Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Immunohistochemical study of the ubiquitin–nuclear factor-κB pathway in the endometrium of the baboon (Papio anubis) with and without endometriosis

Romina S. Ilad A D F , Steven D. Fleming A , Christopher R. Murphy B and Asgerally T. Fazleabas C E
+ Author Affiliations
- Author Affiliations

A Department of Obstetrics and Gynaecology at Westmead Hospital, The University of Sydney, Westmead, NSW 2145, Australia.

B Department of Anatomy and Histology, The University of Sydney, Sydney, NSW 2006, Australia.

C Center for Women’s Health and Reproduction, Department of Obstetrics and Gynecology, University of Illinois, Chicago, IL 60612-7313, USA.

D Present address: Graduate School of Medicine, Building 28, The University of Wollongong, Wollongong, NSW 2522, Australia.

E Present address: Department of Obstetrics and Gynaecology and Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI 49503, USA.

F Corresponding author. Email: ri536@uow.edu.au

Reproduction, Fertility and Development 22(7) 1118-1130 https://doi.org/10.1071/RD08086
Submitted: 28 April 2008  Accepted: 11 March 2010   Published: 20 August 2010

Abstract

The aim of the present study was to conduct a semiquantitative immunohistochemical investigation into the levels of intermediary proteins within the nuclear factor (NF)-κB pathway throughout the menstrual cycle in a non-human primate, namely the baboon (Papio anubis), with and without endometriosis. Formalin-fixed eutopic (n = 2–4) and ectopic (n = 6–7) endometrial tissues from baboons at the mid-luteal phase were embedded in paraffin and examined for NF-κB pathway components (i.e. IκB kinase (IKK) α, IKKβ, phosphorylated (phospho-) IκBα and phospho-NF-κB p65 subunit), ubiquitin, 19S proteasome and the NF-κB activator tumour necrosis factor (TNF)-α. Similarly, endometrial tissues from baboons at the late follicular, mid-luteal and menses phase (n = 2–4) were investigated to determine the levels of these proteins throughout the menstrual cycle. Cytoplasmic stromal IKKα and glandular 19S proteasome immunostaining was elevated in the ectopic endometrium, whereas levels of ubiquitin, phospho-p65, IKKβ, TNF-α and nuclear 19S proteasome were similar in the eutopic and ectopic endometrium. A significant decrease in phospho-IκBα nuclear immunostaining was observed within glandular cells of the ectopic endometrium. In the eutopic endometrium, IKKα, ubiquitin and 19S proteasome immunostaining was elevated in different phases of the menstrual cycle, whereas levels of phospho-p65, IKKβ, phospho-IκBα and TNF-α remained unchanged. We have demonstrated that, in the baboon endometriosis model, levels of IKKα immunostaining are elevated, whereas those of phospho-IκBα are reduced, consistent with the hypothesis that excessive NF-κB activity plays a role in reducing ectopic endometrial apoptosis, which contributes to the pathophysiology of endometriosis. Further studies are required to confirm a causal association between elevated IKKα levels and reduced endometrial apoptosis.

Additional keyword: IκB kinase.


Acknowledgements

This research was supported by the National Institute of Child Health and Human Development and the National Institutes of Health through cooperative agreement (U54 HD 40093 to A.T.F.) as part of the Specialised Cooperative Centres Program in Reproduction and Infertility Research. The authors thank students and staff from the Department of Obstetrics and Gynaecology at The University of Illinois at Chicago, particularly Patty Mavrogianis, Prajna Banarjee and Kevin Jackson, for their technical advice and sectioning of baboon tissues. The Charitable Trust at Westmead Hospital is acknowledged for covering the travel associated with the use of specialist facilities at Chicago.


References

Anaf, V. , Simon, P. , El Nakadi, I. , Fayt, I. , Buxant, F. , Simonart, T. , Peny, M. O. , and Noel, J. C. (2000). Relationship between endometriotic foci and nerves in rectovaginal endometriotic nodules. Hum. Reprod. 15, 1744–1750.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Brieland, J. , Essig, D. , Jackson, C. , Frank, D. , Loebenberg, D. , Menzel, F. , Arnold, B. , DiDomenico, B. , and Hare, R. (2001). Comparison of pathogenesis and host immune responses to Candida glabrata and Candida albicans in systemically infected immunocompetent mice. Infect. Immun. 69, 5046–5055.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Cao, W.-G. , Morin, M. , Metz, C. , Maheux, R. , and Akoum, A. (2005). Stimulation of macrophage migration inhibitory factor expression in endometrial stromal cells by interleukin 1, beta involving the nuclear tanscription factor NF-κB. Biol. Reprod. 73, 565–570.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Celik, O. , Hascalik, S. , Elter, K. , Tagluk, M. E. , Gurates, B. , and Aydin, N. E. (2008). Combating endometriosis by blocking proteasome and nuclear factor-κB pathways. Hum. Reprod. 23, 2458–2465.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Chauhan, D. , Hideshima, T. , and Anderson, K. C. (2005). Proteasome inhibition in multiple myeloma: therapeutic implication. Annu. Rev. Pharmacol. Toxicol. 45, 465–476.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Delhase, M. , Hayakawa, M. , Chen, Y. , and Karin, M. (1999). Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation. Science 284, 309–313.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Demchenko, Y. N. , Glebov, O. K. , Zingone, A. , Keats, J. J. , Bergsagel, P. L. , and Kuehl, W. M. (2010). Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115, 3541–3552.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Detre, S. , Saciani, J. G. , and Dowsett, M. (1995). A ‘quickscore’ method for immunohistochemical semiquantitation validation for oestrogen receptor in carcinomas. J. Clin. Pathol. 48, 876–878.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Devin, A. , Cook, A. , Lin, Y. , Rodriguez, Y. , Kelliher, M. , and Liu, Z. (2000). The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12, 419–429.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dunselman, G. A. , Groothuis, P. G. , de Goeij, A. F. , and Evers, J. L. (2001). The mesothelium, Teflon or Velcro? Mesothelium in endometriosis pathogenesis. Hum. Reprod. 16, 605–607.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Farrow, B. , Sugiyama, Y. , Chen, A. , Uffort, E. , Nealon, W. , and Mark Evers, B. (2004). Inflammatory mechanisms contributing to pancreatic cancer development. Ann. Surg. 239, 763–771.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fazleabas, A. T. (2006). A baboon model for inducing endometriosis. Methods Mol. Med. 121, 95–99.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Fazleabas, A. T. , Brudney, A. , Gurates, B. , Chai, D. , and Bulun, S. (2002). A modified baboon model for endometriosis. Ann. N. Y. Acad. Sci. 955, 308–317.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gashaw, I. , Hastings, J. M. , Jackson, K. S. , Winterhager, E. , and Fazleabas, A. T. (2006). Induced endometriosis in the baboon (Papio anubis) increases the expression of the proangiogenic factor CYR61 (CCN1) in eutopic and ectopic endometria. Biol. Reprod. 74, 1060–1066.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Gebel, H. M. , Braun, D. P. , Tambur, A. , Frame, D. , Rana, N. , and Dmowski, W. P. (1998). Spontaneous apoptosis of endometrial tissue is impaired in women with endometriosis. Fertil. Steril. 69, 1042–1047.
Crossref | GoogleScholarGoogle Scholar | PubMed |

González-Ramos, R. , Donnez, J. , Defrère, S. , Leclercq, I. , Squifflet, J. , Lousse, J.-C. , and Langendonckt, A. V. (2007). Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. Mol. Hum. Reprod. 13, 503–509.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hastings, J. M. , and Fazleabas, A. T. (2006). A baboon model for endometriosis: implications for fertility. Reprod. Biol. Endocrinol. 4(Suppl. 1), S7.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hastings, J. M. , Jackson, K. S. , Mavrogianis, P. A. , and Fazleabas, A. T. (2006). The estrogen early response gene FOS is altered in a baboon model of endometriosis. Biol. Reprod. 75, 176–182.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Horie, S. , Harada, T. , Mitsunari, M. , Taniguchi, F. , Iwabe, T. , and Terakawa, N. (2005). Progesterone and progestational compounds attenuate tumor necrosis factor alpha-induced interleukin-8 production via nuclear factor kappaB inactivation in endometriotic stromal cells. Fertil. Steril. 83, 1530–1535.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hu, Y. , Baud, V. , Delhase, M. , Zhang, P. , Deerinck, T. , Ellisman, M. , Johnson, R. , and Karin, M. (1999). Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284, 316–320.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Huber, A. V. , Saleh, L. , Prast, J. , Haslinger, P. , and Knöfler, M. (2007). Human chorionic gonadotrophin attenuates NF-kappaB activation and cytokine expression of endometriotic stromal cells. Mol. Hum. Reprod. 13, 595–604.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ilad, R. S. , Fleming, S. D. , Bebington, C. R. , and Murphy, C. R. (2004). Ubiquitin is associated with the survival of ectopic stromal cells in endometriosis. Reprod. Biol. Endocrinol. 2, 69.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jackson, K. S. , Brudney, A. , Hastings, J. M. , Mavrogianis, P. A. , Kim, J. J. , and Fazleabas, A. T. (2007). The altered distribution of the steroid hormone receptors and the chaperone immunophilin FKBP52 in a baboon model of endometriosis is associated with progesterone resistance during the window of uterine receptivity. Reprod. Sci. 14, 137–150.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kim, H. D. , Tomida, A. , Ogiso, Y. , and Tsuruo, T. (1999). Glucose-regulated stresses cause degeneration of DNA topoisomerase II alpha by inducing nuclear proteasome during G1 cell cycle arrest in cancer cells. J. Cell. Physiol. 180, 97–104.
Crossref | GoogleScholarGoogle Scholar | PubMed |

