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Abstract

We prove that the wave–particle duality, inertia and the Heisenberg uncertainty relation are
properties of a fractal spacetime, self-structured by a gravitomagnetic background field, in
the world crystal.

1. Introduction

It is well known that the geometrical tool that implements Einstein’s general
motion-relativity is the concept of a Riemannian curved spacetime. In a similar
way, the concept of fractal spacetime (Nottale 1993) is a geometric tool adapted
to construct the theory of scale-relativity (the fractal spacetime theory) (Nottale
1993, 1996). Fractal spacetime theory is based on a generalisation of Einstein’s
principle of relativity to the scale transformations. Namely, one redefines spacetime
resolutions as characterising the state of scale reference systems, in the same
way that velocity characterises their state of motion. Then one requires that
the laws of physics apply, whatever the reference state of motion (principle of
motion-relativity) or scale (principle of scale-relativity) of the system is.

The principle of scale-relativity is mathematically achieved by the principle of
scale-covariance, requiring that the equations of physics keep their simplest form
under transformations of resolutions (Nottale 1993).

In the fractal spacetime theory, the quantum behaviour becomes a manifestation
of the fractal geometry of spacetime, in the same way that gravitation, in Einstein’s
theory of general relativity, is a manifestation of the curvature of spacetime.
Therefore, the typical trajectories of quantum-mechanical particles are continuous
but nondifferentiable, and can be characterised by a fractal dimension which
jumps from D = 1 at large length scales to D = 2 at small length scales, the
transition occurring at about the de Broglie scale (Nottale 1996). For instance, D
= 2 is the fractal dimension of the Brownian motion (Nelson 1985). The effects
of nondifferentiability (complex nature of the wavefunction) are accounted for by
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a scale-covariant derivative that transforms the equations of classical mechanics
into the generalised Schrödinger equation (Nottale 1996).

Using this theory it was proved that motions in the solar system, in double
galaxies and in the universe are quantised (Agop et al . 1998a; Nottale 1998).
In the same context, by identifying space with a superconducting cosmic dust
and by supposing that in the presence of a background gravitomagnetic field this
‘matter’ orders itself as a crystal, called the ‘world crystal’, we have shown that
the physical spacetime is fractal (Agop et al . 1998b, 1998c). As a result, a specific
mechanism of generating gravity by means of gravitational anions is obtained.

In the present work we suppose that the physical spacetime is fractal and that
it orders itself as a crystal in the presence of a background gravitomagnetic field
(Ciubotariu and Agop 1996; Agop et al . 1998b, 1998c, 1998d). Since geodesics
correspond to a generalised Schrödinger equation with a periodic field imposed
by the spatial lattice, we prove that the wave–particle duality, inertia and the
Heisenberg uncertainty relation are properties induced by the fractal spacetime.

2. Dynamics of Particles in the World Crystal: Wave–particle Duality as a
Property of Space

Considering space to be structured as a periodic one-dimensional lattice of period
Λ, where Λ = (c2/16πGρ)1/2 is the gravitational fundamental length (Agop et
al . 1998c), the wave function associated with a particle moving in this lattice is
of Bloch type (Licea 1986):

Ψx(x) = uk(x)eikx , (1)

uk(x+NΛ) = uk(x), N = ± 1, ± 2, ... (2)

i.e. a plane wave modulated by a periodic function with the direct lattice period.
The ‘states’ of the particle in the periodic field of the spatial lattice are specified
by the wavevector k.

We will identify any particle by its mean speed

〈ν〉 =
〈p〉
m0

=
2D
i

∫
Ω

Ψ∗k(x)∂xΨk(x)dx , (3)

where the function Ψk(x ) is assumed to be normalised in the ‘volume’ Ω = N Λ
of the space crystal and D is a diffusion coefficient, depending on the fractal
dimension (Nottale 1996). Since ∂xΨk(x ) = ikΨk(x )+eikx∂xuk(x ), relation (3)
becomes

〈ν〉 = 2Dk +
2D
i

∫
Ω

u∗k(x)∂xuk(x)dx . (4)

This relation is calculated taking into account the generalised Schrödinger equation
(Nottale 1996)

[−2m0D
2(∂x + ik)2 + V (x)]uk(x) = εkuk(x) , (5)
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where V (x ) is the potential induced by the spatial lattice and εk the energy
eigenvalue. Differentiating with respect to k gives

[4m0D
2i(∂x + ik) + ∂kεk]uk = 0 . (6)

Multiplying equation (6) by u∗k(x ) and calculating the volume integral over the
volume Ω with the normalisation condition∫

