Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Epigenetic modifications and related mRNA expression during bovine oocyte in vitro maturation

S. E. Racedo A B , C. Wrenzycki C , K. Lepikhov D , D. Salamone B , J. Walter D and H. Niemann A E
+ Author Affiliations
- Author Affiliations

A Institute of Farm Animal Genetics (FLI), Department of Biotechnology, Mariensee, 31535 Neustadt, Germany.

B Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, C1417 Buenos Aires, Argentina.

C University of Veterinary Medicine Hannover, Clinic for Cattle, Reproductive Medicine Unit, Bischofsholer Damm 15, D-30173 Hannover, Germany.

D Department of Natural Sciences – Technical Faculty III, Biological Sciences, Genetics/Epigenetics, University of Saarland, 66123 Saarbrücken, Germany.

E Corresponding author. Email: heiner.niemann@fli.bund.de

Reproduction, Fertility and Development 21(6) 738-748 https://doi.org/10.1071/RD09039
Submitted: 4 March 2009  Accepted: 3 May 2009   Published: 1 July 2009

Abstract

The present study investigated the global pattern of two histone modifications and methylation of DNA during in vitro maturation of bovine oocytes retrieved from follicles of two different sizes (<2 mm and 2–8 mm). The methylation status of histone H3 at position lysine K9 (H3K9 me2), the acetylation status of histone H4 at position lysine K12 (H4K12ac) and the methylation of DNA were assessed by immunocytochemistry. In parallel, the relative abundance of mRNAs coding for proteins specifically involved in reprogramming, including HLA-B associated transcript 8 (G9A), suppressor of variegation 3-9 homolog 1 (SUV39H1), the somatic isoform of DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3b (DNMT3b) and zygote arrest 1 (ZAR1) was determined by RT-PCR. The α-H3K9 me2 signal was present in the GV stage and remained detectable until the end of the maturation period. α-H4K12ac antibody gave a stronger signal in GV and GVBD oocytes and markedly decreased after GVBD. The signal showing the methylation of DNA was present during the entire maturation period. The five transcripts showed a gene-specific expression profile. Results revealed the global patterns of H3K9 me2, H4K12ac, DNA methylation and the mRNA pool profiles of genes critically involved in epigenetic modifications during bovine oocyte maturation and their possible relationship with the acquisition of oocyte developmental competence and follicular development.

Additional keywords: developmental competence.


Acknowledgements

S.E.R. received a fellowship from the National Research Council from Argentina (CONICET). We are grateful to Thomas Jenuwein for providing the antibodies against H3K9 me2 and to Paul Hyttel’s lab for providing the antibodies against 5-methyl cytidine. The expert technical assistance of Brigitte Barg-Kues, Erika Lemme, Doris Herrmann and Khursheed Iqbal is gratefully acknowledged.


References

Akiyama, T. , Kim, J. M. , Nagata, M. , and Aoki, F. (2004). Regulation of histone acetylation during meiotic maturation in mouse oocytes. Mol. Reprod. Dev. 69, 222–227.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bestor, T. H. (1992). Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11, 2611–2617.
PubMed |  CAS |

Bird, A. P. , and Wolffe, A. P. (1999). Methylation-induced repression – belts, braces, and chromatin. Cell 99, 451–454.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Bui, H. T. , Thuan, N. V. , Kishigame, S. , Wakayama, S. , and Hikichi, T. , et al. (2007). Regulation of chromatin and chromosome morphology by histone 3 modifications in pig oocytes. Reproduction 133, 371–382.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Cheng, J. F. , Raid, L. , and Hardison, R. C. (1986). Isolation and nucleotide sequence of the rabbit globin gene cluster psi zeta-alpha 1-psi alpha. Absence of a pair of alpha-globin genes evolving in concert. J. Biol. Chem. 261, 839–848.
PubMed |  CAS |

Cirio, M. C. , Ratnam, S. , Ding, F. , Reinhart, B. , Navara, C. , and Chaillet, J. R. (2008). Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev. Biol. 8, 9.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Dean, W. , Santos, F. , Stojkovic, M. , Zakhartchenko, V. , Walter, J. , Wolf, E. , and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc. Natl. Acad. Sci. USA 98, 13 734–13 738.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

De La Fuente, R. (2006). Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev. Biol. 292, 1–12.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Endo, T. , Naito, K. , Aoki, F. , Kume, S. , and Tojo, H. (2005). Changes in histone modifications during in vitro maturation of porcine oocytes. Mol. Reprod. Dev. 71, 123–128.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gál, A. B. , Carnwath, J. W. , Dinnyes, A. , Herrmann, D. , Niemann, H. , and Wrenzycki, C. (2006). Comparison of real-time polymerase chain reaction and end-point polymerase chain reaction for the analysis of gene expression in preimplantation embryos. Reprod. Fertil. Dev. 18, 365–371.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. Nature 389, 349–352.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Hou, J. , Liu, L. , Zhang, J. , Cui, X. H. , Yan, F. X. , Guan, H. , Chen, Y. F. , and An, X. R. (2008). Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation. BMC Dev. Biol. 8, 60.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Hsieh, C. L. (1999). In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol. Cell Biol. 19, 8211–8218.
CAS | PubMed |

Hyttel, P. , Fair, T. , Callesen, H. , and Greve, T. (1997). Oocyte growth, capacitation and final maturation in cattle. Theriogenology 47, 23–32.
Crossref | GoogleScholarGoogle Scholar |

Kim, J. M. , Liu, H. , Tazaki, M. , Nagata, M. , and Aoki, F. (2003). Changes in histone acetylation during mouse oocyte meiosis. J. Cell Biol. 162, 37–46.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Knijn, H. M. , Wrenzycki, C. , Hendriksen, P. J. , Vos, P. L. , Herrmann, D. , van der Weijden, G. C. , Niemann, H. , and Dieleman, S. J. (2002). Effects of oocyte maturation regimen on the relative abundance of gene transcripts in bovine blastocysts derived in vitro or in vivo. Reproduction 124, 365–375.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kruhlak, M. J. , Hendzel, M. J. , Fischle, W. , Bertos, N. , Hameed, S. , Yang, X. J. , Verdin, E. , and Bazett-Jones, D. P. (2001). Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin. J. Biol. Chem. 276, 38307–38319.
PubMed |  CAS |

Kurihara, Y. , Kawamura, Y. , Uchijima, Y. , Amamo, T. , Kobayashi, H. , Asano, T. , and Hiroki Kurihara, H. (2008). Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev. Biol. 313, 335–346.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lachner, M. , and Jenuwein, T. (2002). The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lepikhov, K. , Zakhartchenko, V. , Hao, R. , Yang, F. , Wrenzycki, C. , Niemann, H. , Wolf, E. , and Walter, J. (2008). Evidence for conserved DNA and histone methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 3, 1–11.


Lequarre, A. S. , Vigneron, C. , Ribaucour, F. , Holm, P. , Donnay, I. , Dalbies-Tran, R. , Callesen, H. , and Mermillod, P. (2005). Influence of antral follicle size on oocyte characteristics and embryo development in the bovine. Theriogenology 63, 841–859.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Liu, H. , Kim, J. M. , and Aoki, F. (2004). Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131, 2269–2280.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Maalouf, W. E. , Alberio, R. , and Campbell, K. H. (2008). Differential acetylation of histone H4 lysine during development of in vitro fertilized, cloned and parthenogenetically activated bovine embryos. Epigenetics 3, 199–209.
PubMed |

Memili, E. , and First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote 8, 87–96.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Memili, E. , Dominko, T. , and First, N. L. (1998). Onset of transcription in bovine oocytes and preimplantation embryos. Mol. Reprod. Dev. 51, 36–41.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nowak-Imialek, M. , Wrenzycki, C. , Herrmann, D. , Lucas-Hahn, A. , Lagutina, I. , Lemme, E. , Lazzari, G. , Galli, C. , and Niemann, H. (2008). Messenger RNA expression patterns of histone associated genes in bovine preimplantation embryos derived of different origins. Mol. Reprod. Dev. 75, 731–743.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Okano, M. , Bell, D. W. , Haber, D. A. , and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Oliveri, R. S. , Kalisz, M. , Schjerling, C. K. , Andersen, C. Y. , Borup, R. , and Byskov, A. G. (2007). Evaluation in mammalian oocytes of gene transcripts linked to epigenetic reprogramming. Reproduction 134, 549–558.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Pavlok, A. , Lucas-Hahn, A. , and Niemann, H. (1992). Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Mol. Reprod. Dev. 31, 63–67.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Puschendorf, M. , Terranova, R. , Boutsma, E. , Mao, X. , and Isono, K. , et al. (2008). PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat. Genet. 40, 411–420.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Racedo, S. E. , Wrenzycki, C. , Herrmann, D. , Salamone, D. , and Niemann, H. (2008). Effects of follicle size and stages of maturation on mRNA expression in bovine in vitro-matured oocytes. Mol. Reprod. Dev. 75, 17–25.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Ratnam, S. , Mertineit, C. , Ding, F. , Howell, C. Y. , Clarke, H. J. , Bestor, T. H. , Chaillet, J. R. , and Trasler, J. M. (2002). Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev. Biol. 245, 304–314.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Reik, W. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Reik, W. , and Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Rutherford, S. L. , and Henikoff, S. (2003). Quantitative epigenetics. Nat. Genet. 33, 6–8.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Santos, F. , Zakhartchenko, V. , Stojkovic, M. , Peters, A. , Jenuwein, T. , Wolf, E. , Reik, W. , and Dean, W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13, 1116–1121.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Smith, C. M. , Haimberger, Z. W. , Johnson, C. O. , Wolf, A. J. , Gafken, P. R. , Zhang, Z. , Parthun, M. R. , and Gottschling, D. E. (2002). Heritable chromatin structure: mapping “memory” in histones H3 and H4. Proc. Natl. Acad. Sci. USA 99, 16 454–16 461.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tachibana, M. , Sugimoto, K. , Nozaki, M. , Ueda, J. , and Ohta, T. , et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tang, L. S. , Wang, Q. , Xiong, B. , Hou, Y. , Zhang, Y. Z. , Sun, Q. Y. , and Wang, S. Y. (2007). Dynamic changes in histone acetylation during sheep oocyte maturation. J. Reprod. Dev. 53, 555–561.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tomek, W. , Torner, H. , and Kanitz, W. (2002). Comparative analysis of protein synthesis, transcription and cytoplasmic polyadenylation of mRNA during maturation of bovine oocytes in vitro. Reprod. Domest. Anim. 37, 86–91.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Vassena, R. , Dee Schramm, R. , and Latham, K. E. (2005). Species-dependent expression patterns of DNA methyltransferases genes in mammalian oocytes and preimplantation embryos. Mol. Reprod. Dev. 72, 430–436.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (1999). Alterations in the relative abundance of gene transcripts in preimplantation bovine embryos cultured in medium supplemented with either serum or PVA. Mol. Reprod. Dev. 53, 8–18.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Lucas-Hahn, A. , Herrmann, D. , Lemme, E. , Korsawe, K. , and Niemann, H. (2002). In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod. 66, 127–134.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wrenzycki, C. , Herrmann, D. , Lucas-Hahn, A. , Gebert, C. , Korsawe, K. , Lemme, E. , Carnwath, J. , and Niemann, H. (2005). Epigenetic reprogramming throughout preimplantation development and consequences for assisted reproductive technologies. Birth Defects Res. C Embryo Today 75, 1–9.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wu, X. , Viveiros, M. M. , Eppig, J. J. , Bai, Y. , Fitzpatrick, S. L. , and Matzuk, M. M. (2003). Zygote arrest 1 (Zar 1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat. Genet. 33, 187–191.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yaseen, M. A. , Wrenzycki, C. , Herrmann, D. , Carnwath, J. W. , and Niemann, H. (2001). Changes in the relative abundance of mRNA transcripts for insulin-like growth factor (IGF-I and IGF-II) ligands and their receptors (IGF-IR/IGF-IIR) in preimplantation bovine embryos derived from different in vitro systems. Reproduction 122, 601–610.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |