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Abstract

Highly excited many-particle states in quantum systems (nuclei, atoms, quantum dots, spin systems,
quantum computers) can be ‘chaotic’ superpositions of mean-field basis states (Slater determinants,
products of spin or qubit states). This is a result of the very high energy level density of many-body states
which can be easily mixed by a residual interaction between particles. We consider the time dynamics of
wave functions and increase of entropy in such chaotic systems. As an example, we present the time
evolution in a closed quantum computer. A time scale for the entropy S(t) increase is tc ∼ τ0/(n log2n),
where τ0 is the qubit ‘lifetime’, n is the number of qubits, S(0) = 0 and S(tc) = 1. At t �  tc the entropy is
small: S ∼ nt2J2log2(1/t2J2), where J is the inter-qubit interaction strength. At t > tc the number of
‘wrong’ states increases exponentially as 2S(t). Therefore, tc may be interpreted as a maximal time for
operation of a quantum computer. At t >> tc the system entropy approaches that for chaotic eigenstates.

1. Introduction

Highly excited many-particle states in many-body systems can be presented as ‘chaotic’
superpositions of shell-model basis states—see the recent calculations for complex atoms
(Flambaum et al. 1994), multicharged ions (Gribakin et al. 1999), nuclei (Zelevinsky et al.
1996) and spin systems (Georgeot and Shepelyansky 1998). Indeed, the number of com-
binations to distribute n particles over m orbitals is exponentially large [m!/n!(m−n)! in a
Fermi system]. Therefore, the interval between the many-body levels D is exponentially
small and residual interaction between the particles mixes a huge number of the mean-
field basis states (Slater determinants) when forming eigenstates. The number of principal
basis components in an eigenstate can be estimated as Np ∼ Γ/D, where Γ is the spreading
width of a typical component that can be estimated using the Fermi Golden Rule. In such
chaotic eigenstates any external weak perturbation is exponentially enhanced. The
enhancement factor is ∼ ��Np  ∝  1/��D (see e.g. Flambaum and Sushkov 1984 and
references therein). This huge enhancement has been observed in numerous experiments
studying parity violation effects in compound nuclei (see e.g. the review by Mitchell et al.
1999 and references therein).

In a recent work (Georgeot and Shepelyansky 1999) the consideration of many-body
chaos has been extended to quantum computers (Feynman 1986; Shor 1994; Cirac and
Zoller 1995; Monroe et al. 1995; Calderbank and Shor 1996; Steane 1996, 1998; Cory et
al. 1996; Gershenfeld and Chuang 1997; Privman et al. 1998; Kane 1998; Loss and Di
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Vincenzo 1998; Nakamura et al. 1999; Brennen et al. 1999; Jaksch et al. 1999). Any
model of a quantum computer is somewhat similar to that of a spin system. Georgeot and
Shepelyansky (1999) modelled a quantum computer by a random Hamiltonian: 

(1)

where σi are the Pauli matrices for the qubit i and the second sum runs over nearest-
neighbour qubit pairs. The energy spacing between the two states of a qubit was rep-
resented by εi which was uniformly distributed in the interval [0.5∆0, 1.5∆0] (in fact the
particular form of the εi distribution is not important). Here εi can be viewed as the
splitting of nuclear spin levels in a local magnetic field, as discussed in recent experi-
mental proposals (Privman et al. 1998; Kane 1998). The different values of εi are needed
to prepare a specific initial state by electromagnetic pulses in nuclear magnetic resonance.
In this case the couplings Jij will represent the interactions between the spins, which are
needed for multi-qubit operations in the quantum computer. The total number of states in
this system is N = 2n, and the typical interval between the nearby energies of multiqubit
states is ∼ ∆0n2−n.

A rough estimate for the boundary of the chaos in the quantum computer eigenstates is
Jc ∼ ∆0/qn, where qn is the number of interacting qubit pairs (qn = 2n in a 2D square array
of ‘spins’ with only short-range interactions). This follows from a simple perturbation
theory argument: the mixing is strong when the perturbation is larger than the minimal
energy interval between the basis states which can be directly mixed by this perturbation
(see a detailed discussion of the boundary of chaos in many-body systems in Aberg 1990;
Shepelyansky and Sushkov 1997; Altshuler et al. 1997; Mirlin and Fyodorov 1997;
Weinmann et al. 1997; Jacquod and Shepelyansky 1997; Silvestrov 1997, 1998;
Flambaum and Izrailev 1997; Flambaum and Izrailev 2000). Numerical simulations in
Georgeot and Shepelyansky (1999) have shown that the boundary of the chaos in the quan-
tum computer eigenstates is Jc ∼− 0.4 ∆0/n. Above this point they observed a transition
from Poissonian to Wigner–Dyson statistics for the intervals between the energy levels.
For J < Jc one eigenstate is formed by one or few basis states built from the non-
interacting qubits (products of ‘up’ and ‘down’ states). For J > Jc a huge number of basis
states is required.