Ω

u∗k(x)uk(x)dx = 1 , (7)

one gets

2Dk +
2D
i

∫
Ω

u∗k(x)uk(x)dx =
1

2m0D
∂kεk , (8)

from which, identifying equation (4) with (8), it results that

〈ν〉 =
1

2m0D
∂kεk = ∂pεk . (9)

Since the group speed of the Bloch wave packet is given by

ν = ∂kω =
1

2m0D
∂k(2m0Dω) =

1
2m0D

∂kεk , (10)

where we considered that εk = 2m0Dω (Nottale 1996; Agop et al . 1998a), it
results that the mean speed of a particle in the spatial crystal (equation 9) may
be understood as the group speed of the Bloch waves (equation 10). Thus the
wave–particle duality is not an intrinsic feature of the particle but a characteristic
of the spatial crystal.

3. Particle Energy Spectrum in the World Crystal: Inertia as a Property of
Space

Let us suppose that the potential energy of the particle in the spatial crystal is small
compared to the kinetic energy. One can then use perturbation theory to obtain
the corrections of the energy ε0k(r) and wavefunction Ψ0

k(r) of the unperturbed
state, considering V (r) as a perturbation of the free-particle Hamiltonian.

Let the generalised Schrödinger equation of a free particle be (Nottale 1996)

−2m0D∆Ψ0
k(r) = ε0k(r)Ψ0

k(r) , (11)

with the normalised eigenfunctions

Ψ0
k(r) =

1√
Ω

eik . r (12)

and eigenvalues

ε0k(r) = 2m0D
2k2 . (13)
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Now, using perturbation theory (Licea 1986), one obtains the eigenfunctions

Ψk(r) =
1√
Ω

eik . r

(
1 +

∑
KN

VkN

ε0k − ε0k+KN

eiKN . r

)
(14)

and the eigenvalues

εk = ε0k +
∑
KN

|VKN
|2

ε0k − εk+K0
N

, (15)

where V KN
is the potential of the particle in comparison with the reciprocal

spatial lattice KN . Expressions (14) and (15) are valid only for ε0k 6= ε0k+KN
.

If ε0k = ε0k+KN
, then from the eigenvalues (Licea 1986)

ε
(±)
k =

ε0k + εk+K0
N

2
±
[

(ε0k + εk+KN
)2

4
+ |VKN

|2
] 1

2

(16)

we get the jump ∆εk = ε
(+)
k − ε(−)

k = 2|VKN
|, and for a quadratic dependence of

the energy on the wavevector, i.e.

2m0D
2k2 = 2m0D

2(k + KN )2 , (17)

the restriction

k .
KN

2
=
(

KN

2

)2

. (18)

Equation (18) defines the gravitational Brillouin zones of the world crystal. Hence:

(i) the energy of particles from the spatial crystal experiences a jump of
2|VKN

| at the edges of the gravitational Brillouin type zone;
(ii) since the energy of the particle cannot take values from the energetic

interval (2m0D
2k2− |VKN

|, 2m0D
2k2 + |VKN

|), its energy spectrum will
contain forbidden domains. These are a consequence of perturbation of
the states of a free particle by the periodic field of the world crystal;

(iii) the existence of forbidden zones in the energy spectrum of the particle
may be understood as a ‘Bragg reflection’ of their associated Bloch waves
at the edges of the gravitational Brillouin zones of the space crystal.

In the one-dimensional case, and taking KN = 2πN /Λ, from equation (18)
one finds k = πN /Λ, where N = ±1, ±2, ... . Its values force the limits of the
gravitational Brillouin zones of the spatial crystal. Thus for N = ±1 one gets
the first gravitational Brillouin zone, namely –π/Λ ≤ k ≤ π/Λ.

Let us now assume the energy to be of the form

ε(x) = 2m0D
2k2 ± |VKN

(x)| . (19)

When the term |V (x)| is absent, the dependence ε(x ) = 2m0D2k2 is a parabola
(see the dashed line in Fig. 1). The presence of this term causes the energy to
show discontinuities for K = ± π/Λ, ± 2π/Λ, ... .
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Fig. 1. Energy spectrum of particles in the world crystal.

Therefore, the energy spectrum of the particle in the spatial crystal has a band
structure, with allowed bands being separated by forbidden bands. The width
of a forbidden energy band is 2|VKN

| and it increases with increasing potential
energy V (r). Once the energy εk increases, the width of the forbidden energy
band decreases, and the width of the allowed energy band increases.

