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Abstract

This paper addresses sub-Poissonian electronic and photonic noise generation in semiconductor
junctions. Recent theoretical and technical advances in the understanding and generation
of quantum noise-suppressed (‘quiet’) light have emphasised the links between photonic and
electronic shot noise. Shot-noise suppression and single electron–photon control through the
operation of the collective and single-electron Coulomb blockade mechanisms are described.

1. Introduction

As new fabrication technologies are developed to provide the increased switching
speed, bandwidth and information packing density required of integrated electronic
circuitry, the quantum effects associated with the quantisation of electronic charge
and energy have become increasingly apparent. One of the consequences of this
is the occurrence of ‘granularity noise’ (shot noise) in optical interconnects and
mesoscopic electronic circuits.

Over the last decade, the quantum (non-classical) properties of light beams have
been closely investigated and photonic noise suppression techniques with potential
applications in metrology, communications and computing have been developed.
Similar attention is now being paid to electronic ‘quantum shot noise’ and its
minimisation in mesoscale and nanoscale circuits. It has now become apparent
that close similarities exist between photonic shot noise, ballistic electron shot
noise and diffusive electron shot noise, particularly when these three phenomena
are viewed as the outcomes of stochastic point processes.

The so-called ‘collective Coulomb blockade’ effect (Imamoglu and Yamamoto
1994) has been utilised to suppress optical shot noise fluctuations in the light
emitted by macroscopic semiconductor junctions (Yamamoto and Machida 1987;
Yamamoto et al . 1993; Tapster et al . 1987; Edwards 1990, 1991; Edwards and
Pollard 1932; Kim and Yamamoto 1997). Such quantum noise-suppressed devices
have obvious application in those optical measurement, communications and
computing systems where performance is limited by photonic shot noise.

Macroscopic Coulomb space charge suppression of electronic shot noise was
an essential feature of the low noise vacuum electronic devices belonging to
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an earlier era (Schottky 1918). It is not generally recognised that macroscopic
space charge smoothing of electronic shot noise is also an essential feature of
low noise semiconductor junction diodes and transistors (Edwards et al . 1999),
as well as of sub-Poissonian laser and light-emitting diodes (Yamamoto et al .
1987). New mesoscopic and reduced dimension semiconductor devices such as the
high electron mobility transistor, resonant tunnelling diode and single electron
transistor, employ both classical (Coulomb) and quantum (Pauli) effects to
suppress electronic transport noise (Milburn and Sun 1998).

Nanoscale devices such as ‘electron–photon turnstiles’ have also been envisaged
(Imamoglu and Yamamoto 1994) and partially realised (Kim et al . 1999). In these
the single particle Coulomb blockade effect (Averin and Likharev 1986) potentially
enables the manipulation and control of individual photons and electrons with
applications in the efficient transfer and processing of information.

In what follows we present a simple semiclassical discussion of the electronic
and photonic shot noise generated in semiconductor junctions. The processes of
charge injection, transport, storage and recombination are represented in Fig. 1a
for a semiconductor diode and in Fig. 1b for a light-emitting junction diode
with the additional process of radiative recombination. Radiative recombination
provides a means of directly probing the recombination process in semiconductor
junctions.

This paper is organised in five sections. Section 2 introduces electronic shot
noise in the form of thermionic shot noise and its suppression by Coulomb
interactions. Electronic noise in ideal macroscopic semiconductor junctions is
discussed in Section 3. Partition noise and the second order counting statistics of
electronic and photonic streams are discussed in Section 4. Section 5 examines
photonic noise from semiconductor junctions, stochastic charge injection, the
collective and single electron Coulomb blockade effects and concludes with a
discussion of heralded photon states in mesoscopic junctions.

2. Electronic Shot Noise

(2a) Thermionic Emission

Shot noise, the random fluctuation in electric current arising from the discrete
character of electronic charge, the ‘Schroteffekt’, was first identified (Schottky 1918)
in the thermionic current flowing in a temperature-limited vacuum thermionic
diode. Electrons are, in the main, emitted randomly and independently from
heated metallic cathodes and thermionic emission therefore constitutes a naturally
occurring Poisson point process (Teich and Saleh 1988). Providing this description
also adequately describes the charge collection process, the resulting thermionic
current fluctuations will have the Markovian correlation function,

〈i(t)i(t′)〉 = 2Ieδ(t− t′) , (1)

and will show the full single-sided shot noise current spectral density, the Fourier
transform of the correlation function, S i(ω) = 2I e, associated with the transport
of a mean current I of independent particles, each of charge e. In general,
however, the emission, transport and charge collection processes will lead to a
non-zero correlation function for |(t− t′)| > 0 and will consequently modify the
white noise spectrum of this idealised process. Non-zero charge collection time
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will reduce the spectral density at high frequencies so that the spectrum must
be written more generally to take these effects into account.

Fig. 1. Simplified models of (a) an ideal semiconductor junction diode
showing minority charge injection, storage and subsequent recombination;
(b) an ideal light-emitting diode showing the additional process of radiative
recombination and spontaneous photon emission.

In these cases the spectral density will be reduced below the full shot noise
level and the Fourier transformed autocorrelation function 〈i(t)i(t′)〉, the current
spectral density S i(ω), will contain a frequency dependent Fano factor F i(ω) ≤1,
and thus,

Si(ω) = 2F i(ω)Ie. (2)

Here F i(ω) is readily measurable as the frequency dependent ratio of the spectral
density of the current noise to the spectral density of the full shot noise current
fluctuation.



182 P. J. Edwards

On the other hand, the related time-domain Fano factor Fn(τ) expresses the
total number counting (integrated current) variance relative to the Poissonian
(full shot noise) value. It is formally defined as the variance σn2 of the number
count n(τ) in time interval τ , normalised to the Poissonian variance 〈n(τ)〉 where

Fn(τ) = σ2
n(τ)/〈n(τ)〉 = [〈n2(τ)− n(τ)〉2]/〈n(τ)〉 . (3)

Thermionically generated shot noise tends to be super-Poissonian (Fω > 1)
at low frequencies, due to positively correlated emission variations on long time
scales, and sub-Poissonian at higher frequencies, due to the combined effects
of space charge smoothing and finite charge collection time. Similar comments
apply to thermionic emission at Schottky junctions and heterostructure junctions
(Imamoglu and Yamamoto 1993; Kim and Yamamoto 1997; Kobayashi et al .
1999).

Fig. 2. Representation of space charge smoothing of thermionic vacuum
electron emission: a model for the macroscopic Coulomb blockade in
semiconductor junctions.

(2b) Space Charge Suppression of Shot Noise

Space charge smoothing (Rack 1938) in thermionic diodes operated in the space
charge-limited regime introduces anti-correlated density fluctuations into the
electron stream. Fig. 2 illustrates this concept of shot noise suppression by
a fluctuating potential barrier. The height of the barrier fluctuates with the
electronic space charge population which itself fluctuates in response to random
variations in thermionic emission. Low frequency shot noise suppression by
Coulomb-moderated negative feedback mechanisms of this type are a common
feature of classical and quantum electronic systems and devices.

The space charge-limited thermionic diode provides a conceptual model for
photonic shot noise suppression in macroscopic systems (Teich and Saleh 1985;
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Yamamoto and Machida 1987) and in mesoscopic systems involving the ballistic
transport of electrons where Pauli exclusion provides an additional noise suppression
mechanism (Lesovik 1989; Buttiker 1990). Space charge-limited thermionic noise
has a thermal character, reflecting its thermal origin, with Fano factor derived
in the classical limit as (Teich et al . 1987)

Fn(ω) = 8kT/eV , (4)

for cathode temperature T and applied voltage V (ÀkT/e). A similar result
applies to the external noise current in a semiconductor junction diode operated
under constant current conditions. More recent discussions of shot noise suppression
(e.g. Blanter and Buttiker 1999) show how shot noise suppression can be explicitly
accounted for in terms of electron–electron interactions.

We shall illustrate shot noise suppression for diffusive transport associated
with semiconductor junctions and discuss the transition from collective Coulomb
interactions in macroscopic junctions to single electron ‘Coulomb blockade’ in
low capacitance mesoscopic junctions.

3. Macroscopic Semiconductor Junction Noise

The first theoretical treatment of shot noise generated in semiconductor junctions
was given by van der Ziel (1955, 1957), who initially attributed it to the random
transport of charge carriers across the depletion layer. The results of van der Ziel’s
analysis were confirmed for both diodes and transistors with the measurement
of the full shot noise level for diodes operated with a fixed potential difference.
However, the physical basis of the analysis was challenged by Buckingham and
Faulkner (1974) and Buckingham (1983) who attributed the shot noise to two
independent mechanisms operating in the neutral (bulk) regions of the structure:
thermal fluctuations in minority charge carrier diffusion and fluctuations in the
rates of generation and recombination. Their model, unlike the van der Ziel
model, is consistent with the generally accepted diffusion model of charge carrier
transport in a forward biased junction.

This diffusion model was adopted by Yamamoto and Machida (1987) to
describe the generation of sub-Poissonian light by semiconductor diode lasers
and by Edwards (1993) to describe the generation of sub-Poissonian light in
light-emitting diodes. These authors also drew attention to a long-standing
confusion in the literature which had led to the erroneous conclusion that the
electron–hole recombination noise in a semiconductor junction is characterised
by full shot noise, contrary to their observations of suppressed photonic shot
noise in the light generated by laser and light-emitting diodes when driven from
high impedance constant current sources (Machida et al . 1987; Machida and
Yamamoto 1988; Tapster et al . 1987; Edwards 1990).

The charge carrier number present in the vicinity of a semiconductor junction,
N (t) = N + n(t), is determined by the processes of charge injection, diffusion,
and recombination which are taken into account in the following rate equation:

δN(t)/δt = I(t)/e−N(t)/τ + fn(t) . (5)
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In the first term on the right-hand side I (t) = I +i(t) represents the current
supplied from an external circuit. It is taken to equal the net (fluctuating)
rate at which charge is injected across the space charge layer at the junction
into the ‘active’ (recombination) region. The second term, in which τ is the
mean lifetime of the diffusing carriers, comprises the mean recombination rate
N /τ plus a fluctuating term n(t)/τ . This latter represents the response of the
reservoir population, N (t), and hence of the (population number-dependent)
recombination rate to external ‘pump’ noise, i(t)/e, and to the stochastic charge
recombination process itself as represented by the third term, the Langevin noise
term f n(t). The second and third terms together then represent the fluctuating
recombination rate: a population-dependent time varying rate plus an intrinsic
stochastic (Poissonian) fluctuation.

Linearisation of equation (5) yields

δn(t)/δt = i(t)/e− n(t)/τ + fn(t) . (6)

If the stored electron population N is fixed, for example, by pinning the junction
voltage, then δn(t)/δt = n(t) = 0 and the charge carriers will recombine
randomly with mean lifetime τ . This constitutes a Poisson point process
with correlation function 〈fn(t)f n(t′)〉 = 2N δ(t−t′)/τ , rate N/τ , mean square
value 〈f2

n〉 = (N/τ)∆f , and double-sided spectral density equal to the mean
recombination rate N /τ . From equation (6) the recombination current noise and
the current noise in the external circuit, isn(t) = − e f n(t), are both at the
full shot noise level. The single-sided mean square shot noise current spectral
density is then, as expected,

Si(ω) = 2〈f2
i 〉/∆f = 2e2〈f2

n〉/∆f = 2Ie . (7)

If N (t) is allowed to freely fluctuate and in addition the injection current noise
is suppressed, then i(t)= 0, and so δn(t)/δt = − n(t)/τ + f n(t). Taking Laplace
transforms, the recombination current noise spectrum in this case becomes