Because of the exponential laws it is convenient to study the entropy S of the
eigenstates (in many-body systems the entropy is S ∼− lnNp; see e.g. Flambaum and
Izrailev 1997). Georgeot and Shepelyansky (1999) observed a dramatic increase of the
eigenstate entropy in the transition from J < Jc to J > Jc; in fact, they defined Jc as a point
where S = 1. This process (Georgeot and Shepelyansky 1999) of the eigenstates becoming
chaotic with an increase of J, or number of qubits n, has been termed a ‘melting’ of the
quantum computer and has been assumed to lead to destruction of its operability. These
authors have stressed that this destruction of operability takes place in an isolated (closed)
system without any external decoherence process (one could complement this picture by
the ��Np enhancement of any weak external perturbation acting on the quantum
computer).

This straightforward conclusion may be misleading. ‘Theoretically’, this picture is
similar to that observed in nuclei and atoms. However, the ‘experimental’ situation is very
different. In nuclei and atoms, experiments have resolved particular many-body energy
levels. Therefore, the description of the systems based on a consideration of the eigen-
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states was an adequate one. In quantum computers the energy interval between the
eigenstates is extremely small. Georgeot and Shepelyansky (1999) estimated that the
average interval between the multi-qubit eigenstates for 1000 qubits, the minimum
number for which Shor’s (1994) algorithm becomes useful (Steane 1998) is D ∼ 10−298 K
(for a realistic ∆0 ∼ 1 K). Therefore, in the case of a quantum computer it is impossible to
resolve multiqubit energy levels. Temperature, or the finite time of the process τ, gives an
uncertainty in energy δE >> D. In this case the picture with chaotic eigenstates is not an
adequate one and we should consider the time evolution of the quantum computer wave
function and entropy. Quantum chaos in the eigenstates allows us to apply a statistical
approach to this consideration.

2. Time Evolution of the Chaotic Many-Body State

Exact (‘compound’) eigenstates |k� of the Hamiltonian H can be expressed in terms of
simple shell-model basis states |f � in many-body systems or products of qubits in a
computer:

(2)

These compound eigenstates |k� are formed by the residual interaction J; a +
s  are creation

or spin-raising operators (if the ground state |0� corresponds to spins down). The distri-
bution law for the coefficients C (k)

f  and the correlations between the different coefficients
in chaotic many-body systems have been studied in numerous publications, see e.g.
Flambaum et al. (1996) and references therein. Consider now the time evolution of the
system. Assume that initially (t = 0) the system basis state |i� (quantum computer in a state
with certain spins ‘up’) which can be presented as a sum over exact eigenstates:

(3)

Then the time-dependent wave function is equal to 

(4)

The sum is taken over the eigenstates k and basis states f ; we put � = 1. The probability
Wi = |Ai|

2 = |� i |Ψ(t)�|2 to find the initial state in this wave function is determined by the
amplitude

(5)

In the case where chaos has developed the number of the eigenstates in this sum is very
large and the distribution of the coefficients |Ci

(k) |2 is smooth. Therefore, we replaced the
summation over the eigenstates by the integration over their energies E ≡ E(k) and
introduced the ‘strength function’ Pi(E) which is also known in the literature as the ‘local
spectral density of states’, 

(6)
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where ρ(E) is the density of the eigenstates. In chaotic systems the strength function is
given by a Breit–Wigner-type formula (see e.g. Bohr and Mottelson 1969; Flambaum and
Izrailev 2000): 

(7)

(8)

Here δi is the correction to the unperturbed energy level Ei due to the residual interaction J,
ρf (E) ∼ qn/∆0 is the density of the ‘final’ basis states directly connected by the interaction
matrix element Hif with the initial state | i � . We see from the equations above that the time
dynamics is determined by the structure of the eigenstates.

