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Abstract

The aim of the present paper is to investigate some globally pathological features of a
class of static planary symmetric exact solutions with a G6-group of motion, namely with
g44 = − sinh2(αz), by means of the null oblique geodesics and Penrose diagram. Finally,
we derive general expressions for the Aµ(x, y, z)µ=1,3 components of the vector potential,
satisfying the source-free Maxwell equations and the Lorentz condition, pointing out the
influence of the global pathological properties on the behaviour of magnetostatic fields in such
universes.

1. The Geometry of the Model

The properties of globally pathological manifolds and the behaviour of different
matter sources in such universes have always been of real interest because of
their implications for a better understanding of gravity and spacetime (Brans and
Dicke 1961; Hoyle and Narlikar 1964; Guth 1981; Linde 1982; Collins et al. 1989).
In addition to naked singularities, cosmic strings, Bianchi spacetimes, dynamical
isotropisation, hollow cylinders and topological domain walls (Vilenkin and Shellard
1994; Clément and Zouzou 1994; Wang and Letelier 1995 and references therein),
black holes in less than four dimensions have been recently investigated. In
this respect, the geodesic motion in BTZ black holes, with curvature-regular
spacetimes but strongly singular in their causal structure (Banados et al. 1993),
leads to somewhat unexpected features. For instance, in the 2 + 1 anti-de Sitter
universe, this new type of black hole can only differ from the background in
its global properties through identification of points by means of some discrete
subgroup of its isometries. The point is that some past-continuations go in closed
timelike curves and/or additional Taub–Nut pathologies at the metric singular
‘point’.

The aim of this paper is to investigate the global pathology of a class of static
planary symmetric exact solutions with a G6-group of motion and to derive the
essential components of a magnetostatic field in this universe.

As investigated previously (Dariescu et al. 1997), we deal with the metric

ds2 = δµν dx
µdxν − e2f(x3)(dt)2 (1)
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proposed for the uniform and galactic fields (Romain 1963). Introducing the
dually-related pseudo-orthonormal tetrads {ea, ωa}a=1,4 as

~eµ = ∂µ , e4 = e−f(z)∂t ; ωµ = dxµ , ω4 = ef(z)dt (2)

and employing the Cartan formalism it yields

R3434 = −R33 = R44 = − 1
2R = f|33 + (f|3)2 (3)

and the essential components of the Einstein tensor

GAB =
[
f|33 + (f|3)2

]
δAB , A, B = 1, 2 . (4)

It clearly results in the (2 + 2)-decomposition M4 = R2 ×M2, while G44 = 0
suggests (besides the vacuum as the only conventional source) a combined
matter-source with the total energy–momentum tensor given by

Tab = λ[ηa4 ηb4 − ηa3 ηb3 + ηab] , with λ = constant > 0 . (5)

This could describe a universal dust, with ρ = λ, stuck on a z-directed global
cosmic string of negative ‘tension’ µ = −λ imbedded in a static universe of
negative cosmological constant, Λ = −κ0 λ. With (4) and (5), the Einstein
equations turn into

f|33 + (f|3)2 = α2 , where α = (κ0λ) 1
2 , (6)

whose general solution

f(z) = ln
[
c+e

αz + c−e
−αz] , (7)

with particular choices for the constants c±, brings the metric (1) to the
‘hyperbolic’ cases

ds2 = δAB dx
A dxB + (dz)2 − sinh2(αz)(dt)2 (8)

and the one with g44 = − cosh2(αz), whose pathological properties have been
the subject of previous investigations (Dariescu et al. 1997).

In the following we shall focus our attention on the metric (8), defined on
M4 = R2 ×M2 ⊂ R2 ×R − {0} ×R, having {z = 0} as a singular point. For
the Killing vector fields one gets, besides the usual generators of V II0 (which
correspond to the Euclidian R2), the following generators:

X(4,5) = e±αt [∂z ∓ coth(αz)∂t] ; X(6) = ∂t (9)

of G ′3 acting on M2.
According to the Estabrook–Ellis–MacCallum method of enumerating all the

G3 groups (Kramer et al. 1980), our G ′3, possessing the invariant properties
Aµ = 0, Nµν = 1

2 C
µ
·αβ ε

αβν ⇒ rank(N) = 3 and |σ| = 1, belongs to the Bianchi
type V III and consequently G6 = V II0 × V III.
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2. Null Oblique Geodesics and Penrose Diagram

In order to investigate some of the globally pathological features of the spacetime
described by (8), let us analyse the structure of ‘oblique’ null trajectories. From
the ‘optical’ Lagrangian

Φ = sinh−2(αz) (ẋ2 + ẏ2 + ż2) = 1 , (10)

one gets by taking a spherically symmetric light source in (0, 0, z0) at t = 0,

ẋ =
sinχ cosλ
sinh(αz0)

sinh2(αz) , ẏ =
sinχ sinλ
sinh(αz0)

sinh2(αz) ,

ż = ± sinh(αz)

[
1− sin2 χ sinh2(αz)

sinh2(αz0)

] 1
2

, (11)

where χ and λ are the usual angular coordinates on S2,
For the upward (oblique) null trajectories, i.e. 0 ≤ χ < π/2, there always exist

the turning points

z∗ =
1
α

arcsinh
sinh(αz0)

sinχ
, (12)

while for the downward ones, with π/2 < χ = π − γ ≤ π, it obviously results in

αρ = arcsin
sin γ cosh(αz0)√

sinh2(αz0) + sin2 γ

− arcsin
sin γ cosh(αz)√

sinh2(αz0) + sin2 γ
, (13)

with 0 ≤ z ≤ z0. As can be noticed, any of the trajectories intersects the
{z = 0} −R2 singular plane within the range

0 ≤ ρ ≤ b , with b =
1
α

[
π

2
− arcsin

1
cosh(αz0)

]
. (14)

For the light rays emitted upward, with χ in between 0 and π/2, it yields by
integrating dρ/dz from z0 to z ≤ z∗ ,

αρ = arcsin
sinχ cosh(αz)√

sinh2(αz0) + sin2 χ

− arcsin
sinχ cosh(αz0)√

sinh2(αz0) + sin2 χ
. (15)
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Reaching the turning point, each ray goes down toward the plane {z = 0},
following the equation

ρ(z) =
1
α

(
π − arcsin

sinχ cosh(αz0)√
sinh2(αz0) + sin2 χ

− arcsin
sinχ cosh(αz)√

sinh2(αz0) + sin2 χ

)
. (16)

Consequently, at z = 0, the disk of radius b flashed by the downward rays is
subsequently extended by the circular sector of upper maximal radius π/α flashed
by all of the incoming light rays which have already reached their turning points.
The corresponding oblique null trajectories are shown in Fig. 1.

Fig. 1. The oblique null
trajectories.

As for the Penrose diagram in Fig. 2, since the first submanifold in the
decomposition of M4 is the usual Euclidean R2, the global pathology, especially
with respect to its conformal structure at infinity, will be mainly revealed by the
Lorentzian M2 submanifold of metric

ds2
L = (dz)2 − sinh2(αz) (dt)2 , (17)

allowing us to define the compactified Penrose null coordinates

u =

{
π + arctanu− , z ≤ 0

arctanu+ , z ≥ 0
; v =

{
−π + arctan v− , z ≤ 0

arctan v+ , z ≥ 0

on the whole extension of M2.
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Fig. 2. The Penrose diagram.

There are no spatial infinities at z = ∓∞. Instead, one gets the ultimate
universal lines (of the timelike fundamental observers) joining i− to i+. Obviously,
the z =const. timelike (universal) lines are not timelike geodesics. The latter
are represented by concave lines, orthogonally joining the two null horizons H−

and H+, exhibiting past and future event horizons respectively. These (timelike)
geodesics practically never reach the {z = ∓∞} 2-planes and quite interestingly,
with respect to the (z, t)-parametrisation, the role of the spacial infinity i0 is
actually played by the {z = 0}-space-like 2-surface.

3. The Magnetic Field

The source-free Maxwell equations

MAa = gbcAa;bc = RabA
b , (18)

in the case of a magnetostatic field become

∆AB + α coth(αz)
∂AB

∂z
= 0, B = 1, 2 (19)

∆A3 + α coth(αz)
∂A3

∂z
− α2

sinh2(αz)
A3 = 0 . (20)

In the simplest case n = 1, 2, 3, . . ., introducing the spectral variables

k = α
√
n(n+ 1) cosψ; q = α

√
n(n+ 1) sinψ , (21)
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the system (19)–(20) possesses the following general solutions:

AB =
∑
n=0

∫ 2π

0

dψ
[
aB(n, ψ) ei(kx+qy) + āB(n, ψ) e−i(kx+qy)

]
× {Pn(cosh(αz)) , Qn(cosh(αz))} , (22)

A3 =
∑
n=1

∫ 2π

0

dψ
[
a3(n, ψ) ei(kx+qy) + ā3(n, ψ) e−i(kx+qy)

]
×
{
P1
n(cosh(αz)) , Q1

n(cosh(αz))
}
, (23)

expressed in terms of the linearly-independent Legendre adjoint functions of the
second kind (Gradshteyn and Ryzhik 1965)

Pmn (w) =
1

Γ(1−m)

(
w + 1
w − 1

)m/2
F

(
−n , n+ 1 ; 1−m ;

1− w
2

)
, (24)