For small values of k , the term |VKN
|2 under the square root in equation (16)

may be neglected compared with the first term, and thus we have

ε
(+)
k =

{
ε0k = 2m0D

2k2

ε0k+KN
= 2m0D

2(k + KN )2 .
(20)

The two states are equivalent, since ε(k) = ε(k + KN ), and express the parabolic
dependence typical of a free particle. In the close vicinity of the edges of the
first gravitational Brillouin zone, i.e. for k = ±π/Λ, the term |VKN

|2 mentioned
above is large, and hence

ε
(±)
k = 1

2 [2m0D
2k2 + 2m0D

2(k + KN )2]± |VKN
|
(

1± 2m0D
2 KN (2k + KN )

8|VKN
|2

)
.

(21)

Then, in compliance with the equation (1/m∗)µσ = (4m2
0D2)−1∂2ε/∂kµ∂kσ (Licea

1986), one gets (
1
m∗

)
µσ

=
1
m0

(
1±m0D

2 K2
N

|VKN
|

)
, (22)
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from which it results that, for the first gravitational Brillouin zone of the spatial
crystal, where kN = 2π/Λ, the mass is

m∗ = m0

(
1± 4m0D

2

|VKN
|

(
π

Λ

)2)−1

. (23)

By analogy with a crystalline solid (Licea 1986), we will name m∗ the ‘effective
mass’, i.e. the mass that results from the particle’s interaction with other ‘material
systems’ of the world crystal.

The signs ‘+’ and ‘−’ correspond to the energies 2m0D
2k2 − |VK1 | and

2m0D
2k2 + |VKN

|, respectively, i.e. to some minimal and maximal values of the
energy in an allowed energy band. Let us evaluate m∗ with h̄ = 10−34 J s, π/Λ
= 5×10−11 m−1, m0 = 10−30 kg and |VKN

| = 1 eV. One gets m∗ = m0/(1±6),
which means that for microscopic systems the effective mass is positive at the
lower zone of the energy band and negative at the higher one. Extrapolating
the result (23) to a cosmological scale, one obtains, for a system characterised
by (Agop et al . 1998c; Agnese and Festa 1997) h̄ ∼ 1067 J s, π/Λ ∼ 10−23

m−1, m0 ∼ 1040 kg and |VKN
| ∼ 1049 J, a value of m∗ ∼ m0/(1±2), that is,

the effective mass at this level may be positive as well as negative. In such a
context, the negative effective mass (i.e. negative energy) implies the existence
of some distinct spacetime structures as wormholes (Visser and Hochberg 1997)
and cosmic strings (Gott 1991).

The effective mass concept constitutes an adequate description of the particles
in the spatial crystal, but also generates some characteristics different from
Newtonian mechanics. For explicitness, we show in Fig. 2, in the one-dimensional
case, the dependence of the energy, speed and effective mass on the wavenumber
k , for the first gravitational Brillouin zone. For k = 0, we have ε(0) = 0 and
for k = ±π/Λ, ε(±π/Λ) = const. (see Fig. 2a). It results that ν(0) = 0 and
ν(±π/Λ) = 0, thus the speed curve has maxima and minima at the inflexion
points of the energy curve (Fig. 2b). Consequently m∗(0) > 0 and m∗(±π/Λ) <
0, whilst at the energy inflexion points m∗ → ∞ (Fig. 2c). In other words, the
effective mass is positive at the central gravitational Brillouin zone of the spatial
crystal, i.e. at the lowest edge of the corresponding energy band, and negative
at the extremities of the gravitational Brillouin zone, i.e. at the higher edges of
the energy band.

In an Eötvös-like experiment,

|VKN
| ∼ GMρm0

RP

= m0gPRP ,
h̄

m0

→ 2D = R2
P

2π
TP

, (24)

and the effective mass (23) becomes

m∗ = m0

(
1± 4π2R3

P

gPT
2
P

(
π

Λ

)2)−1

, (25)

where gP is the gravitational acceleration at the surface of the Earth, RP the
radius of the Earth and T P the period of revolution about its axis. Taking gP

∼ 10 m s−2, RP ∼ 6 ·3×106 m, T P ∼ 8 ·64×104 s, and considering that the
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matter in the universe has an influence on this mass (Mach’s principle), i.e. Λ ∼
1027 m, one gets m∗ ∼ m0/(1±10−42) m0. Consequently, the positive effective
mass is equal to the inertial mass (local equivalence principle). This means that
inertia is in fact a space property.

Fig. 2. Variation of the energy, speed and effective mass of particles in the world crystal.

