CSIROP O B L I S H I N G

Australian Journal of Physics

Volume 53, 2000

© CSIRO Australia 2000

A journal for the publication of
original research in all branches of physics

www.publish.csiro.au/journals/ajp

All enquiries and manuscripts should be directed to
Australian Journal of Physics
CSIRO PUBLISHING
PO Box 1139 (150 Oxford St)
Collingwood
Telephone: 61396627626
Vic. 3066
Facsimile: 61396627611
Australia Email: peter.robertson@publish.csiro.au

Published by CSIRO PUBLISHING
for CSIRO Australia and
the Australian Academy of Science

Magnetic Fields in Spaces with VII $_{0} \times$ VIII Isometries

Ciprian Dariescu and Marina-Aura Dariescu
Department of Physics, Al. I. Cuza University, Bd. Carol I, no. 11, 6600 Iaşi, Romania. email: marina@uaic.ro

Abstract

The aim of the present paper is to investigate some globally pathological features of a class of static planary symmetric exact solutions with a G_{6}-group of motion, namely with $g_{44}=-\sinh ^{2}(\alpha z)$, by means of the null oblique geodesics and Penrose diagram. Finally, we derive general expressions for the $A_{\mu}(x, y, z)_{\mu=\overline{1,3}}$ components of the vector potential, satisfying the source-free Maxwell equations and the Lorentz condition, pointing out the influence of the global pathological properties on the behaviour of magnetostatic fields in such universes.

1. The Geometry of the Model

The properties of globally pathological manifolds and the behaviour of different matter sources in such universes have always been of real interest because of their implications for a better understanding of gravity and spacetime (Brans and Dicke 1961; Hoyle and Narlikar 1964; Guth 1981; Linde 1982; Collins et al. 1989). In addition to naked singularities, cosmic strings, Bianchi spacetimes, dynamical isotropisation, hollow cylinders and topological domain walls (Vilenkin and Shellard 1994; Clément and Zouzou 1994; Wang and Letelier 1995 and references therein), black holes in less than four dimensions have been recently investigated. In this respect, the geodesic motion in $B T Z$ black holes, with curvature-regular spacetimes but strongly singular in their causal structure (Banados et al. 1993), leads to somewhat unexpected features. For instance, in the $2+1$ anti-de Sitter universe, this new type of black hole can only differ from the background in its global properties through identification of points by means of some discrete subgroup of its isometries. The point is that some past-continuations go in closed timelike curves and/or additional Taub-Nut pathologies at the metric singular 'point'.

The aim of this paper is to investigate the global pathology of a class of static planary symmetric exact solutions with a G_{6}-group of motion and to derive the essential components of a magnetostatic field in this universe.

As investigated previously (Dariescu et al. 1997), we deal with the metric

$$
\begin{equation*}
d s^{2}=\delta_{\mu \nu} d x^{\mu} d x^{\nu}-e^{2 f\left(x^{3}\right)}(d t)^{2} \tag{1}
\end{equation*}
$$

proposed for the uniform and galactic fields (Romain 1963). Introducing the dually-related pseudo-orthonormal tetrads $\left\{e_{a}, \omega^{a}\right\}_{a=\overline{1,4}}$ as

$$
\begin{equation*}
\vec{e}_{\mu}=\partial_{\mu}, e_{4}=e^{-f(z)} \partial_{t} ; \quad \omega^{\mu}=d x^{\mu}, \omega^{4}=e^{f(z)} d t \tag{2}
\end{equation*}
$$

and employing the Cartan formalism it yields

$$
\begin{equation*}
R_{3434}=-R_{33}=R_{44}=-\frac{1}{2} R=f_{\mid 33}+\left(f_{\mid 3}\right)^{2} \tag{3}
\end{equation*}
$$

and the essential components of the Einstein tensor

$$
\begin{equation*}
G_{A B}=\left[f_{\mid 33}+\left(f_{\mid 3}\right)^{2}\right] \delta_{A B}, \quad A, B=1,2 . \tag{4}
\end{equation*}
$$

It clearly results in the $(2+2)$-decomposition $M_{4}=\mathbf{R}^{2} \times M_{2}$, while $G_{44}=0$ suggests (besides the vacuum as the only conventional source) a combined matter-source with the total energy-momentum tensor given by

$$
\begin{equation*}
T_{a b}=\lambda\left[\eta_{a 4} \eta_{b 4}-\eta_{a 3} \eta_{b 3}+\eta_{a b}\right], \text { with } \lambda=\text { constant }>0 \tag{5}
\end{equation*}
$$

This could describe a universal dust, with $\rho=\lambda$, stuck on a z-directed global cosmic string of negative 'tension' $\mu=-\lambda$ imbedded in a static universe of negative cosmological constant, $\Lambda=-\kappa_{0} \lambda$. With (4) and (5), the Einstein equations turn into

$$
\begin{equation*}
f_{\mid 33}+\left(f_{\mid 3}\right)^{2}=\alpha^{2}, \text { where } \alpha=\left(\kappa_{0} \lambda\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

whose general solution

$$
\begin{equation*}
f(z)=\ln \left[c_{+} e^{\alpha z}+c_{-} e^{-\alpha z}\right] \tag{7}
\end{equation*}
$$

with particular choices for the constants $c_{ \pm}$, brings the metric (1) to the 'hyperbolic' cases

$$
\begin{equation*}
d s^{2}=\delta_{A B} d x^{A} d x^{B}+(d z)^{2}-\sinh ^{2}(\alpha z)(d t)^{2} \tag{8}
\end{equation*}
$$

and the one with $g_{44}=-\cosh ^{2}(\alpha z)$, whose pathological properties have been the subject of previous investigations (Dariescu et al. 1997).

In the following we shall focus our attention on the metric (8), defined on $M_{4}=\mathbf{R}^{2} \times M_{2} \subset \mathbf{R}^{2} \times \mathbf{R}-\{0\} \times \mathbf{R}$, having $\{z=0\}$ as a singular point. For the Killing vector fields one gets, besides the usual generators of $V I I_{0}$ (which correspond to the Euclidian \mathbf{R}^{2}), the following generators:

$$
\begin{equation*}
X_{(4,5)}=e^{ \pm \alpha t}\left[\partial_{z} \mp \operatorname{coth}(\alpha z) \partial_{t}\right] ; \quad X_{(6)}=\partial_{t} \tag{9}
\end{equation*}
$$

of G_{3}^{\prime} acting on M_{2}.
According to the Estabrook-Ellis-MacCallum method of enumerating all the G_{3} groups (Kramer et al. 1980), our G_{3}^{\prime}, possessing the invariant properties $A_{\mu}=0, N^{\mu \nu}=\frac{1}{2} C_{\cdot \alpha \beta}^{\mu} \varepsilon^{\alpha \beta \nu} \Rightarrow \operatorname{rank}(N)=3$ and $|\sigma|=1$, belongs to the Bianchi type VIII and consequently $G_{6}=V I I_{0} \times V I I I$.

2. Null Oblique Geodesics and Penrose Diagram

In order to investigate some of the globally pathological features of the spacetime described by (8), let us analyse the structure of 'oblique' null trajectories. From the 'optical' Lagrangian

$$
\begin{equation*}
\Phi=\sinh ^{-2}(\alpha z)\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=1 \tag{10}
\end{equation*}
$$

one gets by taking a spherically symmetric light source in $\left(0,0, z_{0}\right)$ at $t=0$,

$$
\begin{gather*}
\dot{x}=\frac{\sin \chi \cos \lambda}{\sinh \left(\alpha z_{0}\right)} \sinh ^{2}(\alpha z), \quad \dot{y}=\frac{\sin \chi \sin \lambda}{\sinh \left(\alpha z_{0}\right)} \sinh ^{2}(\alpha z) \\
\dot{z}= \pm \sinh (\alpha z)\left[1-\frac{\sin ^{2} \chi \sinh ^{2}(\alpha z)}{\sinh ^{2}\left(\alpha z_{0}\right)}\right]^{\frac{1}{2}} \tag{11}
\end{gather*}
$$

where χ and λ are the usual angular coordinates on S^{2},
For the upward (oblique) null trajectories, i.e. $0 \leq \chi<\pi / 2$, there always exist the turning points

$$
\begin{equation*}
z_{*}=\frac{1}{\alpha} \operatorname{arcsinh} \frac{\sinh \left(\alpha z_{0}\right)}{\sin \chi}, \tag{12}
\end{equation*}
$$

while for the downward ones, with $\pi / 2<\chi=\pi-\gamma \leq \pi$, it obviously results in

$$
\begin{align*}
\alpha \rho= & \arcsin \frac{\sin \gamma \cosh \left(\alpha z_{0}\right)}{\sqrt{\sinh ^{2}\left(\alpha z_{0}\right)+\sin ^{2} \gamma}} \\
& -\arcsin \frac{\sin \gamma \cosh (\alpha z)}{\sqrt{\sinh ^{2}\left(\alpha z_{0}\right)+\sin ^{2} \gamma}} \tag{13}
\end{align*}
$$

with $0 \leq z \leq z_{0}$. As can be noticed, any of the trajectories intersects the $\{z=0\}-\mathbf{R}^{2}$ singular plane within the range

$$
\begin{equation*}
0 \leq \rho \leq b, \text { with } b=\frac{1}{\alpha}\left[\frac{\pi}{2}-\arcsin \frac{1}{\cosh \left(\alpha z_{0}\right)}\right] \tag{14}
\end{equation*}
$$

For the light rays emitted upward, with χ in between 0 and $\pi / 2$, it yields by integrating $d \rho / d z$ from z_{0} to $z \leq z_{*}$,

$$
\begin{align*}
\alpha \rho= & \arcsin \frac{\sin \chi \cosh (\alpha z)}{\sqrt{\sinh ^{2}\left(\alpha z_{0}\right)+\sin ^{2} \chi}} \\
& -\arcsin \frac{\sin \chi \cosh \left(\alpha z_{0}\right)}{\sqrt{\sinh ^{2}\left(\alpha z_{0}\right)+\sin ^{2} \chi}} . \tag{15}
\end{align*}
$$

Reaching the turning point, each ray goes down toward the plane $\{z=0\}$, following the equation

$$
\begin{array}{r}
\rho(z)=\frac{1}{\alpha}\left(\pi-\arcsin \frac{\sin \chi \cosh \left(\alpha z_{0}\right)}{\sqrt{\sinh ^{2}\left(\alpha z_{0}\right)+\sin ^{2} \chi}}\right. \\
\left.-\arcsin \frac{\sin \chi \cosh (\alpha z)}{\sqrt{\sinh ^{2}\left(\alpha z_{0}\right)+\sin ^{2} \chi}}\right) . \tag{16}
\end{array}
$$

Consequently, at $z=0$, the disk of radius b flashed by the downward rays is subsequently extended by the circular sector of upper maximal radius π / α flashed by all of the incoming light rays which have already reached their turning points. The corresponding oblique null trajectories are shown in Fig. 1.

Fig. 1. The oblique null trajectories.

As for the Penrose diagram in Fig. 2, since the first submanifold in the decomposition of M_{4} is the usual Euclidean \mathbf{R}^{2}, the global pathology, especially with respect to its conformal structure at infinity, will be mainly revealed by the Lorentzian M_{2} submanifold of metric

$$
\begin{equation*}
d s_{L}^{2}=(d z)^{2}-\sinh ^{2}(\alpha z)(d t)^{2} \tag{17}
\end{equation*}
$$

allowing us to define the compactified Penrose null coordinates

$$
\underline{u}=\left\{\begin{array}{r}
\pi+\arctan u_{-}, \\
\arctan u_{+}, \\
, z \geq 0
\end{array} ; \underline{v}=\left\{\begin{array}{r}
-\pi+\arctan v_{-}, \\
\arctan v_{+}, \\
, z \geq 0
\end{array}\right.\right.
$$

on the whole extension of M_{2}.

Fig. 2. The Penrose diagram.