Qmn (w) =
emπi Γ(m+ n+ 1) Γ

(
1
2

)
2n+1 Γ

(
n+ 3

2

) (w2 − 1)m/2 w−m−n−1

× F
(
m+ n+ 2

2
,
m+ n+ 1

2
; n+ 3

2 ;
1
w2

)
, (25)

where F (α, β; γ; w) are the usual hypergeometric functions and w = cosh(αz).
Using the functional relations

d

dz
{P1

n , Q1
n} + α coth(αz) {P1

n , Q1
n}

=
α√
w2 − 1

[
(w2 − 1)

d

dw

{
P1
n , Q1

n

}
+ w

{
P1
n , Q1

n

} ]
, (26)

(w2 − 1)
d

dw

{
P1
n , Q1

n

}
+ w

{
P1
n , Q1

n

}
= n

[{
P1
n+1 , Q1

n+1

}
− w

{
P1
n , Q1

n

}]
, (27)

{
P1
n+1 , Q1

n+1

}
− w

{
P1
n , Q1

n

}
(n+ 1)

√
w2 − 1 {Pn , Qn} , (28)

the general Lorentz condition

∂A1

∂x
+
∂A2

∂y
+
∂A3

∂z
+ αA3 coth(αz) = 0 (29)
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becomes explicitly

∑
n=1

√
n(n+ 1) {Pn(cosh(αz)) , Qn(cosh(αz))}

∫ 2π

0

dψ

×
{[

cosψ a1(n, ψ) + sinψ a2(n, ψ)− i
√
n(n+ 1) a3(n, ψ)

]
ei(kx+qy)

−
[
cosψ ā1(n, ψ) + sinψ ā2(n, ψ) + i

√
n(n+ 1) ā3(n, ψ)

]
e−i(kx+qy)

}
= 0 .

As it can be seen, the following polar-type structure of the spectral amplitudes
{aµ(n, ψ)}µ=1,3,

a1(n, ψ) = i c(n) cosψ , a2(n, ψ) = i c(n) sinψ ⇒ a3 =
c(n)√
n(n+ 1)

, (30)

gives all of the vacuum ‘longitudinal’ modes (of magnetic type), since

BA ∼
{
∂Pn
∂z
− αP1

n ,
∂Qn
∂z
− αQ1

n

}
≡ 0, B3 ≡ 0 . (31)

Working with the most general algebraic relation between the spectral coefficients
that satisfy the Lorentz condition

a3(n, ψ) = − i√
n(n+ 1)

[a1(n, ψ) cosψ + a2(n, ψ) sinψ] , (32)

the solutions (22) and (23) turn into

AB =
∑
n=0

{Pn , Qn}
∫ 2π

0

dψ
[
aB(n, ψ) ei(kx+qy) + āB(n, ψ) e−i(kx+qy)

]
,

A3 =
∑
n=1

{
P1
n , Q1

n

} i√
n(n+ 1)

(33)

×
∫ 2π

0

dψ
{
− [a1(n, ψ) cosψ + a2(n, ψ) sinψ] ei(kx+qy)

+ [ā1(n, ψ) cosψ + ā2(n, ψ) sinψ] e−i(kx+qy)
}
. (34)

Now, putting everything together and employing the U(1)-gauge covariant
definition of the Maxwell tensor F = dA, we are in the position to write the
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observable ~B components as

B1 = α
∑
n=1

∫ 2π

0

dψ cosψ
{

[a1(n, ψ) sinψ − a2(n, ψ) cosψ] ei(kx+qy)

+ [ā1(n, ψ) sinψ − ā2(n, ψ) cosψ] e−i(kx+qy)
}{
P1
n , Q1

n

}
, (35)

B2 = α
∑
n=1

∫ 2π

0

dψ sinψ
{

[a1(n, ψ) sinψ − a2(n, ψ) cosψ] ei(kx+qy)

+ [ā1(n, ψ) sinψ − ā2(n, ψ) cosψ] e−i(kx+qy)
}{
P1
n , Q1

n

}
, (36)

B3 = − iα
∑
n=1

√
n(n+ 1)

∫ 2π

0

dψ
{

[a1(n, ψ) sinψ − a2(n, ψ) cosψ] ei(kx+qy)

− [ā1(n, ψ) sinψ − ā2(n, ψ) cosψ] e−i(kx+qy)
}
{Pn, Qn} . (37)

Finally, assuming a1 = sinψ and a2 = − cosψ, the magnetostatic field components
(35)–(37) are generically represented in Fig. 3 as functions of x and z, for the
P and Q modes corresponding to n = 2.

Fig. 3. Generic representation of the magnetostatic field components given by equations
(35)–(37), for a1 = sinψ, a2 = − cosψ and y = 0. The left and right surfaces represent the
P and Q parts for n = 2 respectively.
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