Si(ω) = 2ω2τ2〈f2
i 〉/∆f(1 + ω2τ2) = 2Ieω2τ2/(1 + ω2τ2) , (8)

and has the character of single pole high-pass filtered shot noise and vanishes
in the low frequency limit of ωτ ¿ 1. This illustrates low frequency shot
noise suppression according to the ‘leaky reservoir’ model (Edwards 1993). In
passing we note that the electron reservoir number fluctuation spectrum has a
complementary low pass character with a total mean square fluctuation of 〈N〉/ 2,
just one-half the Poissonian value.

Writing equation (6) in the form of a state equation using the fluctuations in
the junction potential ηjn(t), the injected current i(t), and the charge q(t) stored
in the so-called ‘diffusion capacitance’ C as state variables, gives (Edwards 1993)

Cδνjn/δt = i(t)− νjn(t)/r − isn(t) , (9)

and thus

δq/δt = i(t)− q(t)/rC − isn(t) . (10)
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Fig. 3. Representation of the optical measurement of the
recombination fluctuations in a semiconductor light-emitting
junction. Non-ideal detection (η <1) is represented by a
notional optical beam-splitter with transmission η.

Referring to the corresponding noise equivalent circuit of Fig. 3, in which the
stored charge fluctuation q(t) = n(t)e = Cvjn(t) shows that in this model the
junction voltage fluctuation is a direct measure of the carrier number fluctuation
n(t). Thus, shot noise suppression at frequencies ω ¿ 1/τ = 1/rC is evidently
achieved by making the external impedance Rs much greater than r , the internal
differential resistance of the junction, so that i(t) = [νs(t)− νjn(t)]/Rs vanishes
in that limit. The voltage source νs(t) in Fig. 3 represents the thermal Nyquist
noise voltage associated with resistance Rs. Then the mean square injected noise
current 〈i(t)2〉 can be reduced to negligible proportions by raising the value of
the resistance Rs. Noiseless charge injection into the reservoir is thus assumed
for a high impedance current source. A detailed physical analysis of this noiseless
injection process has been recently given (Kim and Yamamoto 1997) and refined
by Kobayashi et al . (1999) in connection with a generalised theory of photon
noise suppression in both macroscopic and mesoscopic junctions. In more detailed
microscopic treatments (Buckingham and Faulkner 1974; Kim and Yamamoto
1997; Kobayashi et al . 1999) this current can be written to explicitly contain
two stochastic Langevin terms representing forward and backward charge carrier
injection noise.

The junction diode diffusion noise model above adequately describes electronic
noise generation in macroscopic circuits and devices. It has also been used as the
conceptual basis for models of sub-Poissonian light generation in light-emitting
diodes (Edwards 1993) and diode lasers (Yamamoto and Machida 1987). These
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account for many of the measured characteristics of macroscopic optoelectronic
devices.

4. Partition Noise

The term ‘bunching’ is used in semi-classical quantum optics (Teich and Saleh
1988) to describe departures from a Poissonian photon stream having uncorrelated
density fluctuations. Reduced (sub-shot noise) photo-current fluctuations, generally
at low frequencies, are associated with ‘anti-bunching’, formally defined in terms
of anti-correlated photo-current fluctuations in the two components of a split
light beam.

If a stream of countable particles (electrons or non-interfering photons) is
subject to Bernoulli partition and randomly partitioned into two beams of equal
intensity, I 1 and I 2, the normalised intensity correlation (Loudon 1980; Oliver
et al . 1999) between the two beams is

G
(2)
11 (0) = 〈I1(t)I2(t)〉/〈I1〉2

= 〈n(n− 1)〉/〈n〉2 = 1 + (Fn − 1)/〈n〉 , (11)

where the currents I(t) = en(t)/∆t; 〈I1〉 = 〈I2〉 = 〈I〉/2 and 〈n〉 = 〈I〉∆t/e. This
function evidently deviates significantly from unity only in the limit of low mean
count 〈n〉, that is, for weak currents and short integration times ∆t . It is
therefore a useful parameter in cases where small controlled numbers of electrons
or photons are required. In the macroscopic case it is more useful to rewrite the
covariance

〈i1(t)i2(t)〉 = [G(2)
11 (0)− 1]〈I1〉2 = 1

4 [〈i2(t)〉 − 〈i2sn〉] , (12)

as a correlation coefficient

R12 = 〈i1(t)i2(t)〉/[〈i21(t)〉〈i22(t)〉]1/2

= (〈i2(t)〉 − 〈i2p〉)/[〈i2(t)〉+ 〈i2p〉] , (13)

and to express this as a conventional (frequency dependent) correlation coefficient
relating the fluctuations in the partitioned streams

R12(ω) = [Fn(ω)− 1](1− T )/[TFn(ω) + (1− T )] . (14)

The denominator in equation (14) expresses the shot noise as the sum of two
independent variance terms, a transmitted noise term and an additional partition
noise term. For transmission probabilities T and (1 − T ), the ‘partition noise’
(van der Ziel 1970) introduced into particle streams has binomial statistics with
variance given by

〈n2〉 − 〈n〉2 = T (1− T )〈n〉 and 〈i2p〉 = T (1− T )〈i2sn〉 . (15)

From above, the spectral density of the total noise following random loss of
particles from the beam can then be written in terms of the transmission factor
T , and input and output Fano factors F i and F o, as
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Fo = TFi + (1− T ) . (16)

This equation which also follows from the cascade variance formula (Burgess
1959) is well known in the quantum optics and mesoscopic literature (Teich 1988;
Shimizu and Sakaki 1991). Conceptually, it illustrates the binomial statistics
which arise from the operation of independent Bernoulli selection with fixed
probability T . It can be generalised (Lesovik 1989; Buttiker 1990) to describe
the additive partition noise generated in multiple channel mesoscopic systems.
Historically, it describes the shot noise in the anode current of a multielectrode
space charge-limited thermionic vacuum device (van der Ziel 1970). The thermionic
current fluctuations are initially suppressed below the full shot noise level, typically
to F i < 0 ·05, by the fluctuating space charge barrier (Fig. 2) between cathode
and anode and then raised by the additional noise introduced by current partition
as given by equation (16). Here T is the conditional probability of an electron
being counted, given its emission at the source of the particle stream.

Partition noise is present in bipolar junction transistors, as ‘quantum shot
noise’ in mesoscopic electron transport and as ‘quantum vacuum fluctuations’ in
lossy photonic systems.

5. Photonic Shot Noise

Measurement of the photonic shot noise in the light emitted from a semiconductor
junction is represented in Fig. 3. As mentioned in Section 2, photonic noise
measurements provide a direct probe of the intrinsic fluctuations in the radiative
recombination rate. These are characterised by the Fano factor F i in Fig. 3 and
equation (16) with T = η, the overall quantum transfer efficiency between radiative
recombination events in the junction and their subsequent photodetection.

The partition noise is a consequence of the lack of a one to one correspondence
between the individual recombination events in the junction and their subsequent
photodetection in the form of electron–hole pairs generated at the detector.
Providing these photon deletion losses are statistically independent Bernoulli
events, they can be treated like those arising at an optical beam splitter with
overall transmission probability η, as in Fig. 3.

Fig. 4 shows the equivalent circuit of an ideal light emitting diode coupled
with quantum efficiency η to a photon detector as in Fig. 3. A fraction η
of the recombination current appears at the detector. It therefore becomes
possible in principle to measure externally the radiative recombination current in
a light-emitting diode and to check the validity of the diode circuit noise model
previously discussed.

When the recombination noise is completely suppressed (F i = 0), the detector
noise relative to the expected shot noise level is evidently F o = (1−η). This is an
expression of the extreme fragility of sub-Poissonian ‘quiet’ light to attenuation
of the light beam and reveals why it cannot provide any significant advantages
in metrology or communications in the presence of even moderate losses.

(5a) Sub-Poissonian Photonic Noise

Fluctuations in photoelectron emission from a photocathode illuminated by a
steady light source were for many years regarded as conceptually similar to
thermionic emission fluctuations, being assumed to show the full shot noise
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due to Poissonian statistics. The direct detection of sub-Poissonian light from
semiconductor lasers (Yamamoto and Machida 1987) and light-emitting diodes
(Tapster et al . 1987; Edwards 1990) has emphasised the similarities between
photonic and electronic shot noise processes. These processes have a common
description when viewed as stochastic point processes (Teich and Saleh 1988). For
example, Edwards et al . (1999) noted that the equation describing the transfer
of quantum noise between a photon emitter and photo-detector is identical with
that describing the transfer of electronic shot noise between the emitter and
collector of a semiconductor bipolar junction transistor and the generation and
propagation of ‘quantum shot noise’ in a mesoscopic circuit (Shimizu and Sakaki
1991).

Fig. 4. Noise equivalent circuit representation of the Langevin rate equation (6) showing a
light emitting junction with junction capacitance C , differential resistance rsn, and equivalent
shot noise voltage source νsn, driven through external resistance Rs, coupled with quantum
efficiency η to a photon detector with partition noise current ip.

The first measurements of sub shot noise light from light-emitting diodes driven
from high impedance circuits were made by Tapster et al . (1987). These showed
4% noise reduction (F d = 0 ·96), below the full shot noise level. Edwards (1990,
1991, 1992) subsequently confirmed the validity of equation (16) for quantum
efficiencies η ≤ 0 ·3 and F i ≤ 0 ·05. The maximum, quantum efficiency-limited
noise reduction reported to date of 50%, obtained by Shinozaki et al . (1997)
is in agreement with that expected from equation (15) with complete noise
suppression (F i = 0) at the junction. These measurements support the shot
noise suppression model based on the simple rate equations (5) and (6). In
particular, the spectral dependence of the suppressed recombination noise has
been measured and is evidently (Fig. 5) the same as that of the corresponding
external current modulation characteristic, as expected for the leaky reservoir
recombination model (Zhang et al . 1995). However, it is also evident from Fig. 5
that the bandwidth of the suppressed noise varies with the junction current and
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does not equal B = 1/2πτ = 1/2πrC as would be expected from the simple
reservoir model. The model ignores the stochastic injection of minority charge
carriers across the space charge region of the junction into the active region where
radiative recombination takes place. This is a significant omission, particularly
as the size of the junction is reduced to mesoscopic dimensions and collective
Coulomb effects give way to the single electron Coulomb blockade phenomenon
(Imamoglu and Yamamoto 1993).

Fig. 5. Variation of the ‘squeezing bandwidth’ (the half-power bandwidth over which the
noise is suppressed below the full shot noise level) and the current modulation bandwidth
for a pump noise suppressed light-emitting junction diode with injection current showing the
macroscopic Coulomb blockade effect (Zhang et al. 1995).

Measurements (Kim et al . 1995; Zhang et al . 1995; Kobayashi et al . 1999) on
macroscopic and microscopic light-emitting junctions show that the bandwidth
over which noise reduction occurs is more accurately predicted by a stochastic
injection model in which transport across the depletion (space charge) layer and
its depletion capacitance play an important part.

(5b) Stochastic Injection Model of Light-emitting Junctions

These recent measurements on light-emitting microjunctions and mesojunctions
have led to a clarification of the diffusion based models of junction noise in
favour of stochastic injection models. In these recent models, stochastic injection
across the space charge layer into the active recombination region of the junction
is accounted for. These models employ a space charge smoothing mechanism
similar to that proposed by Teich and Saleh (1985) on the basis of the space
charge model of a thermionic vacuum diode (Section 2a).

