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Abstract

Charges are calculated for diatomic molecules by partitioning the promolecular density with
projection operators derived from free atom potentials. The promolecular charges thus
obtained have physically reasonable magnitudes, which are moderately sensitive to interatomic
distances and thus to bond type. Their signs are negative for cations and positive for anions.
Trends in these charges correlate with subshell structure. Due to the long range of their
electrostatic potentials, the cations compete successfully for electrons at the expense of the
anions in the density partitioning. This implies that the cation states become overfilled when
the atoms overlap, favouring a flow of electrons away from the cation towards the vacant anion
states. That accounts for the positive cations and negative anions observed when molecular
densities are partitioned with projection operators based on free atom electron densities.

1. Introduction

The well-established role of electron spin pairing, and the close relationship
between bond formation and electrolysis (e.g. Partington 1939, 1964; Moore
1939), favours models for bonding based on integral numbers of electrons. The
credibility of integral charge models was enhanced when binding energies for
alkali halides were predicted semi-quantitatively from the electrostatic (Madelung)
energies of arrays of point charges equal in magnitude to the electron’s charge
(Kittel 1986). Such models representing positively charged cations and negatively
charged anions could be fine-tuned by optimising short range repulsive potentials
that prevent collapse of the polar point charge lattice. The repulsive terms
increase rapidly as the lattice spacing decreases below its equilibrium value.

The binding energy predictions are systematically too large for point charge
arrays with signed values derived from cation valencies that exceed unity (Tosi
1964; Trefry et al. 1987). Invoking free ions with formal charges in bonding models
involves other difficulties that also increase rapidly with atom valence (Zachariasen
1931). Ionisation energies for multiply charged cations are so large that they
cannot reasonably be invoked as intermediates in chemical bond formation.
Electron affinities for negatively charged monovalent anionic species largely offset
ionisation energies required to form positively charged monovalent cations, but
the electron affinity changes sign for multiply charged anions (Sherman 1932).
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Electron–electron repulsions outweigh the nuclear–electron attractions when the
number of electrons on a negatively charged atom exceeds the nuclear charge by
two or more.

A strong objection to postulating free ion intermediates in bond formation
is that it requires the transfer of bound electrons between atoms, raising the
energies for some component entities, whereas the total energy must decrease.
A larger energy reduction by interaction between the ionised components must
outweigh the net energy gain by all components. Such energy lowering must
be related functionally to the energy gains. Unless any large energy gain is
functionally linked to reductions, the Boltzmann probabilities for the processes
that require that energy gain would be too low.

The extent of charge neutralisation for overlapping ions and its variation
with lattice spacing are not defined by the Electroneutrality Principle. In a
simple position space superposition of free ion densities, charge cancellation is
largely complete (Trefry et al. 1987; Buttner and Maslen 1988). It is difficult to
differentiate partly cancelling integral charges from charges that are inherently
non-integral. Effective charges in solids determined experimentally depend strongly
on the measurement technique and its interpretation (Harrison 1980). Those
evaluated theoretically depend on the assumptions made. It can be readily
understood that physical phenomena depend to differing degrees on the extent
and nature of the overlap of charge distributions, but the wide range of values
determined for effective charges in the same compound impedes our understanding
of charge transfer in chemical bonding.

2. The Promolecule

The term, promolecule, was first introduced by Hirshfeld and Rzotkiewicz (1974).
The idea itself, however, was not new, having been used in the calculation of
binding energies by Wedepohl (1967) and by Gordon and Kim (1972). The
promolecule Ψpro consists of a product of the free atom wavefunctions ψi,

Ψpro = ΠiAiψi , (1)

where Ai indicates that the ψi are antisymmetrised internally. The promolecular
concept neglects inter-atom electron quantum-mechanical exchange, and the effect
of inter-atom potential terms on the state function, but this approach has
nevertheless assisted the understanding of chemical bonding (Hirshfeld 1977a).
The promolecule’s electron density ρpro is a quasi-quantum-mechanical entity,
consisting of superimposed spherically averaged neutral atomic densities ρi, with
nuclei at the correct coordinates for the molecular system

ρpro =
∑
i

ρi . (2)

This provides a useful reference state which allows many chemical and physical
properties to be predicted reliably: X-ray and electron scattering powers of
gaseous molecules are typical examples. Many global molecular properties can
indeed be decomposed into atomic contributions (Balint-Kurti and Karplus 1974;
Maksic 1984).
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The power of the promolecular model can be partly attributed to the chemical
and physical properties that are unique functionals of the one-electron density
(Hohenberg and Kohn 1964). The promolecule electron density is much larger
than the deformation of the electron density by bond formation. If there exists a
relationship between the deformation and total densities, and if that relationship
is preserved in an application to a physical property, it should be possible to
understand that property qualitatively from a study of the promolecule density
alone (Spackman and Maslen 1986).

