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Abstract

The absorption of electromagnetic waves by a high mobility two-dimensional electron gas
subjected to a magnetic field and a weak periodic potential is investigated. We show that
the periodic modulation on the Laudau states has a profound effect on the absorption of
electromagnetic waves. We develop a formalism which treats the electron–electron interaction
beyond the random-phase-approximation (RPA) and includes the electron-impurity scattering
in the lowest order. A RPA dielectric function was employed to study the electromagnetic
absorption in modulated systems. Simultaneous excitation of an electron–hole pair with
finite momentum contributes significantly to the absorption around and below the cyclotron
frequency. Such a process is absent for a uniform electron gas under a magnetic field.

1. Introduction

The absorption of long-wavelength electromagnetic (EM) radiation by plasmas is
proportional to

∑
q Fq=m[1/εRPA(q, ω)] to lowest order in the plasma parameter

rs, where =m stands for the imaginary part (Ron and Tzoar 1963; Dubois et
al. 1962; Perel’ and Eliashberg 1960). Here εRPA(q, ω) is the random phase
approximation (RPA) dielectric response function of the electrons, where ω is the
angular frequency of the radiation field and q is the momentum transfer between
the electrons and the impurities or low frequency acoustic phonons. The factor
Fq is proportional to the square of the electron-impurity (or phonon) interaction,
and the plasma parameter is rs = (kFa∗B)−1, where kF is the Fermi wave vector,
a∗B = κh̄2/m∗e2 is the Bohr radius, κ is the dielectric constant and m∗ is the
effective mass.

It was recognised by Hopfield (1965) that, for example for simple metals, the
effective electron-impurity interaction is weak and can be treated as a perturbation.
However, electron collisions could be important and it may be necessary to
consider them beyond the lowest order in rs. Hopfield then generalised the RPA
result and showed that for weak electron-impurity interaction the absorption is
proportional to

∑
q Fq=m[1/ε(q, ω)], where Fq is the same form factor as before.

However, ε(q, ω) is the exact dielectric response function of the electron gas.
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Confinements, held at the Australian National University, Canberra, in December 1998.

q CSIRO 2000 10.1071/PH99024 0004-9506/00/010065$05.00



66 C. Zhang

A problem has risen in treating the absorption of a two-dimensional electron
gas (2DEG) in a strong homogeneous magnetic field (Ando 1976, 1978; Grimes
1978; Ting et al. 1977; Gotze and Wolfle 1972; Fukuyama et al. 1979). Here
the RPA result for the dielectric function gives an absorption proportional to
=m[1/εRPA(q, ω)] which indicates only the existence of absorption lines at the
cyclotron frequency and its harmonics. The singular behaviour of =m[εRPA(q, ω)]
makes absorption calculations for ω < ωc unrealistic and thus within the RPA
the particle–hole pair excitation cannot be studied. The RPA calculation of
absorption due to plasmon excitation is also unrealistic as it is singular at
frequencies where the plasma energy is dispersionless (dωp/dq = 0). To set up
a tractable method to remove these unrealistic features is still an outstanding
problem.

A two-dimensional electronic system subjected to a perpendicular magnetic
field and a periodic modulation potential (Weiss et al. 1989a, 1989b, 1993; Winkler
et al. 1989; Gerhardts et al. 1989; Vasilopoulos and Peeters 1989; Zhang 1990;
Gerhardts and Zhang 1990; Zhang and Gerhardts 1990; Pfannkuche and Gerhardts
1992; Manolescu and Gerhardts 1995) presents one of the most interesting and
challenging problems in physics, mathematics and computer simulation techniques
(Hofstadter 1976; Sinai 1970). Since the discovery of Weiss oscillations (Weiss et
al. 1989a) in a weakly modulated system, research in this field has been rapidly
expanded. Recent research in the field includes the experimental realisation of
the internal structures of Landau bands (Schlosser et al. 1996a, 1996b), quantum
chaotic dynamics (Rotter et al. 1996). However, to date, the dynamical properties
of this subtle system are still far from clear. In a recent work we performed a
calculation within the RPA of the dynamical density response function (Stewart
and Zhang 1995; Brataas et al. 1997; Cui et al. 1989). The effect of the periodic
potential on the static properties can be summarised as: (i) the sharp Landau
levels are broadened in a manner where the width and height of the density
of states (DOS) are oscillatory in the magnetic field and level index; (ii) the
DOS exhibits inverse-square-root singularities at the band edges; (iii) there is an
additional conductivity due to band conduction; and (iv) the magnetoresistivity
exhibits commensurability oscillations (or Weiss oscillations). It was revealed
(Stewart and Zhang 1995; Brataas et al. 1997) that the effect of the periodic
potential on the dynamical properties of the system is much more complicated
than that on the static properties: (i) it introduces an additional channel in the
density response which is an electron–hole pair excitation of finite momentum qy;
(ii) the pair excitation exhibits multiple singularities. The number of singularities
depends on the excitation frequencies only; and (iii) the light scattering cross
section has an additional peak at the cyclotron frequency and its high harmonics.