It is easy to find Wi(t) for a small time t. Let us separate the energy of the initial state Ei
≡ Hii in the exponent and make a second order expansion in H−Ei or E−Ei in equation (5).
The result is 

(9)

(10)

(11)

Here (∆E)2 is the second moment of the strength function, and Jr is the r.m.s. value of the
interaction strength, Jr

2 ≡ Jij
2—

.  The first moment is equal to Ei = Hii [see e.g. Flambaum
and Izrailev (1997) and Flambaum and Izrailev (2000) where one can also find the
calculations of (∆E)2 and the spreading width Γ(E) for many-body systems].

Note that in the special case of a very strong residual interaction, J � ∆0, this short-
time dependence can be extended to a longer time using the exact solution for the case of
∆0 = 0 [in this case it is easy to calculate exp(−iHt)]:

 (12)

(13)

The strength function and density of states in this limit are also described by Gaussian
functions with variance σ2 = (∆E)2: 

(14)

(15)

The density of states remains Gaussian for ∆0 ≠ 0, with σ2 = n
—
ε 2 + (∆E)2 if there is no

gap in the single-qubit spectra (in Georgeot and Shepelyansky 1999 the ‘up’ and ‘down’
spectra were separated by a gap equal to ∆0). In general the unperturbed density of states
(J = 0) can be presented as a sum of the Gaussian functions (one should separate classes of

A
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states with a certain number of spins ‘up’). The interaction J in the Hamiltonian (1) mixes
these classes and makes the density closer to the single Gaussian function.

The limit at large time in the chaotic case can be obtained by calculation of the integral
in equation (5) in the complex E plain. We should close the contour of integration in the
bottom part of the complex plane (Im(E) < 0) to provide a vanishing contribution at infin-
ity. The limit at large time t is given by the pole of the strength function (7) closest to the
real E axis. If Γ and δi do not depend on E the integration gives the usual exponential
decay Wi = exp(−Γt) (Bohr and Mottelson 1969). However, the dependence of the spread-
ing width on energy E is necessary to provide the finite second moment (∆E)2 of the
strength function. [Note that in many-body systems the dependence Γ(E) can be
approximated by a Gaussian function, since the density of final states ρf(Ef) in equation
(8) is usually close to Gaussian (Flambaum and Izrailev 2000).] If Γ < ∆E the closest 
pole is given by Γ̃ = −2Im(Ep), where Ep is a solution of the equation Ep = Ei + δi(Ep) 
− i Γ(Ep)/2 with a minimal imaginary part. If Γ �  ∆E we have Γ̃ = Γ. As a result we
obtain an exponential dependence for large t: 

(16)

It is useful to have a simple extrapolation formula (valid for Γ < ∆E) between the cases of
the short time equation (10) and the long time equation (16): 

(17)

Now we can estimate the probabilities of the other components Wf . For short time or
small interaction J, other components can be populated due to direct transitions from the
initial state only: 

(18)

Here ωif = Ef − Ei . We stress again that this approximate equation does not contain
transitions between the small components. For example, it does not contain the width of
the state f; the width Γ is only to indicate some increase of the denominator and to clarify
the ‘short time’ condition that should include small ω i f t, Γt or ∆Et. For short time we have
Wf = |Hif |

2t2. Here Hif is equal to one of the Jij that produces a change of the state of a pair
of ‘spins’(qubits), transferring the initial state i to another state f. The result at longer times
is different for perturbative and chaotic regimes. In the perturbative regime where J  � ∆0/qn,
equation (18) is the final one. In the chaotic regime we can find the asymptotic expression
for long times. The projection of Ψ(t) in equation (4) to the component f gives 

(19)

∫
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(20)

Here Γt � Γi + Γf � 2Γ and 

(21)

At long time t, the different terms in Wf
fluct(t) rapidly oscillate and we can put———

Wf
fluct(t) = 0. Thus, asymptotically, the distribution of the components in the time-

dependent wave function is close to that in the chaotic eigenstates [see equations (6) and
(7)] with a doubled spreading width. 

3. Entropy Increase

It is convenient to define the entropy of a many-body state as a sum over the basis
components (a comparison with other definitions can be found in e.g. Flambaum and
Izrailev 1997): 

(22)

Initially, we have only one component, Wi = 1, and the entropy is equal to zero. It is easy to
obtain a short-time estimate for the entropy using equations (10), (11) and (18): 

(23)

We see that the initial increase of the entropy is relatively small (∼ t2), however, it is pro-
portional to the number of qubits n.