The charging energy N ie2/2C dep at the junction associated with the injection
of N i electrons into the active layer raises the Coulomb barrier against subsequent
charge injection. This occurs providing N ie2/2C dep À kT , the thermal energy.
It results in a sub-Poissonian stream of anti-bunched electrons on a characteristic
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time scale τ i = rC dep = kTC dep/eI . As the injection current is lowered, this
time scale lengthens and exceeds the recombination time. The corresponding
bandwidth over which noise suppression occurs then becomes B = eI/ 2πkTC dep.
With low injection, this will be less than the recombination bandwidth as is evident
from Fig. 5. In this situation the suppression is due entirely to the ‘macroscopic
Coulomb blockade’ process (Imamoglu and Yamamoto 1993) since there can be
no significant storage of diffusing charge in the reservoir. The corresponding
rate equation is then equation (10) and the corresponding equivalent circuit is
Fig. 4, with C replaced by C dep, the depletion capacitance. In general the
macroscopic junction capacitance required to correctly model the noise suppression
measurements will evidently be the sum of the depletion (collective Coulomb
blockade) capacitance and the diffusion (leaky reservoir) capacitance.

(5c) Single Photon Generation

The successive injection of N i electrons (typically 108 or more) perturbs the
junction potential by an amount Ne/C dep À kT/e, the thermal voltage fluctuation,
and thus introduces antibunching and consequent shot noise suppression. If the
electron count or current integration time interval exceeds the characteristic time
τ i, then sub-Poissonian variance and sub shot noise current spectral densities
will be observed, although the traditional measure of anti-bunching, the second
order coherence function [G(2)

11 (0) from equation (11)] will not be significantly
different from unity since 〈n〉 is large, being of the order of N i. Moreover, as the
injection current is reduced the bandwidth of the suppressed noise will continue
to contract, requiring ever longer integration times in order to maintain low noise
levels. Full shot noise [F i(ω) = 1] will result if the integration time is made
much shorter than τ i.

However, if C dep and T are reduced to make e2/kTCdep À 1, the potential
drop due to the passage of single electrons may become sufficiently large relative to
the thermal fluctuations to regulate the flow of individual electrons via the single
electron Coulomb blockade effect (Averin and Likharev 1986). This requires a
sub-micron sized semiconductor nanojunction with junction capacitance of order
10−16 F operated at liquid helium temperatures.

If, in addition, the spontaneous recombination time can be made much shorter
than the electron inter-arrival time e/I (1 ns for I = 0 ·16 nA), then control over
the emission of single photons becomes possible. This is the basis of proposals
for realising ‘electron photon turnstiles’ utilising both single electron Coulomb
blockade and quantum confinement effects in mesoscopic semiconductor junctions
(Imamoglu and Yamamoto 1993, 1994). Quantum control of photon emission
would enable the generation of well-defined photon numbers (photon number
states) at specified times. Such ‘heralded’ photon number states have applications
in quantum communications and cryptography. For example, from equation (11),
an ideal single photon state source for quantum key distribution purposes would
be characterised by 〈n〉 = n = 1, Fn = 0 and G11

(2)(0) = 0. The inefficient
weak Poissonian sources currently used in quantum cryptographic systems are
typically characterised by 〈n〉 ≈ 0 ·1, Fn = 1 and G(2)

11 (0)= 1.
Proposed single-photon and single electron devices also have applications in

quantum computing, quantum communications and quantum metrology, as well
as in fundamental tests of quantum mechanical theory (Kim et al . 1999).
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6. Conclusions

Electronic and photonic shot noise remain significant impediments to the
performance of optoelectronic and mesoscopic systems. However, investigations
of sub-Poissonian light from macroscopic light-emitting semiconductor junctions
have highlighted the close parallels between electronic and photonic shot noise,
have resulted in a better understanding of the physical processes involved, and
have pointed the way to new noise suppression technologies on macroscopic and
mesoscopic scales.
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