Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of age and equine follicle-stimulating hormone (eFSH) on collection and viability of equine oocytes assessed by morphology and developmental competency after intracytoplasmic sperm injection (ICSI)

J. L. Altermatt A , T. K. Suh A , J. E. Stokes A and E. M. Carnevale A B
+ Author Affiliations
- Author Affiliations

A Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado, 80523-1683, USA.

B Corresponding author. Email: emc@colostate.edu

Reproduction, Fertility and Development 21(4) 615-623 https://doi.org/10.1071/RD08210
Submitted: 30 September 2008  Accepted: 6 February 2009   Published: 17 April 2009

Abstract

Young (4 to 9 yr) and old (≥20 yr) mares were treated with equine follicle-stimulating hormone (eFSH), and oocytes were collected for intracytoplasmic sperm injections (ICSI). Objectives were to compare: (1) number, morphology and developmental potential of oocytes collected from young v. old mares from cycles with or without exogenous eFSH and (2) oocyte morphology parameters with developmental competence. Oocytes were collected from preovulatory follicles 20 to 24 h after administration of recombinant equine LH and imaged before ICSI for morphological measurements. After ICSI, embryo development was assessed, and late morulae or blastocysts were transferred into recipients’ uteri. Cycles with eFSH treatment resulted in more follicles (1.8 v. 1.2) and more recovered oocytes (1.1 v. 0.8) than those without eFSH. Age and eFSH treatment did not effect cleavage, blastocyst and pregnancy rates. Treatment with eFSH had no effect on oocyte morphology, but age-associated changes were observed. In old mares, zona pellucidae (ZP) were thinner than in young mares, and perivitelline space and inner ZP volume (central cavity within the ZP) were larger and associated with oocytes that failed to develop. These results suggest that administration of eFSH can increase the number of oocytes collected per cycle. Oocyte morphology differed with age and was associated with developmental competence.

Additional keywords: assisted reproduction, maternal aging.


Acknowledgement

Funding provided by Colorado Racing Commission, benefactors to the Preservation of Equine Genetics and Honnen and Dupree Foundation Scholarships.


References

Armstrong, D. T. (2001). Effects of maternal age on oocyte developmental competence. Theriogenology 55, 1303–1322.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Carnevale E. M., Uson M., Bozzola J. J., King S. S., Schmidt S. J., and Gates H. D. (1999). Comparisons of oocytes from young and old mares with light and electron microscopy. Theriogenology 51, 299. [Abstract] doi:10.1016/S0093-691X(99)91858-7

Carnevale, E. M. , Ramirez, R. J. , Squires, E. L. , Alvarenga, M. A. , Vanderwall, D. K. , and McCue, P. M. (2000). Factors affecting pregnancy rates and early embryonic death after equine embryo transfer. Theriogenology 54, 965–979.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS | Ginther O. J. (1992). ‘Reproductive Biology of the Mare.’ 2nd edn. (Equiservices: Cross Plains, WI.)

Ginther, O. J. , Carnevale, E. M. , and Bergfelt, D. R. (1993). Delay in emergence of the ovulatory follicular wave in old mares. J. Equine Vet. Sci. 13, 75–79.
Crossref | GoogleScholarGoogle Scholar |

Ginther, O. J. , Beg, M. A. , Bergfelt, D. R. , Donadeu, F. X. , and Kot, K. (2001). Follicle selection in monovular species. Biol. Reprod. 65, 638–647.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ginther, O. J. , Gastal, E. L. , Gastal, M. O. , Bergfelt, D. R. , Baerwald, A. R. , and Pierson, R. A. (2004). Comparative study of the dynamics of follicular waves in mares and women. Biol. Reprod. 71, 1195–1201.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hamatani, T. , Falco, G. , Carter, M. G. , Akutsu, H. , Stagg, C. A. , Sharov, A. A. , Dudekula, D. B. , VanBuren, V. , and Ko, M. S. H. (2004). Age-associated alteration of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13, 2263–2278.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hinrichs, K. , Choi, Y. H. , Walckenaer, B. E. , Varner, D. D. , and Hartman, D. L. (2007). In vitro-produced equine embryos: production of foals after transfer, assessment by differential staining and effect of medium calcium concentrations during culture. Theriogenology 68, 521–529.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Høst, E. , Gabrielsen, A. , Lindenberg, S. , and Smidt-Jensen, S. (2002). Apoptosis in human cumulus cells in relation to zona pellucida thickness variation, maturation stage, and cleavage of the corresponding oocyte after ICSI. Fertil. Steril. 77, 511–515.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Juengel, J. L. , Hudson, N. L. , Heath, D. A. , Smith, P. , Reader, K. L. , Lawrence, S. B. , O’Connell, A. R. , Laitinen, M. , Cranfield, M. , Groome, N. P. , Ritvos, O. , and McNatty, K. P. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 67, 1777–1789.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kligman, I. , and Rosenwaks, Z. (2001). Differentiating clinical profiles: predicting good responders, poor responders, and hyper-responders. Fertil. Steril. 76, 1185–1190.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kölle, S. , Dubois, C. S. , Caillaud, M. , Lahuec, C. , Sinowatz, F. , and Goudet, G. (2007). Equine zona protein synthesis and ZP structure during folliculogenesis, oocyte maturation, and embryogenesis. Mol. Reprod. Dev. 74, 851–859.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Krisher, R. L. (2004). The effect of oocyte quality on development. J. Anim. Sci. 82(E-Suppl.), E14–E23.
PubMed |

Li, X. , Morris, L. H. A. , and Allen, W. R. (2000). Effects of different activation treatments on fertilisation of horse oocytes by intracytoplasmic sperm injection. J. Reprod. Fertil. 119, 253–260.
PubMed |  CAS |

Logan, N. L. , McCue, P. M. , Alonso, M. A. , and Squires, E. L. (2007). Evaluation of three equine FSH superovulation protocols in mares. Anim. Reprod. Sci. 102, 48–55.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Maclellan, L. J. , Carnevale, E. M. , Coutinho da Silva, M. A. , Scoggin, C. F. , Bruemmer, J. E. , and Squires, E. L. (2002). Pregnancies from vitrified equine oocytes collected from super-stimulated and non-stimulated mares. Theriogenology 58, 911–919.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Madill, S. (2002). Reproductive considerations: mare and stallion. Vet. Clin. North Am. Equine Pract. 18, 591–619.
Crossref | GoogleScholarGoogle Scholar | PubMed |

McCue, P. M. , LeBlanc, M. M. , and Squires, E. L. (2007). eFSH in clinical equine practice. Theriogenology 68, 429–433.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Moffatt, O. , Drury, S. , Tomlinson, M. , Afnan, M. , and Sakkas, D. (2002). The apoptotic profile of human cumulus cells changes with patient age and after exposure to sperm but not in relation to oocyte maturity. Fertil. Steril. 77, 1006–1011.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Nara, M. , Yonezawa, N. , Shimada, T. , Takahashi, K. , Tanokura, M. , Yumoto, F. , Nakagawa, H. , Ohashi, K. , Hamano, S. , and Nakano, M. (2006). Fourier transform infrared spectroscopic analysis of the intact zona pellucida of the mammalian egg: changes in the secondary structure of bovine zona pellucida proteins during fertilization. Exp. Biol. Med. 231, 166–171.
CAS |

Navot, D. , Bergh, P. A. , Williams, M. A. , Garrisi, G. J. , Guzman, I. , Sandler, B. , and Grunfeld, L. (1991). Poor oocyte quality rather than implantation failure as a cause of age-related decline in female fertility. Lancet 337, 1375–1377.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ng, E. H. , Yeung, W. S. , Fong, D. Y. , and Ho, P. C. (2003). Effects of age on hormonal and ultrasound markers of ovarian reserve in Chinese women with proven fertility. Hum. Reprod. 18, 2169–2174.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Olsen, S. E. , and Seidel, G. E. (2000). Reduced oxygen tension and EDTA improve bovine zygote development in a chemically defined medium. J. Anim. Sci. 78, 152–157.
PubMed |

Ottolenghi, C. , Uda, M. , Hamatani, T. , Chrisponi, L. , Garcia, J. E. , Ko, M. , Pilia, G. , Sforza, C. , Schlessinger, D. , and Forabosco, A. (2004). Aging of oocyte, ovary, and human reproduction. Ann. N. Y. Acad. Sci. 1034, 117–131.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Peluso, J. J. , England-Charlesworth, C. , and Hutz, R. (1980). Effect of age and of follicular aging on the preovulatory oocyte. Biol. Reprod. 22, 999–1005.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sauer, M. V. , Paulson, R. J. , and Lobo, R. A. (1992). Reversing the natural decline in human fertility. JAMA 268, 1275–1279.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Squires, E. L. , and McCue, P. M. (2007). Superovulation in mares. Anim. Reprod. Sci. 99, 1–8.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Squires, E. L. , Carnevale, E. M. , McCue, P. M. , and Bruemmer, J. E. (2003). Embryo technologies in the horse. Theriogenology 59, 151–170.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Squires, E. L. , Logan, N. , Welsh, S. , and McCue, P. M. (2006). Factors affecting the response to administration of equine FSH. Anim. Reprod. Sci. 94, 408–410.
Crossref | GoogleScholarGoogle Scholar |

Sun, Y. P. , Xu, Y. , Cao, T. , Su, Y. C. , and Guo, Y. H. (2005). Zona pellucida thickness and clinical pregnancy outcome following in vitro fertilisation. Int. J. Gynaecol. Obstet. 89, 258–262.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tarín, J. J. (1996). Potential effects of age-associated oxidative stress on mammalian oocytes/embryos. Mol. Hum. Reprod. 2, 717–724.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tarín, J. J. , Pérez-Albalá, S. , and Cano, A. (2001). Cellular and morphological traits of oocytes retrieved from aging mice after exogenous ovarian stimulation. Biol. Reprod. 65, 141–150.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Thomas, F. H. , and Vanderhyden, B. C. (2006). Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod. Biol. Endocrinol. 4, 19.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tremoleda, J. L. , Stout, T. A. E. , Lagutina, I. , Lazzari, G. , Bevers, M. M. , Colenbrander, B. , and Galli, C. (2003). Effects of in vitro production on horse embryo morphology, cytoskeletal characteristics, and blastocyst capsule formation. Biol. Reprod. 69, 1895–1906.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, Q. , and Sun, Q. (2007). Evaluation of oocyte quality: morphological, cellular and molecular predictors. Reprod. Fertil. Dev. 19, 1–12.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Woods, J. , Bergfelt, D. R. , and Ginther, O. J. (1990). Effects of time insemination relative to ovulation on pregnancy rate and embryonic-loss rate in mares. Equine Vet. J. 22, 410–415.
PubMed |  CAS |

Wu, J. , Zhang, L. , and Wang, X. (2000). Maturation and apoptosis of human oocytes in vitro are age-related. Fertil. Steril. 74, 1137–1141.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Xia, P. (1997). Intracytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilisation rate and embryo quality. Hum. Reprod. 12, 1750–1755.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yan, C. , Wang, P. , DeMayo, J. , DeMayo, F. J. , and Elvin, J. A. , et al. (2001). Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol. Endocrinol. 15, 854–866.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |