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Abstract

 

The effect of a squeezed vacuum on the optical bistable and multistable behaviour of a system of 

 

N

 

 three-
level atoms is investigated, where the quantum interference between the atomic transition paths is
considered. It is shown that the squeezed vacuum can profoundly affect the output field of this system. A
strong squeezed vacuum can lead to multistable behaviour, even in the case where the cooperation
parameter 

 

C

 

 is so small that the input–output relationship curve is monotone in the absence of the
squeezed vacuum. The optical multistability is most significant when the quantum interference is perfect.
The bistability and multistability can be controlled by the squeezing photon number and the strength of the
two-photon correlation.

 

1.  Introduction

 

Since Szöke 

 

et al.

 

 (1969) suggested that optical bistability can be realised by a nonlinear
medium in a cavity, optical bistability and multistability have been extensively investi-
gated (see e.g. Lugiato 1984 and references therein). In practice, these systems have great
potential as devices because they can function as transistors, memory elements, pulse
shapers, etc. Optical bistability and multistability, remarkable examples of cooperative
behaviour (Haken 1977) in open systems far from thermal equilibrium, have also aroused
wide theoretical interest.

As nonclassical states of electromagnetic fields, the significance of the squeezed state
(Loudon and Knight 1987) has been discussed extensively in the literature, along with
their generation, detection, and physical properties (see e.g. Walls 1983; Slusher 

 

et al.

 

1985; Wu 

 

et al.

 

 1986; Orozco 

 

et al.

 

 1987; Shapiro 

 

et al.

 

 1986). A squeezed vacuum can be
produced successfully in the laboratory. In practice, a degenerate parameter amplifier has
been proved to be the most successful source of squeezed light [see e.g. the two special
issues on the squeezed state published in 1987 in 

 

J. Mod. Opt.

 

 

 

34

 

 (no. 6/7) and 

 

J. Opt. Soc.
Am.

 

 B 

 

4

 

 (no. 10)]. As shown by Gardiner (1986), the squeezed vacuum leads to two dif-
ferent dipole decays constants, and affects the rate of the atomic population of atomic
system as well. The effects of the squeezed vacuum on three-level atoms have also been
examined (see e.g. Ficek and Drummond 1991, 1993; Ferguson 

 

et al.

 

. 1995). Because the
squeezed vacuum can have a strong effect on the atomic transition, optical bistability with
squeezed vacuum input has its own distinctive features. The tunneling time, for example,
with a squeezed vacuum input can be as long as 2 s, instead of around 0.1 s as in an
ordinary vacuum (Savage and Walls 1986). Bergou and Zhao (1995) have investigated the
effects of the squeezed vacuum input on the bistable behaviour of a system of two-level
atoms and found that a squeezed (stretched) vacuum input field tends to increase
(decrease) the range of optical bistability. The effects of squeezed state fields on optical
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bistability have also been investigated by Singh 

 

et al.

 

 (1992) and Galatola 

 

et al.

 

 (1991). It
should be noted that they have only analysed the case of two-level atoms. For multilevel
systems, however, there must be some interesting new features due to their complexity.

In this paper we discuss the input–output relationship from the system of 

 

N

 

 homogene-
ously broadened three-level atoms in the 

 

�

 

 configuration which is pumped simultaneously
by a coherent input field and a squeezed vacuum field (see Fig. 1). For simplicity, we
assume that mirror 3 and 4 have 100% reflectivity, and call 

 

R

 

 and 

 

T

 

 (with 

 

R 

 

+ 

 

T 

 

= 1) the
reflection and transmission coefficients of mirrors 1 and 2. On one hand, our three-level
system is similar to the two-level system discussed by Bergou and Zhao (1995); on the
other hand, there are interesting differences between the previous study and the present
one–for example, in the present paper the effect of the quantum interference between
atomic transition paths on the input–output relationship is discussed.

The three-level model may be better connected with the real word than the two-level
model. In our travelling-wave cavity system the coherent driving field and the squeezed
vacuum field are injected via different ports, rendering the scheme more feasible experi-
mentally than that presented by Galatola 

 

et al.

 

 (1991). We neglect the coupling between
the coherent pumping field and the squeezed vacuum because it does not contribute to the
equation of motion for the atomic variables. Making use of numerical methods, we find
that the squeezed vacuum input tends to significantly increase the range of optical bistabil-
ity, and even leads to optical multistability. We also find that the quantum interference
effect is crucial to the multistability.

 

2.  Maxwell–Bloch Equations

 

We consider a three-level atom (see Fig. 2) with one excited state | 3

 

�

 

, and two lower states
| 1

 

�

 

 and | 2

 

�

 

. The excited state | 3

 

�

 

 decays to the lower-lying state  | 1

 

� 

 

(| 2

 

�

 

) by spontaneous
emission with rate 

 

γ

 

1

 

 (

 

γ

 

2

 

). The transition frequencies are 

 

ω

 

1

 

 and 

 

ω

 

2

 

. These transitions are
associated with electric dipole matrix elements 

 

µ

 

 and 

 

µ′ 

 

(assumed real for simplicity)
respectively, whereas the transition between the lower states is forbidden in the electric
dipole approximation (

 

µ

 

12 

 

= 0). The coherence transfer rates 

 

γ

 

12

 

 and 

 

γ

 

21

 

 are associated
with the quantum correlation between the | 1

 

�

 

 − 

 

| 3

 

�

 

 and | 2

 

�

 

 − 

 

| 3

 

�

 

 transition pathways, and
are strongly dependent upon the orientations of the atomic dipole polarisations. In this
paper we take 

 

γ

 

12

 

 = 

 

γ

 

21

 

 =  

 

r

 

����

 

  

 

γ

 

1

 

 

 

γ

 

2

 

,  where 

 

r

 

 measures the strength of  quantum
interference, and 0 

 

�

 

 

 

r 

 

�

 

 1. Here 

 

r

 

 = 1 corresponds to the case where the interference
strength is perfect and 

 

r 

 

= 0 to the case where the interference is absent. The frequency of
the coherent input field is 

 

ν

 

, and the carrier frequency of the squeezed input field is 

 

ω

 

s

 

 .
For simplicity, we shall assume that 

 

ω

 

s

 

 is equal to 

 

ν

 

. The slowly varying amplitude of the
coherent field is 

 

E

 

 = |

 

 E 

 

|

 

exp

 

(

 

i

 

φ

 

L

 

).

Fig. 1. Representation of the system of the cavity containing N three-level atoms with coherent
pumping and squeezed vacuum input and the boundary condition for the traveling-wave cavity.
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The properties of the squeezed vacuum field are described by the expressions

 (1)

in which the parameter 

 

n

 

 is the squeezing photon number, 

 

m

 

 measures the strength of
the two photon correlation, and 

 

φ

 

s

 

 is the phase of the squeezed vacuum. Here 

 

m

 

 and 

 

n

 

obey the relation 

 

m

 

= = 

 

η

 

�����

 

n

 

(

 

n

 

 + 1),  where the quantity  

 

η

 

 measures  the strength of
the two-photon correlation in the squeezed vacuum (0 

 

�

 

 

 

η

 

 

 

�

 

 1). The case 

 

η

 

 = 1 corres-
ponds to perfect correlation and 

 

η 

 

< 1 to imperfect correlation.
Using the rotating wave and Born–Markoff approximations and the Scully–Lamb tech-

nique to sum over all the atoms, the Maxwell–Bloch equations can be derived as follows:

 (2)
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Fig. 2. Atomic level diagram.
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 (3)

Here 

 

ω

 

21 

 

� 

 

ω

 

2 

 

−

 

 

 

ω

 

1

 

, and the frequency detuning is 

 

δ

 

1

 

 

 

�

 

 ω

 

1 

 

−

 

 

 

ν

 

, 

 

δ

 

2

 

 

 

�

 

 

 

ω

 

2

 

 

 

− ν

 

. For perfect
resonance and steady state, taking into account 

 

�

 

 b � = 0, we can obtain the boundary con-
ditions as follows:

 (4)

where EI and ET are the input field and the output field respectively and L is the length of
the atomic sample.

In order to investigate the bistable behaviour for this ring cavity, similar to Harshawardhan
and Agarwal (1996), we give the absorption coefficient α for the Λ medium as

 (5)

where

 (6)

Furthermore, the usual cooperation parameter C is defined as C � αL/2T.
Setting all these derivatives with respect to time in equations (2) equal to zero for the

steady state, and taking µ′ = µ for simplicity in the following, we can obtain the field E as

 (7)

where ρ31 + ρ32 can be obtained from the steady-state solution of equations (2) and
depends on the atomic decay rates, the Rabi frequency of the coherent field and the
squeezed vacuum field, as well as the frequency detunings.

In the mean-field limit (Gong et al. 1997), using the boundary conditions (4), and nor-
malising the fields by letting y = µEI /γ ��T ,  and x = µET / γ ��T  we can get the input–
output relationship

 (8)

In the following section, we will use numerical and graphical methods to investigate the
effect of the squeezed vacuum on the bistable behaviour according to the steady-state
solution of equations (2) and the input–output relationship (8).

3.  Numerical Results

Numerical analyses show that the squeezed vacuum input can dramatically change the
output field from the three-level atomic system. It can significantly increase the range of
the optical bistability and cause optical multistability.

Fig. 3 presents the effect of a perfect squeezed vacuum input on the input–output rela-
tionship with a small cooperation parameter C = 5. It is easy to see that in the case of the
usual vacuum input n = 0 there is no bistable or multistable behaviour (see curve 1 in Fig.

