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Abstract

In this paper, I present a detailed theoretical study on how a nanostructure, such as a
semiconductor-based two-dimensional electron gas (2DEG), interacts with a linearly polarised
intense laser field. A tractable method in dealing with the time-dependent many-body problem
has been developed, from which the electron Green’s function, the electron density–density
correlation function and the inverse dielectric function matrix for a 2DEG driven by intense
laser fields have been obtained. Using these results, the influence of terahertz laser radiation
on dynamical properties such as plasmon and optical spectra in a 2DEG is investigated. The
results obtained from this study can be used for the case where the intense terahertz radiation
is provided by recently developed free-electron laser sources.

1. Introduction

In recent years, there has been a rapid expansion worldwide in developing high-
power, tunable and long- and short-wavelength laser sources such as free-electron
lasers (FELs). The FELs are generated by passing an intense beam of relativistic
electrons through periodic magnetic fields and can provide linearly polarised laser
radiation. In the long-wavelength regime, the current generation of the FELs†
has already been able to provide a tunable source of a linearly polarised intense
laser field in terahertz (1012 Hz or THz) or far-infrared (FIR) bandwidths. In the
short-wavelength regime, people are working on X-ray FELs which will become
the fourth generation of synchrotron radiation. At present, an extensive effort
in building up more powerful, more compact and much cheaper FEL sources is
underway internationally.

More importantly, since 1995 (Asmar et al. 1995) the THz FEL radiations
have been successfully applied in scientific research into optoelectronic properties
in novel condensed matter materials, such as low-dimensional semiconductor
systems (LDSS) and semiconductor nanostructures (SNS). This has opened up
an entirely new field of research in condensed matter physics and semiconductor
optoelectronics. From a fundamental point of view, for GaAs- and Si-based

∗ Refereed paper based on a talk presented to the Workshop on Nanostructures and Quantum
Confinements, held at the Australian National University, Canberra, in December 1998.
† The information about recent developments in free-electron lasers can be obtained from
http://sbfe13.ucsb.edu/www/vl−fd.html.

q CSIRO 2000 10.1071/PH99041 0004-9506/00/010087$10.00
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LDSS in which the conducting electrons are confined within nanometre distances,
so that the electron kinetic energy and the electronic subband energy are of
the order of meV, ‘terahertz ’ is a very interesting and under-explored frequency
range lying between ‘optical’ and ‘electrical’ phenomena. When a low-dimensional
electron gas (LDEG), as realised in, e.g. a LDSS, is subjected to an intense
THz laser field (noting that a THz frequency, ω ∼ THz, corresponds to an meV
energy, h̄ω ∼ meV), we enter a regime of different competing energies where
the electron kinetic energy, the electronic subband separation and the Fermi,
phonon and plasmon energies can be comparable to the THz photon energy
and to that of the radiation field. As a result, the THz laser field can couple
strongly to the LDSS. Moreover, it has been realised that in an LDSS, the rate
of electron–phonon and electron-impurity scattering can also be comparable to
the frequency of the THz laser field (Xu and Zhang 1996). This implies that
THz laser radiation will modify strongly the processes of momentum and energy
relaxation for excited electrons in the system. These features allow us to observe
and study photon-induced novel quantum effects and, by using these effects, to
design and develop novel electronic and optoelectronic devices. Currently, an
Australian research team from the University of Wollongong is working on the
interactions between LDSS and THz FEL radiation (Koenraad et al. 1998), by
using the so-called FELIX free-electron lasers (Free Electron Laser for Infrared
eXperiment, from the FOM Institute for Plasma Physics, The Netherlands).

The fundamentally new experimental observations such as THz resonant-
absorption (Asmar et al. 1995), THz photon-modified high-field magnetotransport
(Koenraad et al. 1998), the THz photon-enhanced hot-electron effect (Asmar et
al. 1996), the dynamical Franz–Keldysh effect (Nordstrom et al. 1998; Johnsen
and Jauho 1998), THz photon-induced impact ionisation (Markelz et al. 1996),
to mention but a few, indicate strongly that the field of LDSS interactions
with intense THz laser radiation is very rich in terms of physics and in device
applications. An understanding of these important experimental findings depends
heavily on a sophisticated knowledge of many aspects of the optoelectronic
properties in LDSS in the presence of an intense laser field. To my knowledge,
for these problems no simple and complete theory is available in the literature.
The present study aims mainly at developing fundamental new approaches to the
theory of electron interactions with intense laser fields in an LDSS. In this paper,
I will limit myself to the case where a semiconductor-based two-dimensional
electron gas (2DEG) (e.g. a heterojunction or a quantum well structure) is taken
into consideration. In Sections 2 and 3 I derive the electron Green’s function,
the electron density-of-states, the electron density–density correlation function
and the dynamical dielectric function matrix for a 2DEG driven by a linearly
polarised electromagnetic (EM) radiation field. Then, in Sections 4 and 5, I
investigate the influence of the frequency and intensity of the THz radiation on
plasmon modes and the optical spectrum of a THz-driven 2DEG. In Section 6
further remarks on the theories developed in the present study are made, and
our study is summarised.

2. Green’s Function and Density-of-State

In this study I consider the situation where the growth direction of a 2DEG
is along the z-axis (i.e. the 2DEG is formed along the xy plane) and an EM
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field A(t) is applied and polarised linearly along the 2D plane (taken along the
x-axis and so A(t) = [A0sin(ωt), 0, 0]). Here ω is the frequency of the EM field
and the usual dipole approximation for the radiation field has been employed.
In this configuration, the radiation field will not couple directly to the confining
potential of the 2DEG. Hence, the linearly polarised EM field plays the role of
a driving field and that is why the combination is called ‘THz-driven 2DEG’.
The single-electron Hamiltonian to describe this electron–photon system can be
written as

H0(t) =
[px − eA(t)]2 + p2

y + p2
z

2m∗
+ U(z) . (1a)

Here a parabolic-conduction-band structure has been considered, px = −ih̄∂/∂x
is the momentum operator, A(t) is the vector potential induced by the EM field
polarised along the x-direction, m∗ is the effective electron mass, and U(z) is
the confinement potential energy of the 2DEG. Furthermore, I have used the
Coulomb gauge (Shankar 1980) to describe the EM field. The usage of this
gauge allows us to choose the vector potential A(t) and the scalar potential
φ(t) for the radiation field such that ∇ ·A(t) = 0 and φ(t) = 0. These gauge
conditions correspond to the situation where the charge density ρ = 0 and the
current density j = 0, which is true for the case of free electrons in a 2DEG in
the absence of scattering, inhomogeneity, external driving field, etc. The solution
of the time-dependent Schrödinger equation

ih̄
∂Ψ(R, t)

∂t
= H0(t)Ψ(R, t) (1b)

is obtained as

Ψn,k = Ψn,k(R, 0)e−i[En(k)+Eem]t/h̄eir0kx[1−cos(ωt)]eiγsin(2ωt) , (2a)

where

Ψn,k(R, 0) = ek·rψn(z) . (2b)

Here R = (r, z) = (x, y, z), k = (kx, ky) is the electron wavevector along the 2D
plane, n is the index for the nth electronic subband, and En(k) = h̄2k2/2m∗+ εn
is the energy spectrum of the 2DEG with εn being the energy of the nth
electronic subband. Furthermore, we have r0 = eF0/m

∗ω2 with the dimension
of length, with F0 = A0ω being the strength of the radiation electric field,
γ = (eF0)2/8m∗h̄ω3 which is dimensionless, and Eem = 2γh̄ω is the energy of
the radiation field induced by the dynamical Franz–Keldysh effect (Nordstrom
et al. 1998; Johnsen and Jauho 1998). Because the radiation field is polarised
along the 2D plane, the Schrödinger equation along the growth direction is
time-independent and ψn(z) and εn in equation (2) are determined by[

− h̄2

2m∗
∂2

∂z2 + U(z)− εn
]
ψn(z) = 0 . (3)
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From the time-dependent electron wavefunction given by equation (2), we
can determine the retarded (+) and advanced (−) Green’s functions for free
electrons in the (n,k; t) representation (i.e. in t-space or time-representation) using
time-dependent condensed matter theory (Mattuck 1976), which are obtained
respectively as

G+(n,k; t > t′) = − i
h̄

Θ(t− t′)U(n,k; t, t′) , (4a)

G−(n,k; t > t′) =
i

h̄
Θ(t− t′)U(n,k; t′, t) , (4b)

where Θ(x) is the unit-step function and

U(n,k; t, t′) = e−i[En(k)+Eem](t−t′)/h̄e−ir0kx[cos(ωt)−cos(ωt′)]

× eiγ[sin(2ωt)−sin(2ωt′)] (4c)

is the unitary operator which can be used to derive e.g. the electronic transition
rate for electron–photon–phonon scattering (Xu 1998). Here the retarded Green’s
function satisfies[

ih̄
∂

∂t
− [h̄k− eA(t)]2

2m∗
− εn

]
G+(n,k; t > t′) = δ(t− t′) . (5)

With the electron Green’s function in t-space, we can determine the Green’s
function in the (n,k; Ω) representation (i.e. in Ω-space or the spectrum-
representation). For example, the steady-state retarded Green’s function for
a 2DEG driven by an EM field in Ω-space can be obtained from (1) Fourier
analysing G+(n,k; t > t′) according to time relative-coordinates τ = t − t′ and
(2) averaging the initial time t′ over a period of the EM field, which reads

G+
n,k(E) =

∞∑
M=−∞

F 2
M (kx)

E − En(k)− Eem −Mh̄ω + iδ
, (6a)

where E = h̄Ω is the electron energy, M > 0 (M < 0) corresponds to channels
for M -photon absorption (emission), M = 0 corresponds to a channel for elastic
photon scattering, and

FM (kx) =
∞∑

N=−∞
JN (γ)J2N−M (r0kx) (6b)

with JN (x) being a Bessel function.
From the imaginary part of the retarded electron Green’s function in Ω-space,

we can immediately obtain the electron density-of-state (DoS). The steady-state
DoS for a 2DEG driven by an EM field is given by

Dn(E) = D0

∞∑
M=−∞

Θ(EMn)RM (EMn) . (7a)
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Here D0 = m∗/πh̄2, EMn = E − εn − Eem −Mh̄ω, and

RM (x) =
2
π

∫ 1

0

dy√
1− y2

F 2
M

(
y
√
Fr2m∗xh̄2

)
. (7b)

At high-frequency (ω À 1) and/or for low-intensity (F0 ¿ 1) radiation, equation
(7) becomes

Dn(E) = D0Θ(E − εn) , (8)

which is the well-known result obtained for the DoS of a 2DEG in the absence
of the radiation field.

The electron DoS is one of the central quantities to determine and to
understand almost all physically measurable properties. In the presence of intense
EM radiation, electrons in a 2DEG system can interact with the radiation field
via channels for optical absorption (M > 0) and emission (M < 0) and for elastic
optical process (M = 0). Therefore, now the electron DoS comes from all possible
optical processes (see equation 7) and a factor F 2

M (kx) plays a role in switching
different optical channels (see equation 6). The contribution from different optical
processes to the electron DoS in a GaAs-based 2DEG (for GaAs m∗ = 0 ·0665me

with me being the rest electron mass) is shown in Fig. 1 at a fixed radiation
field with a frequency ω and an intensity F0. In the low electron energy regime,
the electron DoS is induced mainly by the processes of optical emission. Noting
that for an electron gas system the lower energy regime is more possibly occupied
by electrons, the optical emission, including multiphoton processes, will play an
important role in determining the electronic, optical and optoelectronic properties
of a THz-driven 2DEG. In the high electron energy regime, the contribution to
the electron DoS from optical absorption becomes more important. When the
channel for elastic optical scattering opens up, a step increase in the DoS can
be observed.

In the presence of the radiation field, the electron DoS will be shifted to the
higher-energy regime (see equation 7) due to the dynamical Franz–Keldysh effect
(DFKE). In Fig. 2, the electron DoS as a function of electron energy is shown
at a fixed radiation frequency for different radiation intensities. Here F0 = 0
corresponds to the case in the absence of the radiation field, for which the electron
DoS of a 2DEG is characterised by a step-function (see equation 8). With increasing
radiation intensity F0, the energy of the radiation field Eem = (eF0)2/4m∗ω2,
induced by DFKE, increases. As a result, with increasing F0 the maximum
electron DoS, induced by opening up of the elastic optical process, will be shifted
to the higher-energy regime by a factor of Eem. For a GaAs-based 2DEG
subjected to a THz laser field with ω/2π ∼ 1 THz and F0 ∼ 10 kV cm−1, we
have Eem ∼ 10 meV. Very recently, the blue-shift of the electron DoS by Eem
via DFKE has been successfully observed experimentally (Nordstrom et al. 1998)
by applying THz FEL radiation to GaAs-based 2DEG systems. Furthermore,
from Fig. 2 we see that in sharp contrast to the case in the absence of the EM
radiation, the presence of the intense THz laser field will result in the DoS to
be present in the low- and even negative-energy regime, due to the presence of
the channels for optical emission.
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Fig. 1. The contribution from different optical processes to the electron
density of states at a fixed radiation field with intensity F0 and frequency
ω. Here m > 0 and m < 0 correspond, respectively, to the channels of
m-photon absorption and emission, while m = 0 corresponds to elastic
optical scattering. When F0 = 5 kV cm−1 and ω/2π = 1 THz, we have
h̄ω ' 4 ·14 meV and Eem = (eF0)2/4m∗ω2 ' 4 ·19 meV.

Fig. 2. Density of states for electrons in the nth subband as a function
of electron energy E at a fixed radiation frequency for different radiation
intensitiesF0. Here εn is the electronic subband energy andD0 = gsm

∗/2πh̄2.

A direct and important application of the electron DoS is to determine the
Fermi energy in an electron gas system. Using the condition of electron number
conservation, the Fermi energy EF (or chemical potential) of a 2DEG system
can be determined by
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ne =
∑
n

∫ ∞
0

dE f(E)Dn(E) , (9)

where ne is the electron density of the 2DEG and f(E) = [e(E−EF )/kBT + 1]−1

is the Fermi–Dirac function. By introducing the photon-modified electron DoS
Dn(E) (see equation 7) into equation (9), we can determine the photon-modified
Fermi energy (see Fig. 4a).

3. RPA Inverse Dielectric Function Matrix

The dielectric response function measures the strength of an electron gas interacting
via its long range force such as the Coulomb potential. Therefore, in modern
condensed matter physics and electronics, the dielectric function plays an important
role in discussing the many body problem and in studying elementary electronic
excitations and the optical spectrum in an electron gas device.

Fig. 3. Diagrams for an electron gas in time-representation: (a) the pair bubble or electron
density–density correlation function and (b) the effective electron—electron interaction under
the random-phase approximation.

For a Fermi system at finite temperatures, the pair bubble in t-space for a
2DEG is defined, in the absence of the electron-electron (e–e) interaction, by
(see Fig. 3a)

−iΠn′n(q; t, t′) = −igs
∑
k

1
β

∞∑
j=−∞

[iG−(n,k; t > t′)e−iωj(t−t
′)]

× [iG+(n′,k + q; t > t′)eiωj(t−t
′)] , (10a)

where β = 1/kBT , ωj = (2j + 1)π/β, q = (qx, qy), and gs = 2 accounts for the
spin degeneracy. Following the standard approach to evaluate the pair bubble
(Mattuck 1976), the density–density (d–d) correlation function for a 2DEG in
the (n,k; t) representation is obtained as

Πn′n(q; t, t′) = gs
i

h̄
Θ(t− t′)e−ir0qx[cos(ωt)−cos(ωt′)]

∑
k1

∆f1e
−i∆E1(t−t′)/h̄ . (10b)
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Here I have defined ∆fj = f [En(kj) + 2γh̄ω]− f [En′(kj + q) + 2γh̄ω], f(x) is the
Fermi–Dirac function, and ∆Ej = En′(kj + q)− En(kj).

For a high-density electron gas system at low-temperatures, the random-phase
approximation (RPA) can be used to study the effective e–e interaction. In
t-space, the RPA diagrams for the e–e interaction are given by Fig. 3b. Moreover,
in a quasi-2DEG system, the presence of the electronic subbands results in the
fact that the system is in nonequilibrium. Therefore, the bare and effective e–e
interactions are in the form of a matrix. Using the RPA diagrams given by
Fig. 3b, the matrix element for the effective e–e interaction can be calculated
through

−iV eff
αβ (q; t, t′) = [−iVαβ(q)]δα,βδ(t− t′)

+ [−iVαβ(q)][−iΠβ(q; t, t′)][−iVαβ(q)]

+
∫ t

t′
dt1 [−iVαβ(q)][−iΠβ(q; t1, t′)]

× [−iVαβ(q)][−iΠβ(q; t, t1)][−iVαβ(q)] + ..... (11)

Here α = (n′n) and Vαβ(q) is the Fourier transform of the matrix element for
the bare e–e interaction

Vαβ(q) =
2πe2

κq

∫
dz1dz2 fα(z1)fβ(z2)e−q|z1−z2| , (12)

where κ is the dielectric constant of the material and fα(z) = ψ∗n′(z)ψn(z).
Introducing the pair bubble obtained in t-space (equation 10b) into equation
(11), the effective e–e interaction can be written in the form

[Veff ] = [V][ε]−1
, (13)

where [Veff ] and [V] are the matrices with, respectively, the elements V effαβ (q; t, t′)
and Vαβ(q). Hence, by definition, [ε]−1 is the inverse dielectric function matrix
for a 2DEG in the (n,k; t) representation, namely

[ε]−1 = e−ir0qx[cos(ωt)−cos(ωt′)]

[
[I]δ(t− t′) +

i

h̄
Θ(t− t′)

∞∑
j=1

(−gs[V])j [Rj]
]
.

(14)

In equation (14), [I] is the unitary matrix and the element of the matrix [Rj] is
Rj(β,q; t− t′) where

R1(n′, n,q; τ) =
∑
k1

∆f1e
−i∆E1τ/h̄ ; (15a)

R2(n′, n,q; τ) =
∑
k1,k2

∆f1∆f2

[
e−i∆E1τ/h̄

∆E1 −∆E2

+
e−i∆E2τ/h̄

∆E2 −∆E1

]
; (15b)
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and

Rj(n′, n,q; τ) =
∑

k1,k2,...,kj

∆f1∆f2...∆fj (15c)

×
[

e−i∆E1τ/h̄

[∆E1 −∆E2]...[∆E1 −∆Ej ]
+ ...+

e−i∆Ejτ/h̄

[∆Ej −∆Ej−1]...[∆Ej −∆E1]

]
.

The element of the inverse dielectric function matrix for a 2DEG in t-space is

ε−1
αβ(q; t, t′) = e−ir0qx[cos(ωt)−cos(ωt′)]

[
δα,βδ(t− t′)

+
i

h̄
Θ(t− t′)

∞∑
j=1

[−gsVαβ(q)]jRj(β,q; t− t′)
]
. (16)

From the inverse dielectric function matrix in t-space, we can obtain the
inverse dielectric function matrix in Ω-space by first Fourier analysing ε−1

αβ(q; t, t′)
according to time relative-coordinates τ = t − t′ and then averaging the initial
time t′ over a period of the radiation field. For a steady state, the inverse
dielectric function matrix element for a 2DEG in Ω-space is obtained as

ε−1
αβ(q,Ω) =

∞∑
M=−∞

J2
M (r0qx)[δα,β − Vαβ(q)Π0

β(q,Ω +Mω)]−1 , (17a)

and the inverse dielectric function matrix is given by

[ε]−1 =
∞∑

M=−∞
J2
M (r0qx)

[
[I]− [V][Π0]

]−1
. (17b)

Here, again, the index M corresponds to different optical channels and, therefore,
the inverse dielectric function is the summation over all possible optical processes.
Furthermore,

Π0
n′n(q,Ω) = gs

∑
k

f [En(k) + Eem]− f [En′(k + q) + Eem]
h̄Ω + En(k)− En′(k + q) + iδ

(17c)

is the Fourier transform of the electron d–d correlation function. From equation
(17), we see that the presence of the linearly polarised radiation field will lead
to an anisotropic inverse dielectric function which depends on qx, the change of
the electron wavevector along the direction where the EM field is polarised. The
physical reason behind this is that the linearly polarised EM field can break the
symmetry of the sample geometry.

For high-frequency (ω À 1) and low-intensity (F0 ¿ 1) radiation, so that
r0qx ¿ 1 and γ ¿ 1, the dielectric function matrix of a 2DEG becomes

[ε] = [I]− [V][Π0] , (18a)
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and the matrix element is given by

εαβ(q,Ω) = δα,β − Vαβ(q)Π0
β(q,Ω) , (18b)

which are the well-known results obtained in the absence of the EM radiation
field.

4. Plasmon Modes

The inverse dielectric function matrix for a 2DEG in the (n,k; Ω) representation
can be directly applied to the study of the influence of an intense laser field on
collective excitations in a 2DEG system. For a 2DEG with only one electronic
subband, after referring the energy from εn = εn′ = 0, the dielectric function
becomes

ε(q,Ω) =

∞∏
M=−∞

[1− V0000(q)Π0
00(q,Ω +Mω)]

∞∑
M=−∞

J2
M (r0qx)

∞∏
M ′=−∞,M ′ 6=M

[1− V0000(q)Π0
00(q,Ω +M ′ω)]

.

(19)

In this case the plasmon modes induced by the charge-density excitation can
be determined theoretically by taking Re ε(q,Ω) → 0. In the low-temperature
(T → 0) and long-wavelength (q ¿ 1) limit, the plasmon frequency of a 2DEG
driven by an EM radiation field is obtained simply as

Ωp = ωpΘ(EF − Eem)

√
m∗(EF − Eem)

πh̄2ne
, (20)

where ωp = (2πe2neq/κm
∗) 1

2 is the plasmon frequency of a 2DEG in the absence
of the EM radiation. Here we see that in the low-temperature and long-wavelength
limit, the effect of the radiation field on plasmon modes in a 2DEG is mainly
achieved via photon-modified Fermi energy. Furthermore, equation (20) indicates
that in the presence of the radiation field, the plasmon excitation can only be
possible when the Fermi energy of the electronic system is above the energy of the
radiation field caused by DFKE. Noting that EF > Eem implies the presence of
the channels for elastic photon scattering and for optical absorption, EF > Eem
makes it possible for electronic transitions from occupied states to empty states
via absorption of photons and, thus, the plasmon excitation can be achieved in
a 2DEG system. When EF < Eem, only the channels for optical emission are
present in the electronic system. In this case, it is less possible for electronic
transitions from an occupied state (lower energy level) to an empty state (higher
energy level) via emission of photons and, therefore, it is not possible to observe
the plasmon excitation.

In the presence of the intense laser field, the Fermi energy EF depends on
the intensity F0 and frequency ω of the radiation (see equation 9). As a result,
the plasmon frequency Ωp varies with F0 and ω. In Fig. 4a the Fermi energy
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Fig. 4. (a) Fermi energy EF measured from the energy of the radiation field, Eem =
(eF0)2/4m∗ω2, as a function of the radiation frequency f = ω/2π for three values of the
radiation intensity F0 at a fixed electron density ne. (b) Plasmon frequency Ωp in units of the
plasmon frequency ωp in the absence of the laser field as a function of the radiation frequency
f = ω/2π, for the same values of F0 and ne as in part (a). The results are obtained for a
GaAs-based one-subband 2DEG.

[measured from the energy of the radiation field] and in Fig. 4b the plasmon
frequency [in units of the plasmon frequency in the absence of the radiation field]
are plotted as a function of radiation frequency for different radiation intensities in
a GaAs-based 2DEG system. As can be seen, in different radiation intensity and
frequency regimes the Fermi energy and the plasmon frequency exhibit different
features:
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(1) Under low-frequency and/or high-intensity radiation, when the energy of
the radiation field is much larger than the photon energy (i.e. Eem À h̄ω),
EF is determined mainly by Eem via the dynamical Franz–Keldysh effect.
In this case, EF > Eem, Ωp increases with increasing F0 and/or decreasing
ω, and Ωp > ωp can be observed.

(2) In an intermediate radiation intensity and frequency regime, EF is
determined mainly by photon emission processes, which results in
EF < Eem and, therefore, the plasmon excitation is suppressed (i.e.
Ωp = 0). This regime of ω and F0 is a window for propagation of the
EM wave in an electron gas system.

(3) For relatively high-frequency and/or low-intensity radiation, the Fermi
energy is determined mainly by elastic optical processes and by processes
of optical absorption so that EF > Eem. In this case, Ωp increases with
increasing ω and/or decreasing F0, and Ωp < ωp can be observed.

(4) For high-frequency (ω À 1) and/or low-intensity (F0 ¿ 1) radiation,
entailing r0 → 0 and γ → 0, the radiation field affects very weakly the
Fermi energy and, consequently, the plasmon frequency Ωp tends to that
in the absence of the radiation ωp.