King, A. E. , Critcheley, H. O. D. , and Kelly, R. W. (2001). The NFκβ pathway in human endometrium and first trimester decidua. Mol. Hum. Reprod. 7, 175–183.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lee, G. H. , Choi, Y. M. , Kim, S. H. , Hong, M. A. , Oh, S. T. , Lim, Y. T. , and Moon, S. Y. (2008). Association of tumor necrosis factor-{alpha} gene polymorphisms with advanced stage endometriosis. Hum. Reprod. 23, 977–981.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ling, L. , Cao, Z. , and Goeddel, D. V. (1998). NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc. Natl Acad. Sci. USA 95, 3792–3797.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Lousse, J. C. , Van Langendonckt, A. , Gonzalez-Ramos, R. , Defrere, S. , Renkin, E. , and Donnez, J. (2008). Increased activation of nuclear factor-kappa B (NF-kappaB) in isolated peritoneal macrophages of patients with endometriosis. Fertil. Steril. 90, 217–220.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Meiners, S. , Laule, M. , Rother, W. , Guenther, C. , Prauka, I. , Muschick, P. , Baumann, G. , Kloetzel, P. M. , and Stangl, K. (2002). Ubiquitin–proteasome pathway as a new target for the prevention of restenosis. Circulation 105, 483–489.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nakanishi, C. , and Toi, M. (2005). Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat. Rev. Cancer 5, 297–309.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nasu, K. , Nishida, M. , Ueda, T. , Yuge, A. , Takai, N. , and Narahara, H. (2007). Application of the nuclear factor-kappaB inhibitor BAT 11-7085 for the treatment of endometriosis: an in vitro study. Am. J. Physiol. Endocrinol. Metab. 293, E16–E23.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ogiso, Y. , Tomida, A. , Kim, H. D. , and Tsuruo, T. (1999). Glucose starvation and hypoxia induce nuclear accumulation of proteasome in cancer cells. Biochem. Biophys. Res. Commun. 258, 448–452.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Olive, D. L. , and Schwartz, L. B. (1993). Endometriosis. N. Engl. J. Med. 328, 1759–1769.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Palmer, A. , Mason, G. G. , Paramio, J. M. , Knecht, E. , and Rivett, A. J. (1994). Changes in proteasome localization during the cell cycle. Eur. J. Cell Biol. 64, 163–175.
PubMed |

Ramakrishnan, P. , Wang, W. , and Wallach, D. (2004). Receptor-specific signaling for both the alternative and the canonical NF-kappaB activation pathways by NF-kappaB-inducing kinase. Immunity 21, 477–489.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Reits, E. A. , Benham, A. M. , Plougastel, B. , Neefjes, J. , and Trowsdale, J. (1997). Dynamics of proteasome distribution in living cells. EMBO J. 16, 6087–6094.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sakamoto, Y. , Harada, T. , Horie, S. , Iba, Y. , Taniguchi, F. , Yoshida, S. , Iwabe, T. , and Terakawa, N. (2003). Tumor necrosis factor-alpha-induced interleukin-8 (IL-8) expression in endometriotic stromal cells, probably through nuclear factor-kappa B activation: gonadotropin-releasing hormone agonist treatment reduced IL-8 expression. J. Clin. Endocrinol. Metab. 88, 730–735.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sakurai, H. , Suzuki, S. , Kawasaki, N. , Nakano, H. , Okazaki, T. , Chino, A. , Doi, T. , and Saiki, I. (2003). Tumor necrosis factor-alpha-induced IKK phosphorylation of NF-kappaB p65 on serine 536 is mediated through the TRAF2, TRAF5, and TAK1 signaling pathway. J. Biol. Chem. 278, 36 916–36 923.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schwartz, A. L. , and Ciechanover, A. (1999). The ubiquitin–proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Schwartz, L. B. , Naftolin, F. , Lyttle, C. R. , Penzias, A. S. , Meaddough, E. L. , and Kliman, H. J. (2001). Mouse ascites Golgi (MAG) mucin expression and regulation by progesterone in the rat uterus. J. Soc. Gynecol. Invest. 8, 216–223.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sun, L. , and Chen, Z. J. (2004). The novel functions of ubiquitination in signaling. Curr. Opin. Cell Biol. 16, 119–126.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tansey, W. P. (2004). Death, destruction, and the proteasome. N. Engl. J. Med. 351, 393–394.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wilson, J. A. (2008). Tumor necrosis factor alpha and colitis-associated colon cancer. N. Engl. J. Med. 358, 2733–2734.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wullaert, A. , Heyninck, K. , Janssens, S. , and Beyaert, R. (2006). Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Trends Immunol. 27, 533–540.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Yamauchi, N. , Harada, T. , Taniguchi, F. , Yoshida, S. , Iwabe, T. , and Terakawa, N. (2004). Tumor necrosis factor-alpha induced the release of interleukin-6 from endometriotic stromal cells by the nuclear factor-kappaB and mitogen-activated protein kinase pathways. Fertil. Steril. 82(Suppl. 3), 1023–1028.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zeitvogel, A. , Baumann, R. , and Starzinski-Powitz, A. (2001). Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model. Am. J. Pathol. 159, 1839–1852.
PubMed |