The criterion of a quantum computer ‘melting’ used in Georgeot and Shepelyansky
(1999) is the entropy S = 1. We can extend the short-time consideration to include this
point. For a short time we have some decrease of the initial component and population of
the components directly coupled to the initial one. The number of such small components
is equal to the number of interacting pairs (qn) in the Hamiltonian (1), since each pair can
change its state due to interaction and this leads to a different many-body state. Using the
normalisation condition Σs Ws = 1, we obtain an estimate

—
Wf = (1−Wi)/nf , where nf is

the ‘principal’ number of the final components. Initially we have nf = qn. This gives us the
following approximate expression for the entropy: 

(24)

The last approximate expression is an estimate with logarithmic accuracy, assuming
log2(nf) is large.
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The condition S = 1 combined with equation (17) for Wi(t) and equation (24) for the
entropy S(t) gives 

(25)

This means that the ‘melting’ happens when the probability to be in the initial state Wi
is still close to 1 [since log2(nf ) is large]. The loss of operability of the quantum computer
is due to the admixture of a large number of the small components (‘wrong’ basis states).

We should note that, strictly speaking, the argument of the log2 may differ from
nf = qn, since the point tc can be outside the short time approximation. However, the
estimate in equation (25) with log2nf � log2n is valid with logarithmic accuracy [for
example, a more accurate estimate in the case of Γ � ∆E is nf � qnΓ/∆0; this follows from
equation (18)].

Equation (25) allows us to obtain a simple estimate for the maximal operational time
tc: 

(26)

In the case of Γ � ∆E we have 

(27)

Here τ0 = �/Γ0 is the ‘lifetime’ related to a single qubit, Γ0 = Γ/n; recall that Γ is pro-
portional to the number of qubits n. More accurate results can be obtained numerically
using expressions for Wi and Wf  presented above.

At this point we can say something about the effects of the environment. These effects
lead to ‘depolarisation’ of a qubit, which means a nonzero probability of the opposite spin
state. If this probability is small we can speak about the probabilities of the population of n
many-qubit basis states. Each admixed basis state in this case has one of the qubit states
different from the initial state. To account for this effect one may use a real (experimental)
qubit lifetime τ0 in the estimate (27).

For t > tc the higher orders in the Hif
2 t2 expansion become important and the number of

the small components increases exponentially: each state generates qn new states. This
corresponds to an approximately linear increase in the entropy. At t � tc we can use the
asymptotic form (20) of the component distribution. It is twice as broad (Γt = 2Γ) as the
basis component distribution of chaotic stationary states. This means that the asymptotic
number of the principal components is equal to Np(t) =2 N p

(k) , where N p
(k)  � Γ/D is the

number of principal components in a chaotic eigenstate. It is easy to calculate the entropy
in this case. From the normalisation condition Σs Ws = 1, it follows that 

—
Ws =  1/Np. Then

we get 

(28)

Thus, the asymptotic value of the entropy is S(t � tc) = log2(2N p
(k) ) = S(k) + 1, where

S(k) = log2Np
(k)  is the entropy of a chaotic eigenstate. Note that it is smaller than the

maximal possible entropy Smax = log2 2n = n. This is due to localisation of the wave
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function within the energy shell centred at the energy of the initial state Ei with the width
2Γ. 

4. Conclusion

The time dependence of the closed quantum computer wave function is different in the
non-chaotic and chaotic regimes. In the non-chaotic case J � ∆0/n, the number of
principal components Np � 1 and the wave function remains localised near the initial state
[as pointed out in Georgeot and Shepelyansky (1999) the energy level density of the many-
qubit states can be exponentially high even in this case]. An increase in the number of
qubits n leads to a transition to a chaotic regime where J > ∆0/n. In this case one can
operate the quantum computer within a limited time t < tc = τ0/nlog2n, where τ0 is the
‘lifetime’ of one qubit. For t > tc it is hardly possible to operate the quantum computer,
since in this case one faces a large increase in the entropy S(t) and a very fast exponential
increase of the number of ‘wrong’ states Np(t) = 2S(t). The asymptotic value of the entropy
is then close to that for chaotic eigenstates. 

A similar picture for the entropy increase is expected in other many-body systems. For
example, one can consider a decay of a single-electron wave function in a many-electron
quantum dot. In this case we have tc ~ τ/log2 nf , where nf is the effective number of final
states that contribute to the decay width Γ = �/τ. One may also speculate about the
‘entropy’ increase for decay of a single-particle wave function in a chaotic quantum
billiard or disordered system using expansion of this wave function in the plane wave basis
or the orbital angular momentum basis.
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