In this paper, we demonstrate that an additional weak periodic potential applied
to a uniform 2DEG under a magnetic field can have a rather profound effect on
the coupling between the electrons and the EM radiation field. As is known, the
primary effect of a weak periodic potential is to lift the degeneracy of the original
Landau levels. The energy becomes dependent on the centre coordinate of the
cyclotron orbit, x0 = qyl

2, where l2 = ch̄/eB is the magnetic length. Though
the density of states (DOS) still contains the inverse-square-root singularity, it is
now fully integrable and thus makes a finite contribution to the EM absorption.
We have calculated the EM absorption for such a periodically modulated system
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and the main results are: (i) The x0 dependent energy dispersion has introduced
the electron–hole pair excitation of finite momentum qy. This pair excitation
is the dominant absorption mechanism for ω < ωc, where ωc = eB/cm∗ is the
cyclotron frequency. (ii) The absorption due to plasmon excitation is no longer
singular because the spectral weight is now distributed continuously over a finite
interval of qy.

2. General Formalism of Electromagnetic Absorption

Let us consider a 2DEG in the x–y plane with a perpendicular magnetic field,
B = Bz, where z is a unit vector in the z-direction. The 2DEG is further
subjected to a periodic modulation in the x-direction with a period a. The
Hamiltonian is

H = H1 +He−I +Hγ +Hmodu, (1)

where

H1 =
∑
i

(−i∇i − eAi)2

mi

+ 1
2

∑
i,j

e2

|ri − rj |
, (2)

He−I =
∑
q

Uq
∑
i,j

eiq·(ri−Rj), (3)

and

Hmodu =
∑
i

V0 cos(Kxi), (4)

where ri = (xi, yi) is the electron position, pi = (−ih̄∇i − eAi/c) is the electron
canonical momentum, Ai is the vector potential of the static magnetic field,
Rj is the impurity coordinate and V0 is the strength of the modulation with
K = 2π/a. In a heterostructure the doping impurities are at some distance from
the 2DEG. We use the electron-impurity interaction Uq = 2πe2 exp (−qα)/κq,
where α is the typical distance of the impurities from the 2DEG. The mass of the
impurity is treated as infinite. The interaction of an EM wave with the electrons
is Hγ = −eEγ ·

∑
i pi/m

∗ıω, where Eγ is the transverse electric field and ω is
the frequency of the EM wave. We will limit our discussion to low temperatures
and set T = 0. All results may easily be generalised to finite temperatures.

The interaction of an EM wave with the electrons is

Hγ =
e

m
P ·Aγ , (5)

where P is the total canonical momentum of the system and Aγ is the vector
potential of the radiation field. The energy loss rate of the EM field can be
written as

Rq = 2π
∑
F,I

ρI |〈F |Hγ |I〉|2δ(EF − EI − ω) , (6)
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where F and I represent the final and initial state, and ρI is the statistical
weight for the initial state,

ρI = exp[β(Ω + µNI − EI)] , (7)

where β = 1/kT , µ is the chemical potential and

e−βΩ =
∑
I

e−β(EI−µNI) . (8)

In the rest of this paper we develop a method to calculate the matrix element
in equation (6), 〈F |Hγ |I〉. First we would like to express the momentum in
coordinates appropriate to circular polarisation

P = e+P+ + e−P− + ezPz , (9)

where e± =
√ 1

2 (ex± ey) and P± =
√ 1

2 (Px±Py). Therefore we have the following
commutation rule:

[P+, P+] = [P−, P−] = 0 , (10)

[P+, P−] = mωc . (11)

Since we choose the magnetic field to be along the z-direction and the radiation
field is in the x–y plane, the energy loss rate can be written as

Rq =
2π2

m2

∑
F,I

ρI |〈F |P+A
−
γ + P−A

+
γ |I〉|2δ(EF − EI − ω) . (12)

The matrix element 〈F |P±|I〉 can be obtained as the following:

〈F |P±|I〉 =
〈F |[H,P±]|I〉
EF − EI

=
1
h̄ω
〈F |[H,P±]|I〉 , (13)

where we use the eigen-equation for the final and initial state:

H|F 〉 = EF |F 〉 , (14)

H|I〉 = EI |I〉 , (15)

and the energy denominator can be replaced by ω because of the δ-function in
equation (6). The commutator of P± with the electron–electron interaction is
zero and the other three commutators are given as
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[P±, P 2] = ±2mωcP± , (16)

[He−I , P±] = q±
∑
i,j

Uqe
iq·(ri−Rj) , (17)

and

[Hmodu, P±] =
K±√

2
V0

∑
i

sin(K±xi) . (18)

Using equations (16)–(18), we have the self-consistent equation for the matrix
element 〈F |Hγ |I〉 and the solution is

〈F |P±|I〉 =
q±

ω ± ωc
〈F |Vq

∑
i,j

eiq·(ri−Rj)|I〉

+
iV0√

2
K±

ω ± ωc
〈F |

∑
i

sin(K±xi)|I〉 . (19)

Here K± = (Kx ± iKy)/
√

2 = K/
√

2. We use equation (19) in equation (12) and
then the final result for the energy loss rate can be written as

R =
2π
h̄

e2

m2

1
ω2

∑
F

δ(EF − E0 − h̄ω)

×
∣∣∣∣∑

q

(
q−E+

ω + ωc
+

q+E−
ω − ωc

)
Uq〈F |

∑
i,j

eiq·(ri−Rj)|0〉

+
iKV0√

2

(
E+

ω + ωc
+

E−
ω − ωc

)
〈F |

∑
i

sin (Kxi)|0〉
∣∣∣∣2 , (20)

where |0〉 is the ground state of the many-electron system, q± = (qx ± iqy)/
√

2,
and E± = (Ex± iEy)/

√
2. This expression is exact to second order in the impurity

potential Uq and the modulation potential V0 including all electron–electron
interactions, and is valid for any strength of the magnetic field. The electron
scattering matrix contains two terms. The first term, proportional to nIqUq, is due
to electron scattering off the impurity potential and the second term, proportional
to KV0, is due to the electron scattering off the modulation potential. Here
nI is the density of impurities. In typical experimental situations, V0 ∼ 0 ·5− 2
meV, K ∼ 2 − 4 × 105 cm−1 and nI = 2 − 5 × 1011 cm2. Therefore, the ratio
is nIqUq/KV0 À 1 and we shall neglect the electron scattering from the weak
periodic potential (for typical α values of around 50–100 Å). Furthermore, since
we are seeking a result which is in the lowest order of the electron-impurity
interaction, i.e. |Uq|2, the many-body states |F 〉 and |I〉 can be regarded as
only having electron coordinates. In this case

∑
j e
−iq·Rj can be taken out of

the matrix element and an average taken over the random impurity ensemble∑
j,j′ e

−iq·Rjeiq
′·Rj′ /A = nIδq,q′ , where A is the area of the two-dimensional
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system. On the other hand, if the impuritites are far away from the 2DEG
in high-mobility samples and the modulation potential is sufficently strong, the
second term in equation (19) is dominant. In this case we see that the long
wavelength conductivity is given by the charge-density excitations along the x-axis
at wave vector K due to the scattering with the periodic modulation. The long
wavelength conductivity is then directly proportional to Im[1/ε(K,ω)] with a
prefactor which gives a resonance at the cyclotron frequency. The charge-density
excitations for this system have been studied (Stewart and Zhang 1995) and we
will therefore concentrate on the first case here.

