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Abstract

We study the electromagnetic wave propagation inside a one-dimensional photonic lattice
with dielectric permittivity having a non-zero imaginary part. A detailed investigation of
the influence of gains and losses on both the transmission/reflection coefficients and the
electromagnetic field distribution is provided. A duality phenomenon between loss and gain
is discussed. Upon investigation of the reflected spectrum, we show the existence of huge
resonances associated with laser thresholds. Some of these resonances stem from the wave
reflection, while others are due to the wave propagation regime. For a regular finite periodic
structure with a complex dielectric permittivity, we show a symmetry in the positions of the
resonances along the frequency axis.

1. Introduction

Photonic band structures are of great current interest because of their brilliant
applications as novel optical high technological materials and because of the
possibilities they open to study fundamental physics. It turns out that the main
properties of a photonic crystal, the fact that periodic dielectric structures offer
the possibility to eliminate propagation of electromagnetic waves through a band
of frequencies (the photonic band gap), can solve a major problem of the last
decade: to control the optical properties of materials (an extended list of references
has been given by Joannopoulos et al . 1995). Already, fibre-optics cables, which
simply guide light, have revolutionised the telecommunications industry. Lasers,
high-speed computers, and spectroscopy, are just a few of the fields next in line to
reap the benefits from new optical materials such as photonic band gap materials.

Photonic band structures (PBS) are periodic arrays of dielectric materials
which cause the dispersion relation for electromagnetic waves propagating in the
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periodic dielectric array to exhibit a band structure. Specifically, frequency band
gaps are opened in the dispersion of electromagnetic waves and these gaps inhibit
the propagation of electromagnetic waves through the photonic band structure
at frequencies in the gaps. The PBS are then technologically useful as frequency
filters of electromagnetic radiation. Spontaneous emission mechanisms often are
a source of energy loss in lasers and semiconducting devices so that photonic
band structures may offer a means to improve the efficiency of such devices.

Photonic crystals are being intensively studied both theoretically and exper-
imentally. It turns out that an intricate overlapping or ‘competition’ between
different scattering mechanisms (Bulgakov and Nieto-Vesperinas 1996) allows one
to create artificial dielectric lattices with predictable spectral properties. An
important branch of photonic lattice studies is associated with a medium having a
complex refractive index. Several works have demonstrated an interesting interplay
between the localisation phenomenon and the amplification/attenuation effect
which attributes a medium with a nonzero imaginary part of the refractive index.
As is known, the localisation of electromagnetic waves in one-dimensional media
results from either the random distribution of scatterers or the phase-coherent
Bragg resonant conditions. One should expect that, by adding materials with
gain or loss into the host dielectric slabs of a stratified medium, the spectral
properties and the electromagnetic field distribution inside the structure will be
modified. [The spectral and energy properties of both random and periodic
lattices made from real dielectics have been widely studied (cf. Brovelli and
Keller 1995; Bulgakov and Nieto-Vesperinas 1996; Yariv and Yeh 1977).]

Due to multiple reflections of waves by internal interfaces of the photonic
crystal, the interference between counter-propagating waves produces a kind of
feedback. In the case of dielectric materials with losses, this feedback will always
suppress a wave propagation independently of the kind of medium we use: random
or regular, inside or outside a band gap region. However, in the case of an
amplifying material, one should expect that the decrease of wave produced by
the localisation effect may be compensated.

Most of papers devoted to 1D random lasers (cf. Letokhov 1968) study the
probability function of the reflection/transmission coefficient. Asatryan et al .
(1998) calculated numerically the localisation length with the help of a transfer
matrix inside a medium containing randomly distributed impurities with loss
and gain. Heinrichs (1997) used the invariant embedding method to study
wave propagation inside a random structure containing complex dielectrics. The
transmission and reflection coefficients have been studied as functions of the lattice
length. Most of works show the existence of a laser threshold and the duality
between loss and gain, namely, the gain suppresses the transmission in the same
way as the loss does (see Wiersma and Lagendijk 1996; Paasschens et al . 1996;
Pradhan and Kumar 1994; Zhang 1995). Yariv and Yeh (1977) studied wave
propagation through a structure with a periodically alternated imaginary part of
the dielectric permittivity. The laser threshold resonances have been observed.
However, only a passband region was considered and the switching of losses and
gains makes it difficult to understand the roles played by each type of material.
Asatryan et al . (1998) calculated the poles corresponding to the laser threshold
resonances for a wide range of wavelengths; however, due to the disorder in the
distribution of impurities with loss or gain, it is difficult to see how the impurity
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with loss or gain affects separately the wave scattering process. Also, to our
knowledge, there is no clear explanation as to why both large gains and losses
essentially decrease the transmission. What is the role of multiple scattering in
the duality phenomenon? To answer this and other questions above, we use as
the most appropriate model a periodic lattice with constant imaginary dielectric
background.

2. Model Description and Calculation Procedure

In this paper we address the propagation of an electromagnetic wave through
a stratified medium, either periodic or random, with either gains or losses. We
demonstrate the existence of new huge threshold resonances in the reflection
spectrum different to those previously studied (Yariv and Yeh 1977). We first
consider a one-dimensional periodic lattice, and then we address a random
distribution of layers.

The length of the structure is L. As for the periodic structure we have
L = Nd, where N is the number of unit cells of width d (cf. Bulgakov and
Nieto-Vesperinas 1996). Each cell contains two dielectric slabs of width d1 and
d2 (d1 = 3d2 in our calculations), where d1 + d2 = d. The dielectric permittivities
are ε1,2 = εr1,2 + iεi/ω2, where εr1,2 are real and positive (εr1 = 1, εr2 = 9 in our
calculations), ω is the frequency of the incident wave, and the term εi/ω2 stands
for either gains or losses according to whether εi < 0 or εi > 0. To justify
our model of the dielectric permittivity function, ε1,2, we refer to Haus (1984)
who used the gain coefficient Im(ε1,2) as a function of frequency ω such as
1/{1 + [(ω − ω0)/ωg]2}, where ω0 and ωg are the centre frequency of the gain
medium and its width, respectively. Most other works on media with random
losses and gains consider that εi is independent of the frequency. In our present
study, we have considered a dependence of Im(ε1,2) = εi/ω2. This allows us
to study characteristics of the wave scattering process inside higher frequency
bands. We shall deal with a linear polarisation of the electromagnetic field such
that the electric vector is parallel to the slab interfaces. We do not restrict
the application of our results by considering any concrete dielectric material.
Information about realistic active and passive dielectrics can be found in Haus
(1984), see also Wiershma and Lagendijk (1996).

To calculate both the transmission and reflection coefficients, and the field
distribution inside the lattice layers, we shall apply the transfer matrix in the
form given by Born and Wolf (1975). The numerical algorithm used was described
in detail by Bulgakov and Nieto-Vesperinas (1998).

Fig. 1 shows the transmittance, log T , calculated for different lattice lengths
versus εi at a frequency either inside a passband (Fig. 1) or inside a band gap
(Fig. 1, inset). (In this paper we use values of the dimensionless frequency
W = ωd/c where c is the velocity of light.) In Fig. 1 each curve has a maximum at
εi = εimax < 0, where εimax depends on the lattice length L = Nd. On varying L,
the maximum value of T also changes. In Fig. 1 we observe that the lattice of 10
unit cells yields a larger transmission peak than any other structure in the figure.
This absolute maximum of the T -value in Fig. 1 corresponds to εimax ≈ −2 ·6.
However, another local maximum in the transmission value associated with a
lattice of L = 140d also appears at εi ≈ −0 ·1.
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Fig. 1. Transmission coefficient T as a function of εi, calculated for different lattice lengths
L = Nd at both the passband frequency W = 4 ·2 and the band gap frequency W = 2 ·1
(inset).

In addition, we observe in Fig. 1 the common cross point of all curves at
log T = 0, εi = 0. This means that, for a given particular configuration, the lattice
is transparent (T = 1) for real dielectric permittivity (εi = 0) at this particular
frequency W = 4 ·2. In the case of losses (εi > 0), one has log T < 0. At a fixed
εi > 0, the transmission is greater the shorter the lattice is.

The transmittivity curves calculated at the frequency inside a band gap (see
the inset in Fig. 1 with W = 2 ·1) are quite different to those inside a passband
(see Fig. 1). Maximum transmittivity is attained at some value εimax < 0.
This maximum of log T shifts increasingly from εi = 0 the shorter the lattice
is; for example, εimax ≈ −4,−2 ·5,−0 ·9 is associated with lattices N = 4, 10, 20
respectively). Also, at fixed εi, the longer lattice possesses the lower transmission
value.

A remarkable property of the transmission coefficient as a function of εi, both
inside the passband (Fig. 1) and band gap (Fig. 1 inset) is the following: any



Light Amplification and Attenuation 815

departure of εi far from the value εimax results in a decrease of the transmission
coefficient independently of the sign of εi. Thus, both large gains and losses
suppress wave transmission. As a result, at large enough |εi|, one cannot
distinguish whether a medium possesses losses or gains by just examining its
transmission spectrum: Specifically, in our investigation, we have observed that
T (−εi) ≈ T (εi), εi → +∞.

Fig. 2. Reflection coefficient R as a function of εi calculated for different lattice lengths
L = Nd at both the passband frequency W = 4 ·2 and the band gap frequency W = 2 ·1
(inset).

Concerning the reflection coefficient, Fig. 2 shows its variation versus εi.
Calculations are done at the same frequency as for the transmission T of Fig. 1.
Inside a passband (Fig. 2) the positions of logR maxima on the εi-axis, for
N = 8, 9, 10, 11, 12, 16, 120, 140, coincide with those of the maxima of
the corresponding lattices in Fig. 1. We observed in our investigation that for
large |εi|, R(εi), associated with different lattice lengths, asymptotically tend to
R =constant (this is not visible in Fig. 2 because of the scale). The value of this
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constant depends on the frequency and sign of εi: In contrast with the behaviour
of the transmission coefficient in Fig. 1, R is always R > 1 for a medium with
gains (εi < 0), and R < 1 if εi > 0 (losses).

3. Discussion of the Results

Before discussing further the results of Figs 1 and 2, we show in Fig. 3 the
dependence of logR on both the dimensionless frequency W = ωd/c and εi for
a lattice of length L = 20d. In the vicinity of the plane εi = 0, one observes a
sequence of regions where logR oscillates with W . They correspond to passbands.
These regions are separated by ‘smooth valleys’ which are associated with band
gaps (R = 1). At any fixed value of W , the reflection coefficients saturate as
|εi| → ∞.

Another very important characteristic of the reflection coefficient in Fig. 3 is
the existence of huge peaks (R →∞) at εi < 0 and far from the plane εi = 0;
and there are deep minima (R→ 0) in the region εi > 0 at positions symmetric
to those peaks with respect to εi = 0.

Although not shown here, we have also studied the surface log T (W, εi). In
contrast to Fig. 3, T → 0 as |εi| → ∞ for any value of the frequency (cf. also
Fig. 1), and no pronounced dips are observed in the region εi > 0. However,
resonances with T À 1 were recognisable in the region εi < 0 at exactly the same
coordinates (W, εi) at which R→∞ in Fig. 3.

Let us now consider a lattice with disorder in the distribution of scatterers.
We apply a random removal of layers according to the procedure previously used
(Bulgakov and Nieto-Vesperinas 1996, 1998), namely, we randomly substitute
about 60% of slabs with ε2 = εr2 + iεi/ω2 by those with ε1 = εr1. Such random
substitutions make the structure periodic on average (other statistical properties of
this random procedure have also been studied by Bulgakov and Nieto-Vesperinas
1996). Fig. 4 shows the function logR(W, εi), as in Fig. 3, for this random structure.
Averages have been performed over 30 realisations of the structure. Further
averaging very slowly smooths this result, but at a very large computing cost.
The spectral characteristics of the random lattice of real dielectric permittivity
(i.e. εi = 0) were discussed by Bulgakov and Nieto-Vesperinas (1996, 1998).

Next, we proceed to discuss the properties of the reflection and transmission
coefficients given in Figs 1–4. In the vicinity of εi = 0, say, |εi| ¿ W 2εr1,2, the
phase coherence yielding Bragg resonances is still preserved. Therefore, in a
passband region, the phase relations help wave transmission. However, since the
forward and backward waves simultaneously increase or decrease as exp(−εi|z|),
depending on the sign of εi, then, in this region, the wave propagates throughout
the lattice while its amplitude exponentially decreases for a medium with losses.
This explains why T < 1 decreases with L in Fig. 1 for εi > 0.

Concerning the reflection coefficient inside a passband (cf. Fig. 2, εi > 0),
although always R < 1 for a medium with losses, in general, the reflection
decreases slower than T as εi departs from 0, and saturates as εi → +∞ [we shall
later discuss the cause of minima in the dependence R(εi) for εi > 0 (Fig. 2)
which are also visible as deep holes in Fig. 3]. The explanation is as follows:
as εi increases, it is mainly the waves reflected from the first few interfaces
which contribute to the reflected power. The reflection that occurs deep in the
lattice progressively decreases because of absorption as εi increases. Therefore,
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Fig. 3. Logarithm of the reflection coefficient as a function of both the frequency W and
εi, calculated for the lattice of 20 periods: (a) a 3D view and (b) a contour plot.
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Fig. 4. Same as Fig. 3, but for the structure with disorder in the distribution of scatterers.
The length of the structure is 20d: (a) a 3D view and (b) a contour plot.
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the reflection coefficient saturates at the same value, independently of the lattice
length.

On the other hand, for a medium with gains, at a passband frequency (cf.
Figs 1 and 2 for εi < 0), a complicated behaviour of the transmission and
reflection coefficients as functions of εi results from the fact that at a certain value
εi = εimax a laser threshold is reached (see Kogelnik and Shank 1972; Letokhov
1968; Yariv and Yeh 1977), so that the energy that escapes from the lattice is
compensated by the field amplitude amplification described by the exponential
factor exp(|εiz|).

At the laser threshold we observe both huge reflection and transmission
resonances. Any further increase of |εi|, εi < 0, results in a situation in which
strong reflection, due to gain material, does not allow the wave to propagate
inside the lattice. Thus, the transmission continuously decreases with an increase
of |εi| far from the laser threshold. In contrast, if εi → −∞, the reflection
coefficient saturates at a value that does not depend on the lattice length (see
Fig. 2 inset) due to the contribution to the reflected power from the first few
layers at the lattice entrance.

We also see in Figs 1 and 2 that the threshold value εimax, at a fixed frequency
inside a pass band, decreases with an increase of the lattice length L. Notice that
the reflection coefficient behaves in the same way as the transmission coefficient
(compare Figs 1 and 2 for εi < 0). Specifically, the reflectivity is due to reflection
throughout the lattice. For a short lattice, a larger gain coefficient is required
in order to compensate the energy that escapes from the lattice by transmission
and reflection.

The peaks of the transmission values Tmax = T (εimax) depend non-monotonically
on the lattice length. In Fig. 1 one observes two local maxima Tmax of log T
versus L at the frequency W = 4 ·2. To explain such behaviour, let us recall that
inside a pass band of a lossless finite lattice (εi = 0) there is a set of spectral
peaks whose magnitude and, therefore, their width depend on the number of
unit cells N of the lattice. The peaks are equidistantly distributed along the
frequency axis inside the pass band. On varying N , one does not shift the pass
band position (Bulgakov and Nieto-Vesperinas 1996), however, the positions of
the peaks inside the pass band will change. Although the frequency W = 4 ·2
lies inside the second pass band, the transmissions associated with lattices of
different length are different: It is evident that for lattices with L = 10d and
L = 140d, the value W = 4 ·2 coincides with the corresponding resonant peak
inside the pass band, whereas for other values of L, it does not.

The following question is now in order: how do Tmax and Rmax behave as
functions of the lattice length, providing that T = 1 at εi = 0 for a lattice of
any length? As has been shown by Bulgakov and Nieto-Vesperinas (1996), at
the frequency of a single scatterer resonance (SSR) (the 1D analogue of a Mie
resonance), namely, at W = mπd/d2

√
εr2, m being an integer, and T = 1, R = 0

independently of the lattice length. Our calculations show that for W = 4 ·18879,
associated with a single scatterer resonance of m = 1, both Tmax and Rmax tend
monotonically to infinity as the lattice length L increases, and the abscissa of
these maxima, εimax, tends to zero with L→∞. For the lattice of N = 20 unit
cells (Fig. 3), the SSR (marked by arrows in Fig. 3b) manifest themselves as
either high ‘ridges’ or deep ‘valleys’ according to whether εi < 0 or εi > 0.
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Concerning the aforementioned huge resonant peaks and dips of R(εi,W ),
symmetrically placed with respect to εi = 0 (Figs 3a and 3b), their coordinates
εi and W turn out to be independent of the lattice length. Specifically, we
observe that the minima positions of the reflection coefficient remain exactly
the same whatever the lattice length. However, the maxima positions slightly
change as the lattice has N = 1, 2 or 3 unit cells, but they quickly stabilise
for N ≥ 5. Therefore, by analysing the expressions for the transmission and
reflection coefficients of the structure that contains only one unit cell, i.e. two
dielectric slabs ε1 and ε2 embedded in a host medium of real dielectric constant,
ε1,2 = εr1,2 + iεi, we shall derive an estimate for the positions of those maxima
and minima. On using the transfer matrix method, as applied by Born and Wolf
(1975), we find the following transcendental equations:

|m11 +m12 −m21 −m22| = 0, for minima of R;

|m11 +m12 +m21 +m22| = 0, for maxima of both T and R;