There are no spatial infinities at $z=\mp \infty$. Instead, one gets the ultimate universal lines (of the timelike fundamental observers) joining i^{-}to i^{+}. Obviously, the $z=$ const. timelike (universal) lines are not timelike geodesics. The latter are represented by concave lines, orthogonally joining the two null horizons H^{-} and H^{+}, exhibiting past and future event horizons respectively. These (timelike) geodesics practically never reach the $\{z=\mp \infty\}$ 2-planes and quite interestingly, with respect to the (z, t)-parametrisation, the role of the spacial infinity i^{0} is actually played by the $\{z=0\}$-space-like 2 -surface.

3. The Magnetic Field

The source-free Maxwell equations

$$
\begin{equation*}
\square A_{a}=g^{b c} A_{a ; b c}=R_{a b} A^{b}, \tag{18}
\end{equation*}
$$

in the case of a magnetostatic field become

$$
\begin{align*}
& \Delta A_{B}+\alpha \operatorname{coth}(\alpha z) \frac{\partial A_{B}}{\partial z}=0, B=1,2 \tag{19}\\
& \Delta A_{3}+\alpha \operatorname{coth}(\alpha z) \frac{\partial A_{3}}{\partial z}-\frac{\alpha^{2}}{\sinh ^{2}(\alpha z)} A_{3}=0 \tag{20}
\end{align*}
$$

In the simplest case $n=1,2,3, \ldots$, introducing the spectral variables

$$
\begin{equation*}
k=\alpha \sqrt{n(n+1)} \cos \psi ; \quad q=\alpha \sqrt{n(n+1)} \sin \psi, \tag{21}
\end{equation*}
$$

the system (19)-(20) possesses the following general solutions:

$$
\begin{align*}
A_{B}= & \sum_{n=0} \int_{0}^{2 \pi} d \psi\left[a_{B}(n, \psi) e^{i(k x+q y)}+\bar{a}_{B}(n, \psi) e^{-i(k x+q y)}\right] \\
& \times\left\{\mathcal{P}_{n}(\cosh (\alpha z)), \mathcal{Q}_{n}(\cosh (\alpha z))\right\} \tag{22}\\
A_{3}= & \sum_{n=1} \int_{0}^{2 \pi} d \psi\left[a_{3}(n, \psi) e^{i(k x+q y)}+\bar{a}_{3}(n, \psi) e^{-i(k x+q y)}\right] \\
& \times\left\{\mathcal{P}_{n}^{1}(\cosh (\alpha z)), \mathcal{Q}_{n}^{1}(\cosh (\alpha z))\right\} \tag{23}
\end{align*}
$$

expressed in terms of the linearly-independent Legendre adjoint functions of the second kind (Gradshteyn and Ryzhik 1965)

$$
\begin{align*}
\mathcal{P}_{n}^{m}(w)= & \frac{1}{\Gamma(1-m)}\left(\frac{w+1}{w-1}\right)^{m / 2} F\left(-n, n+1 ; 1-m ; \frac{1-w}{2}\right) \tag{24}\\
\mathcal{Q}_{n}^{m}(w)= & \frac{e^{m \pi i} \Gamma(m+n+1) \Gamma\left(\frac{1}{2}\right)}{2^{n+1} \Gamma\left(n+\frac{3}{2}\right)}\left(w^{2}-1\right)^{m / 2} w^{-m-n-1} \\
& \times F\left(\frac{m+n+2}{2}, \frac{m+n+1}{2} ; n+\frac{3}{2} ; \frac{1}{w^{2}}\right) \tag{25}
\end{align*}
$$

where $F(\alpha, \beta ; \gamma ; w)$ are the usual hypergeometric functions and $w=\cosh (\alpha z)$. Using the functional relations

$$
\begin{align*}
& \frac{d}{d z}\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\}+\alpha \operatorname{coth}(\alpha z)\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\} \\
& =\frac{\alpha}{\sqrt{w^{2}-1}}\left[\left(w^{2}-1\right) \frac{d}{d w}\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\}+w\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\}\right] \tag{26}
\end{align*}
$$