The promolecule gives a good first order prediction of binding energies for
atoms extending across the whole periodic table (Spackman and Maslen 1986).
The energies predicted for diatomic molecules containing a monovalent anion and
cation at the equilbrium spacing approximate binding energies more accurately
than integral point charges at those locations. In so far as promolecule-type
energies for diatomic molecules become positive at small interatomic separations,
where the nuclear repulsions dominate, the promolecule model includes repulsive
components needed to stabilise molecules. The equilibrium separation predicted
is smaller than the experimental value for all diatomic promolecules except that
for H2. That results from the neglect of the electron depleting effect of atomic
core electrons which overlap with the electron density of the bonded neighbours.
The arbitrary nature of the repulsive potential terms added to ionic models to
stabilise the system enables them to predict bond lengths more reliably than the
promolecule model, but does not necessarily provide improved understanding.

3. Promolecular Charge

The promolecule, being a good first order predictor for a wide range of physical
properties, should provide useful preliminary information on charge transfer.
While the concept of the promolecule consisting of overlapping free atoms does
not define transfer of charge explicitly, the electron density from one atom overlaps
with that of other atoms. Geometric partitioning of the electron density, into
either discrete or overlapping regions, will not necessarily yield zero charge transfer
for the promolecule. The partitioning proposed originally by Hirshfeld generated
zero charges for the promolecule by its definition (Spackman and Maslen 1986).
To determine the expected charge ‘transfer’, that is, charge is not physically
transferred, it exists only in terms of subdivision of the overlapping electron
density, a physical basis for subdividing superimposed electron density between
overlapping atoms must be established.

The potential energy components of binding energies 〈Ψ|Vbond|Ψ〉, where Ψ is the
molecular wavefunction, may be expressed in position space as

∫
ρVbond dτ , where

ρ is the electron density, since in a position space representation Vbond is a sum of
electrostatic potentials that commute with Ψ. In the promolecule approximation
inter-atom exchange correlation and two-electron terms are neglected. The electron
density function involved is the one-electron density, and the operator Vbond has
the form of a Coulomb potential. The electrostatic energy can thus be evaluated
by classical electrostatics. Although the corresponding kinetic energy operator
does not commute with the state function Ψ, according to the virial theorem the
change in kinetic energy due to bonding is simply minus one half times that for
the potential energy. Binding energy can thus be well described by evaluating
the action of a classical electrostatic potential on a one-electron density.
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Promolecule charges can be evaluated by applying a projection operator wA(r)
constructed from free atom electrostatic potentials to the total electron density,

wA(r) =
V Aatom(r)
Vpro(r)

, (3)

where V Aatom(r) is the atomic potential of atom A and

Vpro(r) =
∑

i=all atoms

V iatom(r) .

The promolecule electron density at every point is allocated to constituent
pseudo-atoms in proportion to the free atom electrostatic potential at that
location,

ρipro,V (r) = wA(r)ρA(r) =
V Aatom(r)
Vpro(r)

ρpro(r) . (4)

The subdivision is similar to that proposed by Hirshfeld (1977b) (equation 6),
but the charge is redefined to reflect the contributions of the electron density
to the change in potential energy when the atoms overlap to form a molecule.
Such operators preserve the total electron density and potential at every point.
It would be possible to construct more sophisticated variants, such as ‘atomic’
potentials modified by electron density lost or accrued, but the simple atomic
potential operators provide a first-order picture of charge transfer suitable for
the study of molecular systems and simple crystalline solids.

In principle, calculation of promolecular charges ∆Qpro simply involves
subtracting the integral of the partitioned electron densities ρipro from the nuclear
charge Zi, yielding

∆Qpro(i) = Zi −
∫
ρipro(r) dτ . (5)

In practice, accurate integration is not necessarily straightforward, as both the
potential, and to a lesser extent the electron density, peak sharply at the nuclei.

If the promolecular density were partitioned by an operator proportional to
the free atom density,

ρipro,ρ(r) =
ρi(r)
ρpro(r)

ρpro(r) = ρi(r) , (6)

the ideal electron count would equal the atomic number,
∫
ρipro,ρ(r) dτ = Z. In

practical evaluation the integrated charge may not be the exact number expected
(see Table 1). The densities used in these and all other calculations were taken
from those tabulated by Mann (1988) and Mann and Waber (1973). Significant
errors occur when the rapidly changing electron density functions are integrated
numerically. Decreasing the grid size improved the accuracy of the charges,
however, the convergence was slow. Thus, a more efficient method of coping with
rapidly varying potentials and densities was required.
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Table 1. Integrals of partitioned densities (with respect to potential and density) and
promolecular charges calculated for NaCl (after correction) at different grid sizes

Grid size (Bohr)
∫
ρipro,V dτ

∫
ρipro,ρ dτ ∆Qpro(X)

Na 0 ·5×0 ·5 9 ·769 9 ·133 11 ·636
Na 0 ·25×0 ·25 11 ·015 10 ·399 11 ·616
Na 0 ·125×0 ·125 11 ·497 10 ·890 11 ·607
Cl 0 ·5×0 ·5 9 ·116 9 ·752 16 ·364
Cl 0 ·25×0 ·25 15 ·733 16 ·349 16 ·384
Cl 0 ·125×0 ·125 16 ·171 16 ·778 16 ·393

The error induced by
∫
v
ρipro,ρ(r) dτ closely approximates that for

∫
v
ρipro,V (r) dτ .

The similarity enables the correction for the finite grid size near the nucleus to
be evaluated, namely, the error in the integration is(∫

v

ρipro,V (r) dτ −
∫
v

ρipro,ρ(r) dτ
)
× Pixel Volume . (7)

Subtracting this error from Z in the equation for ∆Qpro(i) above, yields physically
reasonable and relatively grid independent promolecule charges (Table 1).

The integration for diatomic molecules proceeded by, first, setting up a grid
in cylindrical coordinates, and interpolating the density and potential curves at
each point. Cylindrical coordinates were used to utilise the symmetry of the
diatomic molecules, where the third coordinate, the angle, could be integrated
out. The density and potential at each point were then partitioned, summed,
and corrected by the technique described above. The 0 ·5× 0 ·5 bohr2 grid size
sufficed. Evaluating the integrals for these molecules at finer grid sizes was
feasible, though more time-consuming. However, evaluating similar charges for
crystalline solids using finer grids, being of the order of hours, was inconvenient.
When comparing promolecular charges from diatomics and solids at a later stage,
it will clearly be preferable to evaluate both by a similar procedure. The coarser
0 ·5× 0 ·5 bohr2 grid with corrections determined above was therefore preferred.
Most interatomic distances were from a compilation of constants for diatomic
molecules (Huber and Herzberg 1979), supplemented by Spackman and Maslen
(1986).

4. Promolecular Charges for XH and XCl

The promolecular charge ∆Qpro(X) for the molecule XY is defined as the charge
transferred from atom Y to atom X in partitioning the promolecule electron
density with the atomic potential operator (equation 4). Negative ∆Qpro(X) thus
indicates transfer of electrons from Y to X.

Promolecular charges and experimentally measured bond lengths dexp for the
diatomic hydrides, XH, are given in Table 2. The ∆Qpro(X) for XH change sign
from negative to positive, while the bond lengths decrease monotonically, across
each row of the periodic table. The changes in ∆Qpro(X) are also monotonic
for the first two rows, but not for the third, where |∆Qpro(Ca)| is greater
than |∆Qpro(K)|. Comparison of the first three periodic table rows reveals that
∆Qpro(X) increases with atomic number Z most rapidly for the first row.
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Table 2. Diatomic distances and promolecular charges for X in XH

Atom d (Å) ∆Qpro(X)

H 0 ·74144 −0 ·000
Li 1 ·5957 −0 ·320
Be 1 ·3426 −0 ·221
B 1 ·2324 −0 ·097
C 1 ·119 −0 ·053
N 1 ·03621 −0 ·207
O 0 ·96966 −0 ·318
F 0 ·916808 −0 ·441
Na 1 ·8874 −0 ·275
Mg 1 ·7297 −0 ·235
Al 1 ·6478 −0 ·228
Si 1 ·52010 −0 ·150
P 1 ·42234 −0 ·049
S 1 ·3409 −0 ·026
Cl 1 ·274552 −0 ·116
K 2 ·2425 −0 ·297
Ca 2 ·0025 −0 ·315
Ga 1 ·6630 −0 ·186
Ge 1 ·5880 −0 ·132
As 1 ·5344 −0 ·059
Se 1 ·475 −0 ·009
Br 1 ·414435 −0 ·057

The ∆Qpro(X) values for chlorides depicted in Table 3 follow trends similar to those
for the hydrides in Table 2. Here ∆Qpro(XH) and ∆Qpro(XCl) values correspond
to within a scale factor for all three rows of the periodic table, with the exceptions
being −∆Qpro(AlCl) > −∆Qpro(MgCl), while −∆Qpro(AlH) < −∆Qpro(MgH),
and the ∆Qpro(CaCl) maximum is global for XCl. This may appear to be
insignificant as the error in integration is of the order of 0 ·03 e- (Table 1), but
the Al/Mg effect occurred consistently even when finer grids were used. The
∆Qpro(XCl) increase with Z most rapidly for the first row, as do the ∆Qpro(XH).
For the first row |∆Qpro(X)| decreases for X = Li, Be, B, whereas in the second
row there is a local maximum at Al. On the other hand the bond lengths for
the chlorides, after first decreasing as do those for the hydrides, increase slightly
at the end of each row.

5. Signs of Promolecule Charges

Although the magnitudes of the ∆Qpro(X) shown in Tables 2 and 3 would be
regarded as physically reasonable, it may seem counter-intuitive to those attuned
to other pictures of ionic bonding that the ∆Qpro are negative for cations, and
positive for anions. The physical basis for this result is evident from the density
and potential curves for Na and F in Fig. 1. Any pair of cations and anions with
comparable atomic number show similar trends, as can be seen by examination
of the potential profiles (Hall et al . 1995).

For small inter-atomic separations R, the electrostatic potential is VF ∼ VNa,
whereas for large R, VF < VNa. Bonding is effected when atoms overlap each
other, at relatively large R. Due to the cation’s extended potential tail it exerts
more influence on the overlapping electron density than the anion. The cation
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Table 3. Diatomic distances and promolecular charges for X in XCl

Atom d (Å) ∆Qpro(X)

H 1 ·274552 −0 ·116
Li 2 ·020673 −0 ·756
Be 1 ·7971 −0 ·540
B 1 ·7159 −0 ·310
C 1 ·6450 −0 ·077
N
O 1 ·56963 0 ·225
F 1 ·628313 0 ·277
Na 2 ·360795 −0 ·616
Mg 2 ·1991 −0 ·542
Al 2 ·130113 −0 ·552
Si 2 ·058 −0 ·382
P
S
Cl 1 ·9879 0 ·000
K 2 ·66665 −0 ·723
Ca 2 ·4390 −0 ·786
Ga 2 ·20169 −0 ·449
Ge
As
Se
Br 2 ·136065 −0 ·063

Fig. 1. Curves for (a) the potential (e/Å) and (b) the density (e/Å3) for Na and F.



306 E. N. Maslen and B. E. Etschmann

competes favourably with the anion for electrons, generating the cation’s negative
promolecule charge, although no movement of electron density takes place. That
is, the negative promolecule charge on the cation and the positive promolecular
charge on the anion overlap completely. Charges exist only in terms of subdivision
of the overlapping electron density in proportion to the competing potentials.

Most of the accretion of electron density on the cation occurs at large R. In
an atomic model that would be viewed as filling holes in the cation’s low energy
excited states, with mean radii larger than those for its own valence electrons.
When atoms condense to form molecules the lower energy excited states of the
cation are occupied. Although the total energy is reduced by this condensation, as
shown by the calculated promolecule energies (Spackman and Maslen 1986), the
energy may be lowered even further by migration of electrons from the occupied
excited states of the cations towards the depleted valence states of the anions.
That is the basis for the spatial reorganisation of the electron density involved
in such physical properties as ferroelectricity, and in the chemical bonding of
polar systems. Recognising that the promolecule is a model, prior to bonding,
one cause of charge transfer in bond formation is emphasised.

6. Promolecule Charge and Bond Order

Comparison of Tables 2 and 3 shows how the ∆Qpro(X) for X atoms with
comparable electronegativity follow similar trends. The effect of bond order (i.e.
a single bond versus a double bond) on ∆Qpro(X) may be seen by comparing
the ∆Qpro(XF) values in Table 4, with the ∆Qpro(XO), shown in Table 5. It
should be noted that not all XO compounds have double bonds, all the group
IA and VIIA elements bonded to oxygen are considered to have a single bond.

Table 4. Diatomic distances and promolecular charges for X in XF

Atom d (Å) ∆Qpro(X)

H 0 ·916808 −0 ·441
Li 1 ·563864 −1 ·023
Be 1 ·3610 −0 ·971
B 1 ·26259 −0 ·795
C 1 ·2718 −0 ·467
N 1 ·31698 −0 ·207
O 1 ·326 −0 ·094
F 1 ·41193 0 ·000
Na 1 ·925947 −0 ·782
Mg 1 ·7500 −0 ·846
Al 1 ·654369 −0 ·945
Si 1 ·6011 −0 ·797
P 1 ·587 −0 ·579
S 1 ·600574 −0 ·427
Cl 1 ·628313 −0 ·277
K 2 ·171457 −0 ·878
Ca 1 ·967 −1 ·069
Ga 1 ·774369 −0 ·740
Ge 1 ·7452 −0 ·663
As 1 ·7360 −0 ·529
Se 1 ·7408 −0 ·441
Br 1 ·75894 −0 ·330
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Table 5. Diatomic distances and promolecular charges for X in XO

Atom d (Å) ∆Qpro(X)

H 0 ·96966 −0 ·318
Li 1 ·728 −0 ·824
Be 1 ·3309 −0 ·918
B 1 ·2045 −0 ·751
C 1 ·128323 −0 ·471
N 1 ·15077 −0 ·161
O 1 ·20752 0 ·000
F 1 ·326 0 ·094
Na 2 ·07 −0 ·658
Mg 1 ·7490 −0 ·790
Al 1 ·6179 −0 ·909
Si 1 ·509739 −0 ·808
P 1 ·4759 −0 ·589
S 1 ·481087 −0 ·423
Cl 1 ·56963 −0 ·225
K 2 ·22 −0 ·815
Ca 1 ·8221 −1 ·156
Ga 1 ·7436 −0 ·701
Ge 1 ·624648 −0 ·698
As 1 ·6236 −0 ·544
Se 1 ·6484 −0 ·430
Br 1 ·7172 −0 ·282

There is a strong similarity between both bond lengths and ∆Qpro values for
the fluorides and the oxides. All ∆Qpro(X) for XF, except F2, are negative,
increasing monotonically only for the first row, as do those for XH and XCl.
Again ∆Qpro(X) increases with Z most rapidly for the first row. The ∆Qpro(XF)
and ∆Qpro(XO) are closely similar except that ∆Qpro(OF) is positive. For
the first three rows of the periodic table, the ∆Qpro(XO) in Table 5 change
non-monotonically with Z. For the second row XF and XO there is a global
maximum for |∆Qpro(X)| at Al, and a global maximum at Ca for the third
periodic row. The bond lengths for XF and XO have a global maximum at the
alkali metals, decreasing to a minimum approximately half way along the row,
and then increasing slightly at the end.

The long bond lengths for LiO, NaO and KO are more obvious than those at
LiF, NaF and KF respectively. That difference in bond lengths reflects the fact
that the O atom forms double bonds with divalent atoms, whereas the F atom
is limited to single bonds. The ∆Qpro(LiO), ∆Qpro(NaO) and ∆Qpro(KO) are
notably less negative than ∆Qpro(LiF), ∆Qpro(NaF) and ∆Qpro(KF), reflecting
the more extended density and potential of the O atom, and the inability of the
alkali metals to form double bonds. This effect could be ascribed to more effective
electron spin pairing in the alkali halides, or in other words, as illustrating the
“stability of the closed sub-shell” for the F atom. Alternatively it can be argued
that the F atom’s core is smaller and the effective nuclear charge in the valence
shell larger than that in the O atom. Bond length reducing effects would be
offset by increased exchange repulsions between the overlapping electrons for the
anionic fluorides. The second hypothesis accounts for the small but perceptible
lengthening of XF, compared with XO, for X on the electronegative side of the
periodic table.
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Data for the transition metal oxides are compiled in Table 6. The charges are
smaller in magnitude than those for the main body XO, which can be attributed to
the shielding of the transition metals’ 3d electrons, and the subsequent reduction
in overlap with bonded neighbours.

Table 6. ∆Qpro(T) at experimental bond lengths

Atom d (Å) ∆Qpro(T)

Ca 1 ·8221 −1 ·156
Sc 1 ·66826 −1 ·203
Ti 1 ·62022 −1 ·156
V 1 ·58932 −1 ·099
Cr 1 ·615 −0 ·996
Mn 1 ·769 −0 ·788
Fe 1 ·6395 −0 ·836
Co
Ni
Cu 1 ·72437 −0 ·545
Zn

7. Promolecular Charge and Core Structure

The ∆Qpro(X) versus X slope for the series XA (where A is H, Cl, F or O)
appears to depend on the core structure of the X atom involved. The slope for
the first row atoms with their simple 1s2 core is invariably steeper than that for
the higher rows, whereas gradients for the second row are only slightly larger than
those for the third. This implies that the core density near the effective atomic
radius decreases more rapidly for 1s2 cores than for the ns2np6 cores. Relative to
the core, the first row atoms’ valence shells extend further, allowing the cations
to ‘acquire control’ of more valence electrons from their bonded neighbours.

The consistent break in correlation trends for promolecular charges involving
alkali metals at Li (e.g. Tables 2 to 5) is also consistent with significant dependence
of properties on core structure. This result is not just an artefact in these
calculations. Physical and chemical properties of the alkali metal elements, such
as electrical and thermal conductivities, also change more rapidly from the first to
the second than between second and third, third and fourth rows (Sargent-Welsh
Periodic Table 1980), as shown in Table 7.

Table 7. Comparison of physical properties of the alkali metals

Li Na K Rb Cs

Electrical cond. (106/Ω cm) 0 ·108 0 ·210 0 ·139 0 ·0779 0 ·0489
Thermal cond. (W/cm K) 0 ·847 1 ·41 1 ·024 0 ·582 0 ·359

The ∆Qpro and bond lengths for the transition metal hydrides are listed in
Table 8. The H atom is atypical of chemical bonding generally, as it lacks a core,
and thus an exclusion zone for other atom’s valence electrons. The ∆Qpro(XH)
for diatomic hydrides reflect the special chemical and physical properties of
hydrogen. The ∆Qpro(XH) for hydrides are small because H, having a single
valence electron, can ‘lose’ no more than one electron, whereas true halogen
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atoms, having one hole in their valence sub-shell, can potentially transfer more
than one electron and thus have ∆Qpro larger than unity. However, hydrogen
differs far more from the alkali metals than the halogens by having the positive
∆Qpro typical of anions.

