fact that the Coulomb interaction conserves parity we have

πi = πf πAug = πf (−1)` , (30)

where πAug denotes the parity of the emitted Auger partial waves which, in our
case, must be even.

Combining equations (29) and (30) we find that only εs1/2 and εd3/2 partial
waves are emitted. Thus, if the intermediate ionic alignment has been dynamically
transformed into the spin polarisation of the Auger electron it will be solely taken
away by the εd3/2 partial wave. Thus, neglecting loss of spin polarisation due
to effects like electron-other-electron interaction in the electronic charge cloud
during the Auger emission, the transferred dynamic spin polarisation is conserved

∗ Note that ξ2 vanishes if only one partial wave is emitted.
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in the emitted εd3/2 partial wave. Even if interference with the εs1/2 wave takes
place it cannot reduce the degree of spin polarisation since the s wave cannot
carry away any polarisation at all. Thus, though two partial waves are emitted
there can be no decrease in spin polarisation of the emitted Auger electron caused
by destructive interference. On the other hand, if Jf > 1

2 , more spin polarisation
partial waves with πAug = 1 can be emitted allowing for a destructive interference
and thus ξ2 will decrease.

Table 6. Phase shifts of the partial waves of the Xe∗ (6p3/2)
N5O2,3O2,3 Auger transitions to J f = 1

2

For an explanation see Table 3. Data from Lohmann (1998b)

Line εs1/2 εd3/2

no. σc δ σc δ

23 0 ·26940 0 ·99295 -0 ·54643 0 ·44391
36 0 ·27164 1 ·02048 -0 ·55485 0 ·46739
46 0 ·27415 1 ·04328 -0 ·56467 0 ·48350

Physical explanation . As an important reason for a large dynamic spin
polarisation we consider the phase shift of the partial waves. The total phase σ
can be split into the Coulomb phase σc and the pure scattering phase δ, i.e.

σ = σc + δ . (31)

The phase shifts for the Auger lines of the Xe transitions considered are shown
in Table 6. From the general expression for ξ2 (see e.g. Lohmann 1991) it is
clear that a large dynamic spin polarisation can only be achieved if the relative
phase shift between the two partial waves is ∼ π/2. This is fulfilled for the
transitions considered. Our calculation indicates that this is mainly due to the
phase shift of the εs1/2 partial wave caused by its large scattering phase δ which
exceeds the pure Coulomb phase by a factor of ∼ 3 ·7. While for the εs1/2

partial wave the Coulomb and scattering phase have the same sign, they point
in different directions for the εd3/2 wave. Here, σc and δ have approximately the
same magnitude and almost cancel each other. Thus, a large spin polarisation
parameter ξ2 is mainly caused by a large phase shift of the εs1/2 partial wave.

Table 7. Auger energies, relative intensities, anisotropy and dynamic spin polarisation para-
meters and the spin polarisation at angles θm and θξ of our MCDF calculation for the Ar∗

(4s1/2) L3M2,3M2,3 resonant Auger transitions to final states with J f = 1
2 [data are from

Lohmann (1998b)]

Ar∗ (4s1/2) L3M2,3M2,3

Final states (eV) I0† α2 ξ2 py(θm) py(θξ)

|(3P )4s 4P1/2〉 213 ·56 6 ·889 −1 ·115 0 ·0052 −0 ·0057 −0 ·0104
|(3P )4s 2P1/2〉 213 ·07 8 ·842 0 ·617 −0 ·0041 0 ·0145 0 ·0082
|(1S)4s 2S1/2〉 208 ·45 0 ·114 −0 ·748 0 ·0002 −0 ·0003 0 ·0004

† Whole multiplet has been normalised to 100.
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(4e) Small Dynamic Spin Polarisation

Now, let us discuss the opposite case, i.e. small ξ2 parameters. For this we
consider the example of resonant Ar∗(4s1/2)L3M2,3M2,3 Auger transitions,

γ + Ar(1S0) −→ Ar∗(2p−1
3/2, 4s1/2)

J=1

↘ Ar+∗(3p−2, 4s1/2)
Jf

+ eA . (32)

Again, only two partial waves, according to equation (29) are emitted. As pointed
out, the parity of the excited intermediate Ar∗ state is odd. However, the final
ionic state shows an even parity. Thus, from equation (30) we obtain an odd
parity πAug = −1 for the Auger partial waves, i.e. the emitted partial waves are
εp1/2 and εp3/2, respectively. Both p waves may carry parts of the overall spin
polarisation. Therefore, it is likely that they show destructive interference which
should decrease the spin polarisation for these Auger transitions. Thus, even for
transitions to Jf = 1

2 only a small ξ2 should be expected. This is confirmed by
our calculations of the resonant Ar∗(4s1/2) L3M2,3M2,3 multiplet. Our data for
the angular distribution and spin polarisation parameters are shown in Table 7.
In particular, the dynamic spin polarisation turns out to be approximately two
magnitudes smaller than in the Xe case. A full discussion of the photoexcited
Ar∗(4s1/2) L3M2,3M2,3 Auger spectrum will be published elsewhere.