∂
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3). In the case of the squeezed vacuum input n ≠ 0, however, bistable or multistable
behaviour appears. When the squeezed vacuum field is weak (i.e. n is small), only
bistability appears, and in this case the hysteresis cycle increases with n. When the
squeezed vacuum is strong enough, multistability appears. The feature of the optical
multistability is dependent on the intensity of the squeezed vacuum. This is because the
squeezed vacuum input field has a strong effect on the atomic transitions due to the two-
photon correlation of the field. This can also be seen from Figs 4 and 6.

Fig. 3. Input–output relationship with normal vacuum (n = 0) and perfect correlation squeezed vacuum
input for C = 5, γ1 = 0.2γ, γ2 = 0.8γ, r = 1, δ1 = 2.2γ and δ2 = −2.2γ. Curve 1 corresponds to n = 0, curve 2
to n = 0.05, curve 3 to n = 0.1, curve 4 to n = 0.3 and curve 5 to n = 0.37.

Fig. 4. Input–output relationship with normal vacuum (n = 0) and perfect correlation squeezed vacuum
input for C = 9, γ1 = 0.1γ, γ2 = 0.9γ, r = 1 δ1 = 2.2γ and δ2 = −2.2γ. Curve 1 corresponds to n = 0, curve 2
to n = 0.1 curve 3 to n = 1, curve 4 to n = 2 and curve 5 to n = 2.2.
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Fig. 4 presents the strong effect of the squeezed vacuum input on the optical bistability
and the multistability in the case of larger C, where optical bistability appears even in the
case of the usual vacuum input (n = 0). It is easy to see that in the case of small n, with an
increase in the squeezing parameter n, the hysteresis cycle becomes wider. In the case
where n is large enough, significant optical multistability appears. This is also because the
squeezed vacuum input has a strong effect on the atomic transitions due to two-photon
correlation of the field.

Figs 3 and 4 show that a strong squeezed vacuum input can lead to multistability.
These figures also show that one can control the optical multistability and optical bistabil-
ity by the squeezing photon number n.

Fig. 5 shows the effect of quantum interference on the multistability in the presence of
a perfect squeezed vacuum input. It is easy to see from this figure that the quantum inter-
ference in this three-level system has a strong effect on the input–output relationship. In
the case of n = 2, γ1 = 0.1γ, γ2 = 0.9γ, δ1 = 2.2γ and δ2 = −2.2γ, there is no bistability and
multistability in the absence of quantum interference r = 0. In the case of r = 0.9, obvious
bistability appears and the hysteresis cycle becomes wider when the quantum interference
strength increases. When r approaches its maximal value 1 (see e.g. r = 0.98), obvious
multistability appears. This figure shows that the quantum interference between different
atomic transition paths is crucial to the optical multistability.

Fig. 6 represents the input–output relationship with a perfect and imperfect correlation
squeezed vacuum input, where C = 9, γ1 = 0.1γ, γ2 = 0.9γ, r = 1, δ1 = 2.2γ and δ2 = −2.2γ.
It is easy to see that optical bistability and multistability is sensitive to the strength of two-
photon correlation of the squeezed vacuum η. Significant multistability appears in the
case where the squeezed vacuum is perfect (η = 1) or nearly perfect (η � 1).

With a decrease in η, the multistability and bistability disappear. Fig. 6 shows that the
two-photon correlation of the squeezed vacuum has a strong effect on the multistability

Fig. 5. Effect of quanum interference on multistability in the presence of a perfect squeezed vacuum
input. Curve 1 corresponds to r = 0, curve 2 to r = 0.9, curve 3 to r = 0.95, curve 4 to r = 0.98 and curve 5
to r = 1, where C = 9, n = 2, γ1 = 0.1γ, γ2 = 0.9γ, δ1 = 2.2γ and _2 = δ2.2γ.
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and the bistability. Thus, optical multistability and bistability can be controlled by the
intensity of the two-photon correlation of the squeezed vacuum. In addition, all numerical
results show that the multistability appears only in the case of a nearly perfect squeezed
vacuum, which shows that the multistability is a nonclassical effect.

4.  Summary

We have investigated the optical bistable and multistable behaviour of a system of N
homogeneously broadened Λ-type three-level atoms pumped by a coherent input field and
coupled to a squeezed vacuum field. Using numerical calculations, we find that the
squeezed vacuum input can not only significantly increase the range of the optical bista-
bility, but can also cause optical multistability. The squeezed vacuum can cause optical
multistability even in the case of a small cooperation parameter C, where neither optical
bistable nor multistable behaviour appears in the absence of a squeezed vacuum input. We
also found that the quantum interference between atomic transition paths is crucial to
optical multistability. Significant multistability appears only in the case of perfect
quantum interference. Properties of the bistable and multistable behaviour of such a sys-
tem can be controlled by the squeezing number n and two-photon correlation m of the
squeezed vacuum. Our model is suitable for controlling optical bistability and multi-
stability.
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