4. Heisenberg Uncertainty Relation as a Property of Space

The ordering of space as a crystal confers wave properties on any moving
particle, its mean speed being identified with the group velocity of the Bloch
wave packet. If the potential energy of the particle in the periodic field of the
spatial crystal is small compared to its kinetic energy, the energy and momentum
of the particle may be characterised by relations similar to those for the free
particle, replacing the mass m0 by the positive effective mass m∗, i.e.

E =
p2

2m∗
, p = m∗v . (26)
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Then the Bloch wave packet reduces to the de Broglie wave packet (Titeica
1984)

Ψ(x, t) = aexp[−i(E0t− p0x)/2m∗D]
sinξ
ξ

, (27)

with

ξ =
∆p

4m∗D
(x− t∂PE) (28)

obtained by overlapping an ensemble of plane harmonic waves, for which the
momentum p of the particle lies in the interval

p0 −∆p/2 ≤ p ≤ p0 + ∆p/2 . (29)

Taking into account equation (26), it results that the group velocity of the de
Broglie wave packet, namely

νg = ∂PE = ν , (30)

coincides with the speed of the particle.
At a moment t , the wave packet (27) extends over a distance ∆x , obtained

from the relation

∆ξ =
∆p∆x
4m∗D

≥ π (31)

or

∆p∆x ≥ 4πm∗D . (32)

Equation (32) defines the fractal uncertainty relations. If D = h̄/2m∗, then (32)
reduces to Heisenberg’s uncertainty relation.

Condition (32) corresponds to a ‘Bragg diffraction’ on the planes of the spatial
crystal or, more precisely, at the edges of the gravitational Brillouin zone. Indeed,
let

Aϕ = a
sin∆ξ

∆ξ
(33)

be the amplitude of the de Broglie wave packet at a moment t . Now, if one
allows a diffraction of the de Broglie wave packet on the spatial crystal, the
diffraction minima are obtained by cancelling the intensity

Iϕ = a2 sin2∆ξ
∆ξ2 , (34)

which implies
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∆ξ = ±Nπ . (35)

Since diffraction is an elastic interaction process between the de Broglie wave
and the spatial crystal lattice, k = k ′, equation (31) written as an identity

∆p∆x = 4πNm∗D , (36)

with

∆p = |2m∗Dk′ − 2m∗Dk|, |KN | =
2πN

Λ
, ∆x = Λ, (37)

reduces to the momentum conservation law

2m∗Dk′ − 2m∗Dk = 2m∗DKN . (38)

Squaring this and bearing in mind that (–KN ) is also a vector of the reciprocal
lattice, one gets the diffraction condition (18).

Thus one defines the planes of the spatial crystal on which ‘Bragg reflection’
takes place as planes corresponding to the edges of the gravitational Brillouin
zone. Therefore:

(i) the identity relation (36) corresponds to a ‘Bragg diffraction’ of the de
Broglie waves on the planes of the spatial crystal;

(ii) the uncertainty relations (32) correspond to a ‘Bragg diffraction’ on the
first planes, N = ±1, of the spatial crystal;

(iii) the fractal uncertainty relations are a feature of space.

5. Conclusions

Considering a fractal spacetime self-structured as a crystal, called the world
crystal, we can conclude that:

(i) the space geodesics correspond to a generalised Schrödinger equation in
a periodic field imposed by the spatial mesh;

(ii) in this space the waves associated with the particles are of Bloch type,
and thus the mean speed of the particles is the group speed of the Bloch
wave packet. Hence the wave–particle duality is not an intrinsic property
of the particle, but a spatial property;

(iii) considering that the potential energy of the particle in the world crystal
is much smaller than its moving energy, we can say that the particle’s
energy spectrum in the world crystal will have both allowed and forbidden
energy zones. The existence of the forbidden zones is interpreted as a
‘Bragg reflection’ of the Bloch wave packet on the edges of the Brillouin
gravitational zones of the world crystal. In an Eötvös experiment it
results that the positive effective mass is the same as the inertial mass;
accordingly, the inertia is a property of space and not a property of the
particle;

(iv) by substituting in the world crystal the inertial mass with the positive
effective mass, the Bloch wave packet is replaced by a de Broglie wave
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packet. From the spatial extension of the de Broglie wave packet at
a certain time, we can deduce the fractal uncertainty relations. These
relations are interpreted as a ‘Bragg diffraction’ of the de Broglie wave
packet on the world crystal planes. Therefore, spatial uncertainty is a
property of space.
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