The Coulomb and scattering phases for the Ar transitions are shown in Table 8.
Since the Coulomb phase solely depends on the angular momentum, σc has the
same value for the εp1/2 and εp3/2 partial waves. In contrast to the Xe case,
the Coulomb and scattering phases are of the same magnitude but of opposite
sign. Thus, we have an almost vanishing phase shift between the two partial
waves which eventually yields a small ξ2. Therefore, we get a small dynamic
spin polarisation py(θ) ∼ 0 for these Auger transitions.

Table 8. Phase shifts of the partial waves of the Ar∗ (4s1/2) L3M2,3M2,3

Auger transitions to J f = 1
2 (data are from Lohmann 1998b)

For the identification of states see Table 7

Final εp1/2 εp3/2

state σc δ σc δ

4P1/2 −0 ·10779 0 ·14735 −0 ·10779 0 ·13603
2P1/2 −0 ·10791 0 ·14869 −0 ·10792 0 ·13737
2S1/2 −0 ·10913 0 ·16172 −0 ·10913 0 ·15041

(4f) Propensity Rules

From the above discussion we have been able recently to derive two so-called
propensity rules (Lohmann 1998a) which must be fulfilled for resonant Auger
transitions if a large dynamic spin polarisation is to be observed:
• Ensure that only two partial waves are emitted, i.e. preferably investigate

Auger transitions of the type

J = 1 −→ Jf = 1
2 . (33)
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This is a necessary but not a sufficient condition and already reduces the number
of possible candidates of Auger transitions with a large ξ2. The second rule is
based on parity arguments.
• Ensure that

πi = πf or πAug = 1 . (34)

This prevents destructive interference of spin polarisation between the two partial
waves.

The derived propensity rules allow for an easy way of determining whether
or not a large dynamic spin polarisation can be expected for a resonant Auger
transition. However, one has to keep in mind that these are just propensity rules,
i.e. the physics might show a different behaviour for certain Auger transitions.
In particular, even for the case of a large number of interfering partial waves,
which is the common case for the diagram transitions, there might be the
possibility of constructive interference which can in principle bring enhancements
of the dynamic spin polarisation. However, besides a few exceptions, these Auger
transitions show an almost vanishing dynamic spin polarisation (see e.g. Hahn
et al . 1985; Merz and Semke 1990; Kabachnik and Sazhina 1988; Lohmann 1993).
At present, we are not able to provide any rules or guidelines for the diagram
(normal) Auger transitions.

(4g) Predictions for Dynamic Spin Polarisation in Resonant Auger Transitions

Applying the results of the previous discussion we are now able to give
predictions for the dynamic spin polarisation in resonant Auger transitions.

A vanishing or small dynamic spin polarisation can be expected e.g. for the
following Auger transitions:

Ar∗(4s1/2) L3M2,3M2,3 Kr∗(5p3/2) M4,5N1N2,3

Xe∗(6p3/2) M4,5N2,3N4,5 Xe∗(6p3/2) N4,5O1O2,3.

For these transitions we predict a small or vanishing dynamic spin polarisation
for all transitions of the Auger multiplet.

On the other hand, applying our propensity rules, we predict a large dynamic
spin polarisation for resonant Auger transitions to Jf = 1

2 final states of the
following Auger multiplets:

Ar∗(4s1/2) L3M1M2,3 Kr∗(5p3/2) M4,5N2,3N2,3

Xe∗(6p3/2) M4,5N4,5N4,5 Xe∗(6p3/2) N4,5O2,3O2,3.

(4h) Dynamic Spin Polarisation for Unresolved Fine Structure

Even for an unresolved fine structure of the final state we can predict
a non-zero measurable dynamic spin polarisation. Our results for the spin
polarisation parameter ξ2 for the experimentally observed peaks 1b and 3b of the
resonantly excited Xe∗(6p3/2) N5O2,3O2,3 Auger spectrum are shown in Table 9.
While our data for the 1b peak are in good accordance to theoretical predictions
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by Hergehahn and Becker (1995) and by Tulkki et al . (1994), we obtain a much
smaller average value of the spin polarisation parameter ξ2 for the peak 3b. This
can be explained from the fact that the line intensities of lines 43 and 46 are
close to each other, and both show a large dynamic spin polarisation, though of
opposite sign which eventually results in an almost vanishing averaged dynamic
spin polarisation. This can be also seen from the fact that averaging only lines
44 and 46 still results in a large dynamic spin polarisation. Note, that in contrast
to the previous tables 3

2 × ξ2 is shown.

Table 9. Comparison of the dynamic spin polarisation parameter
ξ2 for averaged final state levels

For an explanation see Table 3

Xe∗ (6p3/2) N5O2,3O2,3

Line no. Peak ξ2 par.
(a) (a) (c) (h) (i)

22–24 1b 0 ·089 0 ·16 0 ·10
43, 44, 46 3b −0 ·008 −0 ·29 −0 ·23
44, 46 3b −0 ·316

Theory: (i) Tulkki et al . (1994).

Fig. 7. Dynamic component py(θ) of the spin polarisation vector of
the Auger electron as a function of the emission angle for unresolved
Auger lines after excitation with a linearly polarisation synchrotron
beam (η3 = 1).

From the data of Table 9 we are able to give predictions for the spin polarisation
vector. Assuming a 100% linearly polarisation (η3 = 1) synchrotron beam, only
the component py(θ) of the spin polarisation vector, perpendicular to the reaction
plane can be non-zero (see the discussion in Section 2c). Our results for the
dynamic spin polarisation component py(θ) of the unresolved lines 1b and 3b are
plotted in Fig. 7 against the angle of Auger emission. In analogy to the discussion
of Section 4c we can predict a large degree of dynamic spin polarisation for
resonant Auger transitions even for an unresolved fine structure. Degrees of spin
polarisation up to more than 40% can be predicted at certain angles. Note that
the maximum of the dynamic component py(θ) is not at angles 45◦ and 135◦.
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Table 10. Comparison between theoretical and experimental
data (Hergenhahn et al . 1998) of the dynamic spin polarisation

parameter ξ2 for an unresolved final state level

For an explanation see Table 3 and the text

Xe∗ (6p3/2) N5O2,3O2,3

Line no. Peak ξ2 par.
(a) (a) Theory Exp.

46, 47 3b −0 ·606 −0 ·61

(4i) Dynamic Spin Polarisation: Comparison with Experiment

Unfortunately, angle and spin resolved experiments are extremely difficult to
perform, and thus we are able to compare our predictions to one data set only.
Recently, a high resolution experiment has been performed by Hergenhahn et al .
(1998). Their data are shown in Table 10 in comparison with our theoretical
prediction. They observed a large dynamic spin polarisation ξ2 for the unresolved
lines 46–47, where we obtain a large ξ2 for the sole line 46. Aksela et al .
(1995) reported the ratio of the relative line intensities as 46/47 = 102/6 ·7.
They identified line 47 as an excited 6p→ 7s shake-up state. Though we have
not included shake-up processes in our calculation the ratio of the intensities
clearly shows that a large ξ2 of the unresolved line is mainly caused by a spin
polarisation of line 46 which is in good agreement with our prediction.

5. Conclusion

The theory of angle and spin resolved resonant Auger emission has been reviewed
by applying a two-step model for the case of a primary photoexcitation. The
experimentally accessible quantities, like relative intensities, angular distribution
and spin polarisation have been discussed by considering different polarisation
states of the incoming exciting photon beam. The relevant parameters of the
angle- and spin-resolved spectrum of the resonantly excited Xe∗(4d−1

5/2, 6p3/2)1

N5O2,3O2,3 Auger transitions have been calculated applying Dirac–Fock methods
within a relativistic distorted wave approximation.

The line intensities for the Auger transitions with high energies have been found
to be in good agreement with experiment. However, there exist discrepancies
between theory and experiment, and between the different theories for transitions
with lower energy, i.e. closer to the ionisation threshold. The same behaviour has
been be found for the angular distribution parameters. This clearly indicates the
need for more advanced calculations, e.g. to include large basis sets of configuration
state functions in the calculational approach. From our calculations we predict
large spin polarisation parameters for all Auger transitions to final states with
a total angular momentum Jf = 1

2 . These results are in good agreement with
theoretical predictions by Hergenhahn and Becker (1995) and by Tulkki et al .
(1994).

Discussing recently derived propensity rules we have presented a method to
identify Auger lines for which a large dynamic spin polarisation can be expected.
These rules allow for the first time to decide whether an Auger transitions is
likely to show a dynamic spin polarisation before undertaking the experiment or
calculation. We have shown that a large dynamic spin polarisation is caused
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by a large scattering phase of the contributing εs1/2 partial wave, whereas a
small spin polarisation is due to a cancellation effect between the Coulomb and
scattering phases of the partial waves.

Even for an unresolved final state fine structure we have been able to predict
a non-zero measurable spin polarisation provided a Jf = 1

2 Auger line contributes
to the multiplet. This is in good agreement with a very recent experiment by
Hergenhahn et al . (1999).
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Heinzmann, U. (1999). Phys. Rev. Lett., accepted, and private communication.
Hertel, I. V., and Stoll, W. (1977). Adv. At. Mol. Phys. 13, 113.
Kabachnik, N. M., and Sazhina, I. P. (1988). J. Phys. B 21, 267.
Kabachnik, N. M., Sazhina, I. P., Lee, I. S., and Lee, O. V. (1988). J. Phys. B 21, 3695.
Kabachnik, N. M., Lohmann, B., and Mehlhorn, W. (1991). J. Phys. B 24, 2249.
Kämmerling, B., Krässig, B., and Schmidt, V. (1990). J. Phys. B 23, 4487.
Kessler, J. (1985). ‘Polarized Electrons’, 2nd edn (Springer: Berlin).
Kessler, J., and Merz, H. (1984). private communication.
Klar, H. (1980). J. Phys. B 13, 4741.
Kleiman, U., Lohmann, B., and Blum, K. (1999). J. Phys. B 32, 309.
Kleinpoppen, H. (1997). private communication.
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