Here mij , i, j = 1, 2 are the transfer matrix elements as shown in Born and Wolf
(1975, see p. 69). As mentioned above, the coordinates (εi,W ) of minima that
satisfy the first of the two equations above are valid for any value of N . The
pairs (εi,W ) that solve the second equation are approximately the coordinates
of maxima of both R and T if N > 1. However, we have observed that for
the lattice with N ≥ 10, the positions of maxima and minima of the reflection
coefficient are completely symmetric with respect to εi = 0. On the other hand,
it can be shown analytically that, in contrast to R, the transmission coefficient
possesses no dips.

We have observed, however, no correlation between the positions of pass bands
and band gaps (recognisable at εi = 0 in Fig. 3) and those of ‘peaks’ and ‘dips’.
The distance between these resonances varies from one pair to another. The
maxima and minima of R occur far from εi = 0, so one can assume that, due
to large values of |εi|, the system looses any phase coherence such as that which
gives rise to Bragg resonances. In contrast to what occurs in the vicinity of
εi = 0, the origin of maxima of R and the independence of their positions of the
lattice length, stems from the wave reflection from the first few layers.

To discuss a cause of the minima of R (or ‘dip’) observable in Fig. 3 for
εi > 0, one must recall the ‘negative feedback’ that stems from the interaction
between counter propagating waves in a medium with losses. The latter means
that the energy, returned to the system by feedback and being of opposite sign,
exactly compensates the energy that enters in the lattice.

To better understand the nature of the ‘peak’ and ‘dip’ resonances, Fig. 5
shows the field amplitude |E| distributions associated with the points A and B in
Fig. 3 (thin and thick curves in Fig. 5 respectively). The lattice length is L = 20d.
Observe that both curves are practically identical and may be transformed into
each other by a simple shift along the |E|-axis. Most importantly, the field
behaves like in a band gap frequency, as it exponentially decreases inside the
lattice (cf. Bulgakov and Nieto-Vesperinas 1998).

If one plots the field amplitude distribution for the other kind of laser threshold
resonance, namely, the one associated with the wave propagation at a pass band
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Fig. 5. Field distributions inside the lattice of L = 20d associated with the following different
points marked in Fig. 3: the ‘peak resonance’ (letter A in Fig. 3)—thin curve; and the ‘dip’
(letter B in Fig. 3)—thick curve.

frequency (cf. point C in Fig. 3), one gets (not shown here) a curve similar to
that already reported by Yariv and Yeh (1977, see Fig. 7).

Concerning Fig. 4 for the random stratified medium with complex dielectric
constant, one observes that, on average, the disorder does not destroy the existence
of SSR in the vicinity of εi = 0 (compare with Fig. 3a where one such resonance
is marked by the letter C). However, the SSR (arrows in Fig. 4b) are swamped by
the disorder as |εi| increases. This results from the known fact that the disorder
causes wave localisation even at the pass band frequency (cf. Bulgakov and
Nieto-Vesperinas 1998). In contrast, all huge resonances and deep minima shown
in Fig. 3 for the regular structure (cf. points A and B respectively) are clearly
manifested in Fig. 4 at the same positions as in Fig. 3, despite the randomness.
Since this kind of laser threshold is due to wave interaction with the first few
boundaries at the entrance of the layered structure, it does not matter how the
introduced disorder shuffles the rest of the layers deeper in the structure.

4. Conclusion

We have shown in this paper that neither randomness in the distribution
of scatterers nor periodicity of 1D photonic structures are principal causes of
the duality phenomenon between loss and gain. According to our investigation,
numerous internal interfaces in a stratified structure stipulate the existence of
counter propagating electromagnetic waves. The duality phenomenon results from
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the mutual contribution of these waves into the final field distribution along the
structure. Moreover, it can be shown that even a structure consisting of two
interfaces only (e.g. a Fabry–Perot resonator) and containing dielectric material
with either gain or loss is an appropriate model for observation of the duality
phenomenon.

Two kinds of laser threshold resonances have been reported. One is due to a
wave propagation regime through the whole structure. This kind of resonance
can be observed in the parameter region where phase coherence helps a wave to
propagate. Another laser threshold is due to wave interaction with a few first
structure interfaces. The positions of these last resonances are almost independent
of the lattice length and the strength disorder in the distribution of scatterers.
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