3. Dynamical Resistivity

From the definition of the dielectric function in terms of the system response to
the external potential, the expression for the imaginary part of the reciprocal of
the longitudinal dielectric function is

=m
[

1
ε(q, ω)

]
=

4π2e2

q2 (1− e−βω)
∑
F,I

eβ(Ω+µNI−EI)

× |〈F |
∑
i

eiq·ri |I〉|2δ(EF − EI − ω) . (21)

We can relate the energy loss rate to the conductivity by h̄ωR(ω) = 2A<e
[
j(ω) ·

E∗(ω)
]
. The current can be written as j = σ ·E, where σ is the conductivity, and

we thus obtain the real part of the diagonal element of the conductivity tensor:

σRxx = η
∑
q

(q2
xω

2 + q2
yω

2
c )
|Uq|2
Vq

[
−=m 1

ε(q, ω)

]
, (22)

σRyy = η
∑
q

(q2
xω

2
c + q2

yω
2)
|Uq|2
Vq

[
−=m 1

ε(q, ω)

]
, (23)

where Vq = 2πe2/κq. We have set the temperature to zero. The prefactor η is

η = nI

(
e

m∗

)2 1
ω(ω2 − ω2

c )2 . (24)

It is possible to generalise the above results to include the imaginary parts of
the conductivity and to obtain results for the relaxation time by comparing
the results with the standard Drude conductivity. Due to the unidirectional
modulation potential the conductivity is now in general anisotropic. However,
we found that the anisotropy in the conductivity is not significantly close to the
cyclotron frequency, ω ∼ ωc, even if the dielectric function is strongly anisotropic.
The anisotropy is increasing for frequencies away from the cyclotron frequency.

For absorption in the system we now need a model for the dielectric function in
a 2DEG with a perpendicular magnetic field and a periodic modulation potential.
We use the results obtained within the RPA. In order to simplify the discussion
we now consider the case of integer filling of the Landau levels. The dielectric
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function in the case of a partially filled Landau band has been discussed in
(Stewart and Zhang 1995; Brataas et al. 1997). The single-particle energy, to
first order in the modulation potential, is given as

En(x0) = h̄ωc
(
n+ 1

2

)
+ Un cosKx0 , (25)

where Un = V0Ln(H) exp(−H/2), H = (Kl)2/2, and Ln(H) is a Laguerre
polynomial. This is a good approximation if the cyclotron resonance energy and
the Fermi energy are not too small compared with the modulation potential. The
imaginary part of the dielectric function is (Stewart and Zhang 1995; Brataas et
al. 1997)

=m[ε(q, ω)] =
2h̄ωc
qa∗B

nF∑
m′=0

∞∑
m=x

Cm+m′,m′

× [θ
(
∆U2

mm′ − (∆E−m)2
)
/
√

∆U2
mm′ − (∆E−m)2

− θ
(
∆U2

mm′ − (∆E+
m)2

)
/
√

∆U2
mm′ − (∆E+

m)2] , (26)

where nF + 1 is the number of occupied Landau bands and x = nF + 1−m′ is
the lower limit of the second summation. Further, x′0 = q sin (ϑ)l2, where ϑ is
the angle between the wave vector q and the x-axis and the transition matrix is
(n′ < n)

Cn,n′ =
n′!
n!
Xn−n′e−X [Ln−n

′

n′ (X)]2 , (27)

where X = (ql)2/2 and Lmn (X) is an associated Laguerre polynomial. The real
part of the dielectric function is (Stewart and Zhang 1995; Brataas et al. 1997)