Table 8. ∆Qpro(T) at experimental bond length distance (for TH)

Atom d (Å) ∆Qpro(T)

Mn 1 ·7311 −0 ·222
Ni 1 ·4756 −0 ·182
Cu 1 ·46263 −0 ·140
Zn 1 ·59490 −0 ·141

8. Promolecule Charge and Subshell Structure

While differences between the first, second and third rows are related to changes
in the core structure, systematic variation in the slope of the ∆Qpro(X) versus
Z curve within each row can be related to the electron density for the X atoms
involved. This is largely an outer-shell effect which can be seen from the second
moments of the proatomic densities, defined as

〈r2〉 =
1
N

∫
r2ρpro(r) dV =

∫
r4ρpro(r) dr∫
r2ρpro(r) dr

, (8)

where N is the number of electrons, which are shown in Table 9. The second
moment of the atomic density can be related to effects such as diamagnetic
susceptibilities, polarisabilities and mean inner potential (Tsirelson and Ozerov
1996). Atomic properties correlate well with ∆Qpro(X), derived from densities
for diatomic promolecules, depicted in Tables 2 to 5.

Table 9. Values of 〈r2〉 of the proatom electron density

Atom 〈r2〉 Atom 〈r2〉

H 0 ·840 Si 0 ·661
Li 1 ·739 P 0 ·582
Be 1 ·212 S 0 ·513
B 0 ·887 Cl 0 ·454
C 0 ·664 K 0 ·751
N 0 ·503 Ca 0 ·787
O 0 ·395 Ga 0 ·364
F 0 ·318 Ge 0 ·366
Na 0 ·690 As 0 ·353
Mg 0 ·689 Se 0 ·337
Al 0 ·719 Br 0 ·321

The 〈r2〉 decrease monotonically from Li to F, as does −∆Qpro(X) for the
fluorides (Fig. 2), hydrides and chlorides. Along the second row, both 〈r2〉 and
−∆Qpro(X) for the fluorides and oxides (with minor variations for XH and XCl)
increase from Na to Al, and then decrease to Cl. The increase in −∆Qpro(X)
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that occurs from K to Ca and the subsequent decrease to Br (for XF, XO, XH
and XCl) are again consistent with trends in the atomic second moments.

Fig. 2. Values of 〈r2〉 and −∆Qpro(XF).

In accounting for the topographical characteristics of the ∆Qpro(X) versus Z
curve within each row, consider for example K and Ca. Ca has two valence
electrons in the 3s subshell, whereas K has only one. Increased electron–electron
repulsion causes the Ca subshell to expand, as is reflected in the distribution
function of its two s state valence electrons. That generates the increased value
of −∆Qpro(CaH), −∆Qpro(CaCl), −∆Qpro(CaF) and −∆Qpro(CaO), shown in
Tables 2 to 5 respectively. This effect is reflected in Table 9, where the second
moment of Ca is greater than K. The same effect is expected to occur between
Na and Mg, however, 〈r2〉Na is the same as 〈r2〉Mg. The value of −∆Qpro(Na)
is less than −∆Qpro(Mg) for the fluorides and oxides, but not for the hydrides
and chlorides.

For all four series, XF, XO, XH and XCl, we have −∆Qpro(Al) > −∆Qpro(Mg).
Why is −∆Qpro(Al) consistently larger? This is again reflected in the second
moments, where Al is larger than Mg. Extending that argument, it can be seen
that Si has a smaller 〈r2〉 than Al, thus the promolecular charges −∆Qpro(Si)
are smaller in magnitude than −∆Qpro(Al).

The decrease in −∆Qpro(X) from Ca to Ga, compared to the increase from
Mg to Al, can presumably be attributed to the intrinsic difference in the subshell
structure for the two rows. Al (3s23p1) has only one more electron than Mg
(3s2), but Ga (3d104s24p1) contains an additional filled 3d subshell, compared to
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Ca (4s2). The filled 3d subshell appears to cause Ga to become more strongly
anionic, as can be seen by comparing the potential curves of Al and Ga in Fig. 3.
While the curves effectively overlap, the bond lengths of GaX are greater than
those of AlX, implying that Ga is more anionic than Al.

Fig. 3. Potential curves (e/Å) for Al and Ga.

Fig. 4. Potential curves (e/Å) for Be, B and C.

9. Metals versus Non-metals

It is well known that the metallic properties of elements, such as electrical and
thermal conductivity, decrease across the rows of the periodic table. To the left
of a ‘diagonal line’ in the table, the elements are metals, those to the right are
non-metals, with elements near the boundary generally classified as ‘semi-metals’.

The rather abrupt transition from metal to non-metal can be related to
differences in electronegativity. An equivalent explanation is provided by the
potential curves. Potentials at large R for non-metals are lower than that for
the nearest metal. Thus, of the potentials for Be, B and C shown in Fig. 4, VBe

is the smallest at low R, but exceeds VB and VC as R increases. At R ∼ 0 ·7 Å,
VBe becomes larger than those for the non-metals. Similarly, examination of the
electrostatic potential curves for Mg, Al, Si and Ge, As, Se reveals that the
metal has a higher large R potential than the non-metal.
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Metals are distinguished from non-metals more definitely by trends among the
promolecular charges, as indicated in Table 5. For the first row oxides there are
two distinct slopes, a negative slope from Li to Be and a positive slope from
B to F. The discontinuity in slope of the ∆Qpro(X) versus Z curve from one
element to the next coincides with a change from metal to non-metal.

For the second row oxides the negative slope from Na to Al and the positive
slope from Si to Cl is consistent with this hypothesis. The third row oxides
reinforce this trend. There are effectively three slopes: a negative gradient from
K to Ca, a flat slope from Ga to Ge, and a positive slope from As to Br. The
discontinuity after Ca marks the start of the first transition series. The second
occurs at the metal/non-metal boundary.

While the promolecular charge for the first row fluorides (Table 4) decreases
monotonically with atomic number, there are two distinct slopes, from Li to Be
and from B to F. The second row exhibits the same pattern as the oxides. In
the third row there is the standard break after Ca, but the slope from Ga to
Br changes smoothly, any discontinuity at the metal/non-metal boundary being
less marked. The slopes for the first row oxides and fluorides from B to F are
linear from B to N, but tail off from O to F.

In contrast with the oxides and fluorides, the −∆Qpro(X) values for the first
row hydrides (Table 2) increase linearly from Li to F. The second row shows a
discontinuity at Mg/Al consistent with the hypothesis described above, and the
third row follows the same trend as the fluorides.

For the first row chlorides the ∆Qpro(X) versus Z curve (Table 3) has a
linear slope from Li to C. In the second row the promolecular charge magnitude
decreases from Na to Mg and then increases slightly from Mg to Al, decreasing
from Al to Si.

Although slope discontinuities in the ∆Qpro(X) versus Z curve do not identify
metal/non-metal transitions unambiguously in every case, the association is strong.
When factors such as electronegativity differences and atomic size are accounted
for accurately, the relationship betwen slope discontinuities and metal/non-metal
transitions may well become unique.

10. Promolecular Charges and Row Number

Tables 2 to 5 show that ∆Qpro(X) values for atoms in the same column decrease
with Z in many cases, reflecting the expected trend for atoms to be more
electropositive as Z increases. The ∆Qpro(X) values become correspondingly
more negative as the electronegativity χ is reduced.

Promolecular charges and bond lengths for the alkali halides, given in Table 10,
show variations less typical of the trend with row number. All the ∆Qpro(X)
values for the alkali halides are negative. Careful examination reveals that the
variation of the −∆Qpro(X) with row number is larger for the fluorides than
that for chlorides. There is no simple correlation between ∆Qpro(X) and bond
length for these alkali halides. However, comparison of the ∆Qpro(X) for alkali
metal cations with given halogen anions reveals a consistent trend. The largest
−∆Qpro(X) occurs at Li. The promolecular charge decreases from Li to Na, and
increases slightly to K.

The consistent local maximum at Li and minimum at Na implies a slope of
the ∆Qpro(X) versus Z curves that is positive rather than negative. The origin
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of the lesser electron attracting power of Na is not evident from the potential
curves, calculated from the densities (Mann 1988; Mann and Waber 1973) shown
in Fig. 5, where VLi(r) is relatively less extensive than VNa(r) when the radii of
the atoms are considered. The low electron attracting power of Na relative to Li
must reflect subtle differences originating in the 1s2 core structure for Li, and
the 1s22s22p6 for Na.

Table 10. Promolecular charges and bond lengths for alkali halides

AB d (Å) ∆Qpro(A)

LiF 1 ·564 −1 ·023
NaF 1 ·926 −0 ·782
KF 2 ·171 −0 ·878
LiCl 2 ·021 −0 ·756
NaCl 2 ·361 −0 ·616
KCl 2 ·667 −0 ·723
LiBr 2 ·170 −0 ·702
NaBr 2 ·502 −0 ·579
KBr 2 ·821 −0 ·691

Fig. 5. Potential curves (e/Å) for Li, Na and K.

11. Alkali Diatomics

The small changes in ∆Qpro(X) arranged as series down the columns of the
periodic table imply that the charges for diatomics involving atoms in the same
column of the table should also be small. Table 11 shows that the ∆Qpro(X)
values for alkali metal diatomics are an order of magnitude smaller than those for
the alkali halides, as expected. That is due to the difference in electronegativity
between alkali metals being less than that between metals and halogens.

Table 11. Bond lengths and promolecular charges for alkali
diatomics

AB d (Å) ∆Qpro(A)

LiNa 2 ·81 0 ·008
LiK 3 ·27 0 ·054
NaK 3 ·589 0 ·057
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Although the electron attracting power is a minimum for Na, the results are
not wholly as expected from the alkali halides, which indicate that the electron
attracting power of Li and K atom are comparable. In the metal diatomics the K
atom attracts electrons from Na but also from Li. The small difference in those cases
is reflected in the number of electrons attracted by Li from Na. There appears to be
a correlation of ∆Qpro(X) with bond length among these atoms. The shorter the
bond, the less the charge transfer, as shown in Table 11. That result is not consistent
with the trends reported above for the more strongly hetero-polar diatomics.

12. Ions versus Neutral Atoms

The ionic model is based on the premise that free atoms gain or lose electrons,
and the subsequent ions combine to form molecules or lattice structure. While
this model has successfully explained many properties, such as the electrochemical
series, it has limitations. The most serious of these is the question of the extent
to which free ions actually can exist in chemical combination. Perhaps the
greatest difficulty is that multiply charged negative ions such as O2− and N3−

are unstable. Repulsion between excess electrons invariably outweighs the energy
lowering when those electrons combine with the free atom.

It is possible to use an ionic model as the basis for charge partitioning identical
in principle to that based on the promolecule. In order to compare promolecule
charges based on the promolecular and ionic models, electron densities were
calculated for Li and Li+, Na and Na+, F and F−, and for Cl and Cl− using the
Roothaan–Hartree–Fock (RHF) wavefunctions of Clementi and Roetti (1974). The
atomic electron densities differ almost imperceptibly from the values evaluated
by Mann (1988; Mann and Waber 1973) who used numerical wavefunctions in
the calculations described above.

The potentials for Na+ and F− plotted along with the atomic potentials
(derived from the Mann radial densities) in Fig. 6, were used to partition the
sum of ionic electron densities in a manner identical to that applied for the
promolecule constructed from neutral atoms. For the neutral atom case, the
projection operators that subdivide the electron density are by definition confined
to be between 0 ·0 and 1 ·0. Constraints were required to achieve that in the
domain where the charged anion potential was negative. The projection operators
VNa+/(VNa+ + VF−) and VF−/(VNa+ + VF−) subdivide the sum of the electron
densities for free Na+ and F− ions. Elements of that density, for which the
operator VF−/(VNa+ + VF−) for the anion was negative, were considered to be
repelled from the anion, and assigned totally to the cation. That is, the projection
operators for the cation and anion were set at 1 ·0 and 0 ·0 respectively in such
cases. Where the promolecular potential VNa+ + VF− was negative, the density
was assigned to the cation which invariably had the greater potential in that
domain. As the anion potentials became negative at distances less than the
interatomic separation, the convergence of the summations was determined solely
by the electron density function.

The signs of the charges calculated from the ionic densities and potentials
were the same as those obtained by partitioning neutral atom densities with
neutral atom potentials, but their magnitudes were far greater, as can be seen
in Table 12. Anion charges have the same magnitude as the cations, but have
opposite, i.e. positive, signs.
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Fig. 6. Potential curves (e/Å) for Na and F: atoms versus ions.

Table 12. Comparison of promolecular charges obtained using neutral and ionic
densities

AB d (Å) ∆Qpro(A) ionic ∆Qpro(A) neutral

NaF 1 ·926 −2 ·351 −0 ·782
NaCl 2 ·361 −7 ·255 −0 ·616
LiF 1 ·564 −3 ·124 −1 ·023
LiCl 2 ·021 −5 ·712 −0 ·756

Partitioning the sum of free ion densities based on ionic potentials thus reverses
the sign of the charges assumed initially, but yields unphysically large values
due to the very short radius for which the negatively charged anion’s potential
remains positive. The differences in charge when the F anion is replaced by Cl
become unphysically large for both Na and Li, in marked contrast to the charges
evaluated with neutral atom potentials, where unit changes in the row or column
of the periodic table produce changes in promolecule charge of not more than 0 ·3
electrons. These anomalous charge differences are typical difficulties that may be
encountered when charged pseudo-atoms in molecules are modelled by free ions.

13. Conclusions

The promolecule model favours the following mechanism for charge transfer in
bonding. Due to the long range electrostatic potential, cations compete so
successfully for electrons that the cation states are overfilled. As the low energy
excited states for these atoms are occupied, those cations become unstable. The
nuclear electrostatic attraction suffices to ‘hold’ slightly more than Z electrons
successfully. Meanwhile the anion valence states are depleted. Electrons flow
from the negatively charged, overfilled excited cation states towards the positive,
depleted valence anion states. That flow of electrons in position space is distinct
from the redistribution of electrons within the fully overlapping potential spaces.
It generates positive cations and negative anions, as are obtained by partitioning
molecular densities (Maslen and Spackman 1985) which are commonly understood
in accounting for such physical properties as ferroelectricity.



316 E. N. Maslen and B. E. Etschmann

This understanding of the precursors to bonding provided by the promolecule
model differs conceptually from those invoked in most descriptions of charge
transfer. However, its general applicability, extending to bonds of all orders
involving atoms for the whole periodic table, makes it a valuable starting point for
developing a self-consistent picture of charge transfer. It gives a more convincing
description of charge transfer processes than models constructed from free ion
wavefunctions.
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