$$
\left.\begin{array}{rl}
\left(w^{2}-1\right) \frac{d}{d w}\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\}+w\left\{\mathcal{P}_{n}^{1},\right. & \left.\mathcal{Q}_{n}^{1}\right\} \\
& =n\left[\left\{\mathcal{P}_{n+1}^{1}, \mathcal{Q}_{n+1}^{1}\right\}-w\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\}\right]
\end{array}\right\}
$$

the general Lorentz condition

$$
\begin{equation*}
\frac{\partial A_{1}}{\partial x}+\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z}+\alpha A_{3} \operatorname{coth}(\alpha z)=0 \tag{29}
\end{equation*}
$$

becomes explicitly

$$
\begin{aligned}
& \sum_{n=1} \sqrt{n(n+1)}\left\{\mathcal{P}_{n}(\cosh (\alpha z)), \mathcal{Q}_{n}(\cosh (\alpha z))\right\} \int_{0}^{2 \pi} d \psi \\
\times & \left\{\left[\cos \psi a_{1}(n, \psi)+\sin \psi a_{2}(n, \psi)-i \sqrt{n(n+1)} a_{3}(n, \psi)\right] e^{i(k x+q y)}\right. \\
& \left.-\left[\cos \psi \bar{a}_{1}(n, \psi)+\sin \psi \bar{a}_{2}(n, \psi)+i \sqrt{n(n+1)} \bar{a}_{3}(n, \psi)\right] e^{-i(k x+q y)}\right\}=0 .
\end{aligned}
$$

As it can be seen, the following polar-type structure of the spectral amplitudes $\left\{a_{\mu}(n, \psi)\right\}_{\mu=\overline{1,3}}$,

$$
\begin{equation*}
a_{1}(n, \psi)=i c(n) \cos \psi, a_{2}(n, \psi)=i c(n) \sin \psi \Rightarrow a_{3}=\frac{c(n)}{\sqrt{n(n+1)}} \tag{30}
\end{equation*}
$$

gives all of the vacuum 'longitudinal' modes (of magnetic type), since

$$
\begin{equation*}
B_{A} \sim\left\{\frac{\partial \mathcal{P}_{n}}{\partial z}-\alpha \mathcal{P}_{n}^{1}, \frac{\partial \mathcal{Q}_{n}}{\partial z}-\alpha \mathcal{Q}_{n}^{1}\right\} \equiv 0, \quad B_{3} \equiv 0 \tag{31}
\end{equation*}
$$

Working with the most general algebraic relation between the spectral coefficients that satisfy the Lorentz condition

$$
\begin{equation*}
a_{3}(n, \psi)=-\frac{i}{\sqrt{n(n+1)}}\left[a_{1}(n, \psi) \cos \psi+a_{2}(n, \psi) \sin \psi\right] \tag{32}
\end{equation*}
$$

the solutions (22) and (23) turn into

$$
\begin{align*}
A_{B}= & \sum_{n=0}\left\{\mathcal{P}_{n}, \mathcal{Q}_{n}\right\} \int_{0}^{2 \pi} d \psi\left[a_{B}(n, \psi) e^{i(k x+q y)}+\bar{a}_{B}(n, \psi) e^{-i(k x+q y)}\right], \\
A_{3}= & \sum_{n=1}\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\} \frac{i}{\sqrt{n(n+1)}} \tag{33}\\
& \times \int_{0}^{2 \pi} d \psi\left\{-\left[a_{1}(n, \psi) \cos \psi+a_{2}(n, \psi) \sin \psi\right] e^{i(k x+q y)}\right. \\
& \left.+\left[\bar{a}_{1}(n, \psi) \cos \psi+\bar{a}_{2}(n, \psi) \sin \psi\right] e^{-i(k x+q y)}\right\} . \tag{34}
\end{align*}
$$