<e[ε(q, ω)] = 1 +
2h̄ωc
qa∗B

nF∑
m′=0

∞∑
m=x

Cm+m′,m′

× [θ
(
(∆E−m)2 −∆U2

mm′
)
/∆E−m

√
1− (∆Umm′/∆E−m)2

+ θ
(
(∆E+

m)2 −∆U2
mm′

)
/∆E+

m

√
1− (∆Umm′/∆E+

m)2] , (28)

where θ(x) is the Heaviside function. In (25) and (27) we have introduced

∆U2
mm′ = U2

m+m′ −−2Um+m′Um′ cosKx′0 + U2
m′ (29)

and ∆E±m = mh̄ωc ± h̄ω. For the subsingularities in =m[ε(q, ω)] we see that
for positive frequencies they occur at ∆E−m = ±∆Umm′ if subband m′ is
occupied and subband m + m′ is empty. Now, since the conductivity in
equations (21) and (22) in principle contains contributions from all (q, ϑ) due



72 C. Zhang

to scattering from the impurities the subsingularities will occur in the interval
||Um+m′ | − |Um′ || ≤ |∆E−m| ≤ ||Um+m′ | + |Um′ || and will be smoothed out. The
calculated structure of both the real and imaginary parts of the dielectric function
is shown in Fig. 1.

Fig. 1. (a) Real part of the dielectric function and (b) imaginary part of
the dielectric function. Here V0 = 1 ·0 meV, qx = 0 ·2kF , qy = 0, a = 300
nm, EF = 10 meV, and the filling factor is 5 ·5.

The EM absorption of the system consists of contributions from both single-
particle excitations and plasmon excitations. We may write these two terms
separately as

−=m[1/ε(q, ω)] = P
εI

ε2I + ε2R
+ πδ(ε(q, ω)) . (30)

From this equation we may immediately conclude that, in the absence of a
periodic modulation potential, the EM response of a system with sharp Landau
levels does not contain the contribution due to the particle–hole pair excitation.
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Fig. 2. Plot of −=m[1/ε(qx, ω)] as function of frequency. All parameters
are the same as in Fig. 1.

The imaginary part of 1/ε(q, ω) for some typical parameters is shown in Fig. 2.
The contribution to the EM response due to plasmon excitation in such a system
usually has sharp peaks due to the fact that the spectral weight is concentrated
for a give value of the photon wavenumber. The application of a modulation
potential has broadened the originally sharp Landau level. The broadening is
both B-dependent and level index-dependent. The centre-coordinate-dependent
energy dispersion has two important effects on the EM response of the system:
(i) The particle–hole pair excitation channel has now been opened and thus a
finite absorption occurs for frequencies around ωc and each of its harmonics (nωc
where n = 1, 2, 3, . . .). Therefore, in a modulated 2DEG, EM absorption is finite
even for frequencies less than ωc. (ii) The spectral weight in plasmon excitation
is no longer only dependent on the magnitude of the photon wavenumber, but
it is now also dependent on the direction of the photon wavenumber. The
spread of the spectral weight along different directions (specified by the angular
variable ϑ) removes the singular behaviour (or smears out the sharp peaks) in
the aborption coefficient. The contribution from collective excitations to the
conductivity component σRxx is now given as

σRcxx = 1
2η(ω)

∫ 2π

0

dϑ

2π

×
∑
q∗

[
q(q2

xω
2 + q2

yω
2
c )
|Uq|2
Vq

∣∣∣∣∂ε(q, ϑ, ω)
∂q

∣∣∣∣−1]
q=q∗

. (31)

The solutions q∗ are now given by ε(q∗, ϑ, ω) = 0. All singularities will thus be
smoothed out in the angular integral. We illustate this behaviour in Fig. 3, where
we show the dispersion ω(q) of the plasmon for two values of ϑ (= 0, π/2). The
system parameters used in the calculation are to be described below. The areas
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below the dotted lines are the regimes of single-particle excitations where the
collective excitations (plasmon) cannot exist. For ϑ = 0 this regime is constant
as a function of q (qy = 0, qx = q), but for ϑ = π/2 (qy = q, qx = 0) this regime
is increasing as a function of q. The angular dependence of the plasmon energy
is larger for small frequency differences, ω(q)− ωc, as should be expected from
the expression for the real part of the dielectric function (26) since the angular
dependent terms in the denominator are more important then. The highest peak
in the dispersion has a rather weak angular dependence, since the dispersive part
of energies in the real part of the dielectric function is less pronounced for larger
energy differences, ω − ωc. This means that the peak in the conductivity within
the RPA around this frequency will remain sharp after the integration in (29),
while the other peaks will be more smoothed out. However, this main peak can
easily fall in the particle–hole region with a slight increase of V0.

Fig. 3. Dispersion of the plasmon (solid lines) and upper energy for single particle excitations
(dashed lines) for ϑ = 0 and Π/2. The system parameters are described in the text.

4. Results and Discussion

We have used the following GaAs parameters in our numerical calculation:
m∗ = 0 ·067m and κ = 13 (where m is the electron mass). This gives an effective
Bohr radius of a∗B = 102 Å. The magnetic field is B = 2 T giving a Landau
energy h̄ωc = 3 ·5 meV and the four lowest Landau levels are filled giving a 2D
electron density of 3 ·9× 1011 cm−2. The modulation potential is V0 = 0 ·5 meV
with a period of a = 3000 Å, and the typical distance from the impurities to the
2DEG is α = 100 Å.

We consider the resistivity ρyy around ωc. The region of single-particle
excitations is determined by transitions between Landau levels 3 and 4, where
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U3 = 0 ·11ωc and U4 = 0 ·10ωc. In principle, the sum |U3 + U4| = 0 ·21h̄ωc
gives the maximum frequency around ωc for single-particle excitations and
h̄ωc + |U3 − U4| = 1 ·01h̄ωc gives the minimum frequency for which the plasmon
may exist. However, the spectrum is effectively cut-off if qy is larger than 1/α,
where α is the typical distance from the impurities to the 2DEG. The maximum
argument for Kx′0 is thus Kx′0 ∼ 2πl2/aα ≈ 0 ·71 leading to a narrower band
of single-particle excitations around ωc. We show in Fig. 4 the resistivity ρyy
as a function of frequency. The solid line displays the total resistivity including
contributions from both single-particle and collective excitations. For frequencies
less than the cyclotron frequency only single-particle excitations contribute (the
dashed line which merges with the solid line slightly above ωc). At frequencies
slightly larger than ωc, ω = 1 ·01ωc (see above), the collective excitations (dotted
line) will contribute to the conductiviy and their contribution is dominant at high
frequencies. The resistivities ρxx (not shown) and ρyy are both very similar even
though the anisotropy of the dielectric function is large. As already mentioned,
this is due to the fact that we have integrated over the angular variable for both
σxx and σyy.

Fig. 4. Resistivity ρyy as a function of frequency (solid line). The dashed lines give the
single-particle excitations (low energy part) and the collective contributions (high energy part).
The system parameters are described in the text.

We would like to point out that in a realistic system the Landau levels are
not infinitely sharp in the absence of periodic modulation. There are always
unavoidable disorders which broaden the Landau levels. Therefore the particle–hole
pair excitation can make a nonzero contribution to the EM absorption, though a
theory beyond RPA is required to include such collision broadenings. However, the
physical origin of this commonly studied collision broadening (without modulation



76 C. Zhang

potential) and of the modulation broadening discussed here are completely
different. The former is known as the lifetime effect and the latter is the
dispersive effect. The particle–hole excitations due to collision broadening and to
modulation broadening and their respective contribution to the EM absorption are
qualitatively different: (i) the former is still isotropic for random disorders while
the latter is anisotropic; (ii) the EM absorption due to the former usually has a
Lorentzian-type spectral distribution which is relatively sharp, while that due to
the latter is definitely non-Lorentzian. The angular redistribution of the spectral
weight due to plasmon excitation is also a completely new mechanism compared
with the collisional damping of plasmons in unmodulated systems. The central
result of this work is the novel absorption mechanism due to modulation-induced
level broadening. The RPA dielectric function is employed in our work, but the
qualitative physical picture should remain unchanged if a higher order interaction
is included in the dielectric function.
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