These results indicate that by varying the frequency and/or intensity of the
radiation field, a frequency tunable plasmon excitation can be achieved in a
semiconductor-based 2DEG system.

5. Optical Spectrum

For a 2DEG system, because the plasmon frequency depends on the change of
electron wavevector (i.e. ωp ∼ q 1

2 , see equation 20), it is much easier to measure
experimentally the optical spectrum than to measure directly the plasmon modes.
At present, optical studies have been popularly and widely used to measure the
free electron density in inhomogeneous systems and to verify the dependence of
the plasmon dispersion on electron density and wavevector in electronic systems
(Voβebürger et al. 1996). Theoretically, the optical spectrum of an electron gas
system can be obtained from the imaginary part of the inverse dielectric function,
E(Ω) =Imε−1(Ω), which measures the energy loss of fast electrons via absorption
of the probing field with frequency Ω (Glicksman 1971). Here I consider the
situation where a deriving EM field with frequency ω and intensity F0 is linearly
polarised along the 2D-plane of a 2DEG and a weak probing field with frequency
Ω is applied to measure the optical spectrum. Moreover, in the present study, I
limit myself to the situation where only one electronic subband is present in a
2DEG system. In this case, the inverse dielectric function of a 2DEG is given by

1
ε(q,Ω)

=
∞∑

M=−∞

J2
M (r0qx)

1− V0000(q)Π0
00(q,Ω +Mω)

, (21a)

with an imaginary part



Dynamical Properties of 2D Electron Gas 99

Im
1

ε(q,Ω)
=

∞∑
M=−∞

J2
M (r0qx) V0000(q) ImΠ0

00(q,Ω +Mω)
[1− V0000(q) ReΠ0

0000(q,Ω +Mω)]2 + [V0000(q) ImΠ0
00(q,Ω +Mω)]2

.

(21b)

For studying a dynamical quantity such as the optical spectrum, Ω in equation
(21) can be taken as the frequency of the probing field. The averaged imaginary
part of the inverse dielectric function (or the so-called energy-loss function) is
obtained as

E(Ω) =
1
ne

∑
q

Im
1

ε(q,Ω)
=

1
π

∫ π

0

dθ E(Ω, θ) , (22a)

where θ is the polar angle to the x-axis along which the driving EM field is
polarised and the angular distribution of the energy-loss function is

E(Ω, θ) =
∞∑

M=−∞
EM (Ω, θ) , (22b)

with the contribution from a M -photon process being

EM (Ω, θ) =

1
2π2ne

∫ ∞
0

dqq J2
M (r0qcosθ) V0000(q) ImΠ0

00(q,Ω +Mω)
[1− V0000(q) ReΠ0

0000(q,Ω +Mω)]2 + [V0000(q) ImΠ0
00(q,Ω +Mω)]2

.

(22c)

In the presence of the linearly polarised driving EM field, the optical spectrum of
an electron gas is anisotropic, i.e. it depends on the angle θ (see equation 22a).
Equation (22b) reflects the fact that the optical spectrum now comes from all
possible processes via electron interactions with the driving field. Furthermore,
the change of the electron wavevector along the direction where the driving EM
field is polarised (i.e. qx) plays a role in switching different optical processes.
For example, when qx → 0, only the 0-photon (i.e. elastic) process contributes to
the optical spectrum. With increasing |qx|, entailing JM (r0qx) 6= 0, other photon
processes can contribute to the energy-loss function. For high-frequency ω À 1
and/or low-intensity F0 ¿ 1 driving fields so that r0 ∼ 0 and γ ∼ 0, the optical
spectrum given by equation (22) becomes the well-known result obtained in the
absence of the driving EM field and Imε−1(Ω, θ) =Imε−1(Ω) does not depend on
the angle θ.

In the low-temperature limit (i.e. T → 0) and taking ε0 = 0, we have

ReΠ0
00(q,Ω) = −Θ(EF − Eem)

m∗

2πh̄2εq
R(εq,Ω) , (23a)
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ImΠ0
00(q,Ω) = −Θ(EF − Eem)

m∗

2πh̄2εq
I(εq,Ω) , (23b)

where εq = h̄2q2/2m∗,

R(x,Ω) = 2x− Re
√

(x− h̄Ω)2 − 4x(EF − Eem)

− Re
√

(x+ h̄Ω)2 − 4x(EF − Eem) , (23c)

I(x,Ω) = Θ(EF − Eem − h̄Ω)Re
√

(a+ − x)(x− a−)

−Θ(EF − Eem + h̄Ω)Re
√

(b+ − x)(x− b−) , (23d)

with

a± = (
√
EF − Eem ±

√
EF − Eem − h̄Ω)2 ,

b± = (
√
EF − Eem ±

√
EF − Eem + h̄Ω)2 .

Equation (23) indicates that in the low-temperature limit, the optical spectrum
of a 2DEG driven by an EM radiation field can only be observed when the Fermi
energy of the system EF is above the energy of the driving radiation field Eem.
This can be understood by the fact that in the presence of the driving field, the
dielectric response to the probing field, via electronic transitions accompanied by
absorption of the probing and driving fields, can only occur when EF > Eem.
When EF < Eem, the emission of photons by electrons will be the principal
channel for relaxation of excited electrons in the system.

The results shown in Fig. 4a indicate that: (1) under low-frequency and/or
high-intensity radiation, when Eem À h̄ω, we have EF > Eem and, therefore, the
optical spectrum via dielectric response can be observed. (2) In an intermediate
radiation frequency and intensity regime, EF is determined mainly by photon
emission processes and, consequently, EF < Eem. In this case, the low-temperature
optical spectrum via fast electron processes cannot be observed and this regime
of F0 and ω is a window for propagation of EM waves. (3) For relatively high-
frequency and/or low-intensity radiation, when Eem ∼ h̄ω, then EF is determined
mainly by 0-photon and photon absorption processes, and so EF > Eem. In this
case, EF −Eem increases with increasing ω and/or decreasing F0 and the optical
spectrum can be observed. (4) For ω À 1 and/or F0 ¿ 1, entailing Eem → 0
and r0 → 0, the radiation affects very weakly the Fermi energy and the optical
spectrum tends to that observed in the absence of the laser field. Below I discuss
the optical spectrum of an AlGaAs/GaAs heterojunction in the case of (3).

For GaAs the dielectric constant is κ = 12 ·9. Here I make the usual triangular
well approximation to model the confining potential normal to the interface of
the heterojunction and use the corresponding variational wavefunction (Ando et
al. 1982). In doing so, we have
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V0000(q) =
2πe2

κq

3y2 + 9y + 8
8(1 + y)3 , (24)

where y = q/b and b = [(48πm∗e2/κh̄2)(Ndepl + 11ne/32)] 1
3 defines the thickness

of the triangular well with Ndepl being the depletion charge density (typically
Ndepl = 5× 1010 cm−2 for an AlGaAs/GaAs heterojunction).

Fig. 5. Energy-loss function E(Ω, θ) = Imε−1(Ω, θ) at a fixed driving field
for different θ angles. Here θ is the polar angle to the x-axis along which
the driving laser field is polarised and Ω is the frequency of the probing
field.

The energy-loss function at a fixed driving field for different θ angles is shown
in Fig. 5, where the angular dependence of the optical spectrum is evident.
The variation of θ corresponds to the change of the possibility for electronic
transitions achieved by change of the electron wavevector (or momentum) along
the direction where the driving field is polarised. The variation of qx will result
in different processes of photon emission and absorption by electron interactions
with the driving field. Therefore, the optical spectrum induced by dielectric
response in the presence of an intense driving EM field depends on the angle
θ. The case θ = 90◦ implies qx = 0 and so only the zero-photon process gives
rise to the energy-loss function. The case θ = 0 corresponds to qx = q where the
strongest effect of the driving field can be measured. The results obtained from
further numerical calculations show that a stronger anisotropic feature of the
optical spectrum can be observed at a driving field with higher radiation intensity
and/or lower radiation frequency, because r0 = eF0/m

∗ω2 (see equation 22).
The contribution to the energy-loss function from different optical processes

due to electron interactions with the driving field is shown in Fig. 6 at a fixed
driving field and at θ = 0. In the presence of an intense driving EM field,
the electronic transitions can be achieved by emission (m < 0) and absorption
(m > 0) of photons, including multiphoton (|m| > 1) processes. These electronic
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transition events can be observed by measuring the optical spectrum via dielectric
response, as can be seen in Fig. 6. From Fig. 6, we note that for low-frequency
probing fields, the energy-loss function caused by photon emission processes is
negative, which implies an optical gain due to the interaction between electrons
and the driving field. The results obtained from further calculations indicate
that with increasing F0 and/or decreasing ω of the driving field, a stronger effect
of photon emission can be observed in the optical spectrum.

Fig. 6. Contribution from different optical processes to the optical spectrum
at θ = 0o for a fixed driving field. Here M > 0, M < 0 and M = 0
correspond, respectively, to the processes of photon absorption, emission
and elastic photon scattering by electron interactions with the driving field.
The solid curve is the total optical spectrum.

Fig. 7 shows the energy-loss function at a fixed ω and at θ = 0 for different
intensities of the driving field. With increasing F0, the energy-loss function
decreases. This is due to the following two reasons. (1) At ω/2π = 2 THz and
when F0 ≤ 10 kV cm−1, EF −Eem decreases with increasing F0 (see Fig. 4a). A
smaller EF − Eem implies less channels for dielectric response accompanied by
absorption of the driving and probing fields. (2) With increasing F0, the electronic
transitions via photon emission increase, which makes a negative contribution to
the energy-loss function in some probing field regimes.

6. Further Notes and Summary

In this study, I have proposed and developed a tractable method in dealing with
electron interactions with an intense laser field in a nanostructure such as a
semiconductor-based 2DEG system. The theoretical approaches are based on the
solution of the time-dependent Schrödinger equation in which the effect of the
linearly polarised EM field is included.

(1) From the time-dependent electron wavefunction obtained from the solution
of the time-dependent Schrödinger equation, I have derived the retarded
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and advanced electron Green’s functions in the time and spectrum
representation.

(2) From the imaginary part of the retarded electron Green’s function in the
spectrum representation, I have determined the electron density of states.

(3) Using retarded and advanced electron Green’s functions in the time
representation, I have obtained the electron density–density correlation
function (or pair bubble) for a Fermi system at finite temperatures in
the time representation.

(4) Applying the electron density–density correlation function obtained to the
random-phase approximation diagrams for the effective electron–electron
interaction, I have obtained the inverse RPA dielectric function matrix
in the time and spectrum representation.

(5) Using the real part of the dielectric function, I have investigated the
plasmon modes via charge density excitation in the low-temperature and
long-wavelength limit.

(6) Using the imaginary part of the inverse dielectric function, I have studied
the optical spectrum of a 2DEG via fast electron processes.

In these steps, the effect of the radiation field is included exactly and all possible
optical processes, including multiphoton channels, can be included easily. These
theoretical approaches are based on time-dependent condensed matter theory on
the basis of a non-perturbative treatment for electron interactions with an intense
radiation field.

Fig. 7. Influence of the intensity of the driving field F0 on the optical
spectrum at a fixed radiation frequency ω for θ = 0o. The case F0 = 0
corresponds to the absence of the driving field.

In the presence of a time-dependent driving field such as EM radiation, the
electron Green function G±(n,k; t > t′), the electron density–density correlation
function Πn′n(q; t, t′) and the inverse dielectric function matrix element ε−1

αβ(q; t, t′)
in the time representation are basically two-time quantities, i.e. they depend
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not only on the time relative-coordinates τ = t − t′ but also on the initial
time t′ or time centre-of-mass T = (t + t′)/2. To investigate the steady-state
property of a two-time quantity F (t, t′) in the presence of an EM field,
one approach proposed is (Jauho and Johnsen 1996): (1) Fourier analysing
F (t, t′) = F (τ, T ) along the τ -direction to get F (Ω, T ), and (2) averaging T in
F (Ω, T ) over a period of the EM field to get F (Ω) in the spectrum representation.
What I have used in the present study in obtaining F (Ω) from F (t, t′) is
slightly different from this approach. Here, I first do a Fourier analysis of
F (t, t′) = F (τ, t′) along the τ -direction to get F (Ω, t′) and then average the
initial time t′ in F (Ω, t′) over a period of the EM field to obtain F (Ω). As
can be seen from the results obtained in this study, the approach that I have
proposed in this paper is more transparent and leads to much simpler analytical
results. It can be seen by comparing Fig. 2 of Johnsen and Jauho (1998)
with Fig. 2 of the present paper that the two approaches give similar results
for a 2DEG driven by an intense laser field. It should be noted that, in
sharp contrast to the case where the time-dependent driving field is absent
the presence of the EM field will result in a case where the Fourier transform
done at different stages may lead to different final results. For example, the
only way to calculate correctly the inverse dielectric function matrix element
ε−1
αβ(q,Ω) in the spectrum representation is to start the calculation directly

from ε−1
αβ(q; t, t′) obtained from the RPA diagrams in the time representation.

The usage of the RPA diagrams in the spectrum representation with the
corresponding pair bubble in the spectrum representation will lead to an
incorrect final result for the inverse dielectric function matrix in the spectrum
representation.

The theoretical results presented in this paper indicate that the effect of the
EM radiation on electronic, optical and optoelectronic properties of an electron
gas system can be mainly achieved via two important parameters, r0 = eF0/m

∗ω2

with a dimension of length and γ = (eF0)2/8m∗h̄ω3 which is dimensionless. These
parameters are connected to the frequency and intensity of the radiation field and
to a material parameter such as the effective electron mass of the sample system.
For a GaAs-based 2DEG structure subjected to a linearly polarised laser field
with frequency ω/2π ∼ 1 THz and intensity F0 ∼ 10 kV cm−1, the conditions
such as r0qx ∼ r0kx ∼ 1 and γ ∼ 1 (so Eem = 2γh̄ω ∼ h̄ω) can be satisfied. As
a consequence:

(1) the electron kinetic energy and the Fermi energy of the system are
comparable to the THz photon energy and to the radiation field energy
induced by the dynamical Franz–Keldysh effect;

(2) the THz radiation will couple strongly to the 2DEG system and will
significantly alter the electronic structure of the system;

(3) the momentum and energy relaxation via electronic transitions will be
strongly modified by the THz radiation field;

(4) the electronic transition events depend strongly on the change of the
electron wavevector along the direction where the radiation field is
polarised, which breaks the symmetry of the sample geometry and,
consequently, the electronic, optical and optoelectronic properties of a
THz-driven 2DEG may become anisotropic; and
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(5) as can be seen in this paper, dramatic THz radiation phenomena can be
observed theoretically in, for example, electron density of states, Fermi
energy, plasmon modes and optical spectrum.

These quantities are experimentally measurable and, most importantly, such
radiation conditions have been realised by the THz free-electron laser sources
developed recently. It is therefore hoped that the phenomena discussed in this
paper will be verified experimentally.
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