Now, putting everything together and employing the $U(1)$-gauge covariant definition of the Maxwell tensor $\mathbf{F}=d \mathrm{~A}$, we are in the position to write the
observable \vec{B} components as

$$
\begin{align*}
B_{1}=\alpha & \sum_{n=1} \int_{0}^{2 \pi} d \psi \cos \psi\left\{\left[a_{1}(n, \psi) \sin \psi-a_{2}(n, \psi) \cos \psi\right] e^{i(k x+q y)}\right. \\
& \left.+\left[\bar{a}_{1}(n, \psi) \sin \psi-\bar{a}_{2}(n, \psi) \cos \psi\right] e^{-i(k x+q y)}\right\}\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\} \tag{35}\\
B_{2}= & \alpha \sum_{n=1} \int_{0}^{2 \pi} d \psi \sin \psi\left\{\left[a_{1}(n, \psi) \sin \psi-a_{2}(n, \psi) \cos \psi\right] e^{i(k x+q y)}\right. \\
& \left.+\left[\bar{a}_{1}(n, \psi) \sin \psi-\bar{a}_{2}(n, \psi) \cos \psi\right] e^{-i(k x+q y)}\right\}\left\{\mathcal{P}_{n}^{1}, \mathcal{Q}_{n}^{1}\right\} \tag{36}\\
B_{3}= & -i \alpha \sum_{n=1} \sqrt{n(n+1)} \int_{0}^{2 \pi} d \psi\left\{\left[a_{1}(n, \psi) \sin \psi-a_{2}(n, \psi) \cos \psi\right] e^{i(k x+q y)}\right. \\
& \left.-\left[\bar{a}_{1}(n, \psi) \sin \psi-\bar{a}_{2}(n, \psi) \cos \psi\right] e^{-i(k x+q y)}\right\}\left\{\mathcal{P}_{n}, \mathcal{Q}_{n}\right\} \tag{37}
\end{align*}
$$

Finally, assuming $a_{1}=\sin \psi$ and $a_{2}=-\cos \psi$, the magnetostatic field components (35)-(37) are generically represented in Fig. 3 as functions of x and z, for the \mathcal{P} and \mathcal{Q} modes corresponding to $n=2$.

Fig. 3. Generic representation of the magnetostatic field components given by equations (35)-(37), for $a_{1}=\sin \psi, a_{2}=-\cos \psi$ and $y=0$. The left and right surfaces represent the \mathcal{P} and \mathcal{Q} parts for $n=2$ respectively.

Acknowledgments

It is a pleasure to thank Shinji Hamamoto and Misao Sasaki for their steady encouragement in tackling this subject, during our MONBUSHO Fellowship in Japan, and for the fruitful discussions on the first version of the present paper.

References

Banados, M., Henneaux, M., Teitelbiom, C., and Zanelli, J. (1993). Phys. Rev. D 48, 1506.
Brans, C., and Dicke, R. H. (1961). Phys. Rev. 124, 925.
Clément, G., and Zouzou, I. (1994). Phys. Rev. D 50, 7271.
Collins, P. D. B., Martin, A. D., and Squires, E. J. (1989). 'Particle Physics and Cosmology' (Wiley: New York).
Dariescu, C., Dariescu, M. A., and Gottlieb, I. (1997). In 'Gravity, Theoretical Physics and Computers' (Eds D. Vulcanov and I. Cotăescu) (Mirton: Timişoara).
Gradshteyn, I. S., and Ryzhik, I. (1965). 'Table of Integrals, Series, and Products', 4th edn (Academic: New York).
Guth, A. (1981). Phys. Rev. D 23, 347.
Hoyle, F., and Narlikar, J. V. (1964). Proc. R. Soc. London A 282, 191.
Kramer, D., Stephani, H., Herlt, E., and MacCalum, M. (1980). 'Exact Solutions of Einstein's Field Equations' (Cambridge Univ. Press).
Linde, A. D. (1982). Phys. Lett. B 108, 389.
Romain, J. E. (1963). Rev. Mod. Phys. 35, 376.
Vilenkin, A., and Shellard, E. P. S. (1994). 'Cosmic Strings and Other Topological Defects' (Cambridge Univ. Press).
Wang, A., and Letelier, P. S. (1995). Phys. Rev. D 52, 1800.

