Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus

R. Daniel Kortschak A , Enkhjargal Tsend-Ayush A and Frank Grützner A B
+ Author Affiliations
- Author Affiliations

A Discipline of Genetics, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia.

B Corresponding author. Email: frank.grutzner@adelaide.edu.au

Reproduction, Fertility and Development 21(8) 964-975 https://doi.org/10.1071/RD09084
Submitted: 5 April 2009  Accepted: 21 June 2009   Published: 30 October 2009

Abstract

Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of ~700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.

Additional keywords: genome evolution, repetitive element, Y-chromosome evolution.


Acknowledgements

We would like to acknowledge Willem Rens and Malcolm Ferguson-Smith (Cambridge Resource Centre for Comparative Genomics at the University of Cambridge) for providing their microdissected Y5-chromosome paints, and Jürgen Schmitz (University of Münster) and David Adelson (University of Adelaide) and the two anonymous reviewers for their constructive suggestions. This work is funded by the Australian Research Council (DP0664267); F.G. is an ARC Australian Research Fellow and E.T.A. is an ARC Postdoctoral Fellow. The authors declare that there is no conflict of interest that would prejudice the impartiality of this scientific work.


References

Ashley, T. (2005). Chromosome chains and platypus sex: kinky connections. Bioessays 27, 681–684.
CrossRef | PubMed |

Birney, E. , Andrews, T. D. , Bevan, P. , Caccamo, M. , and Chen, Y. , et al. (2004). An overview of Ensembl. Genome Res. 14, 925–928.
CrossRef | PubMed | CAS |

Charlesworth, B. (1991). The evolution of sex chromosomes. Science 251, 1030–1033.
CrossRef | PubMed | CAS |

Crollius, H. R. , Jaillon, O. , Dasilva, C. , Ozouf-Costaz, C. , and Fizames, C. , et al. (2000). Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res. 10, 939–949.
CrossRef | PubMed |

Edgar, R. C. , and Myers, E. W. (2005). PILER: identification and classification of genomic repeats. Bioinformatics 21(Suppl. 1), i152–i158.
CrossRef | PubMed | CAS |

Ellegren, H. (2007). Characteristics, causes and evolutionary consequences of male-biased mutation. Proc. Biol. Sci. 274, 1–10.
CrossRef | PubMed | CAS |

Ewing, B. , and Green, P. (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.
PubMed | |  CAS |

Ewing, B. , Hillier, L. , Wendl, M. , and Green, P. (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.
PubMed | |  CAS |

Gordon, D. , Abajian, C. , and Green, P. (1998). Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202.
PubMed | |  CAS |

Grützner, F. , Rens, W. , Tsend-Ayush, E. , El-Mogharbel, N. , O’Brien, P. C. M. , Jones, R. C. , Ferguson-Smith, M. A. , and Graves, J. A. M. (2004). In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917.
CrossRef | PubMed |

Grützner, F. , Ashley, T. , Rowell, D. M. , and Graves, J. A. M. (2006). How did the platypus get its sex chromosome chain? A comparison of meiotic multiples and sex chromosomes in plants and animals. Chromosoma 115, 75–88.
CrossRef | PubMed |

Jurka, J. (1998). Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 8, 333–337.
CrossRef | PubMed | CAS |

Jurka, J. , Krnjajic, M. , and Kapitonov, V. V. (2002). Active Alu elements are passed primarily through paternal germlines. Theor. Popul. Biol. 61, 519–530.
CrossRef | PubMed |

Jurka, J. , Kohany, O. , Pavlicek, A. , Kapitonov, V. V. , and Jurka, M. V. (2004). Duplication, coclustering, and selection of human Alu retrotransposons. Proc. Natl Acad. Sci. USA 101, 1268–1272.
CrossRef | PubMed | CAS |

Jurka, J. , Kohany, O. , Pavlicek, A. , Kapitonov, V. V. , and Jurka, M. V. (2005a). Clustering, duplication and chromosomal distribution of mouse SINE retrotransposons. Cytogenet. Genome Res. 110, 117–123.
CrossRef | PubMed | CAS |

Jurka, J. , Kapitonov, V. V. , Pavlicek, A. , Klonowski, P. , Kohany, O. , and Walichiewicz, J. (2005b). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467.
CrossRef | PubMed | CAS |

Jurka, J. , Kapitonov, V. V. , Kohany, O. , and Jurka, M. V. (2007). Repetitive sequences in complex genomes: structure and evolution. Annu. Rev. Genomics Hum. Genet. 8, 241–259.
CrossRef | PubMed | CAS |

Kejnovsky, E. , Hobza, R. , Cernak, T. , Kubat, Z. , and Vyskot, B. (2009). The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102, 533–541.
CrossRef | PubMed | CAS |

Kriegs, J. O. , Matzke, A. , Churakov, G. , Kuritzin, A. , Mayr, G. , Brosius, J. , and Schmitz, J. (2007). Waves of genomic hitchhikers shed light on the evolution of gamebirds (Aves: Galliformes). BMC Evol. Biol. 7, 190.
CrossRef | PubMed |

Kuroki, Y. , Toyoda, A. , Noguchi, H. , Taylor, T. D. , and Itoh, T. , et al. (2006). Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nat. Genet. 38, 158–167.
CrossRef | PubMed | CAS |

Mandal, P. K. , and Kazazian, H. H. (2008). SnapShot: vertebrate transposons. Cell 135, 192–192.e1.
CrossRef | PubMed | CAS |

Mariotti, B. , Manzano, S. , Kejnovský, E. , Vyskot, B. , and Jamilena, M. (2009). Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Mol. Genet. Genomics 281, 249–259.
CrossRef | PubMed | CAS |

Montgomery, E. , Charlesworth, B. , and Langley, C. H. (1987). A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49, 31–41.
PubMed | |  CAS |

Murtagh, C. E. (1977). A unique cytogenetics system in monotremes. Chromosoma 65, 37–57.
CrossRef |

Ohno S. (1967). ‘Chromosomes and Sex-Linked Genes.’ (Springer: Berlin.)

Rens, W. , Grützner, F. , O’Brian, P. C. , Fairclough, H. , Graves, J. A. M. , and Ferguson-Smith, M. A. (2004). Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc. Natl Acad. Sci. USA 101, 16 257–16 261.
CrossRef | PubMed | CAS |

Rens, W. , O’Brien, P. C. M. , Grützner, F. , Clarke, O. , and Graphodatskaya, D. , et al. (2007). The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol. 8, R243.
CrossRef | PubMed |

Scott D. W. (1992). ‘Multivariate Density Estimation. Theory, Practice and Visualization.’ (Wiley: New York.)

Skaletsky, H. , Kuroda-Kawaguchi, T. , Minx, P. J. , Cordum, H. S. , and Hillier, L. , et al. (2003). The male-specific region of the human Y chromosome: a mosaic of discrete sequences. Nature 423, 825–837.
CrossRef | PubMed | CAS |

Smit A. F. A., Hubley R., and Green P. (1996–2004). RepeatMasker Open-3.0. <http://www.repeatmasker.org>

Steinemann, S. , and Steinemann, M. (2005). Y chromosomes: born to be destroyed. Bioessays 27, 1076–1083.
CrossRef | PubMed | CAS |

Veyrunes, F. , Waters, P. D. , Miethke, P. , Rens, W. , and McMillan, D. , et al. (2008). Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965–973.
CrossRef | PubMed | CAS |

Warren, W. C. , Hillier, L. W. , Graves, J. A. M. , Birney, E. , and Ponting, C. P. , et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.
CrossRef | PubMed | CAS |

Weiner, A. M. (2002). SINEs and LINEs: the art of biting the hand that feeds you. Curr. Opin. Cell Biol. 14, 343–350.
CrossRef | PubMed | CAS |



Rent Article (via Deepdyve) Export Citation Cited By (7)