Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Follicle-stimulating hormone receptor (FSHR)-derived peptide vaccine induced infertility in mice without pathological effect on reproductive organs

Li-Hua Yang A , Jin-Tao Li B , Ping Yan A , Hong-Li Liu B , Su-Yun Zeng A , Yu-Zhang Wu B , Zhi-Qing Liang A C and Wei He A C
+ Author Affiliations
- Author Affiliations

A Department of Obstetrics and Gynaecology, Southwest Hospital, Third Military Medical University, Chongqing 400030, PR China.

B Institute of Immunology, Third Military University, Chongqing 400030, PR China.

C Corresponding authors. Email: anyhewei@yahoo.com.cn; zhi.lzliang@gmail.com

Reproduction, Fertility and Development 23(4) 544-550 https://doi.org/10.1071/RD10142
Submitted: 13 June 2010  Accepted: 12 November 2010   Published: 11 April 2011

Abstract

In a previous study it was found that priming with recombinant human follicle-stimulating hormone receptor (rhFSHR) protein (F140) and boosting with a peptide containing amino acids 32–44 from FSHR showed a specific immune response and fertility inhibition in adult male mice. However, this priming and boosting led to damage of the reproductive organs. Therefore, to eliminate this damage, the peptide prime–boost strategy was explored as a possible means of avoiding the pathological change while maintaining infertility. Immunisation with the peptide prime–boost strategy led to decreased fertility 10 weeks after vaccination, which is consistent with Balb/C mice treated with the protein prime–peptide boost regime. In contrast to the cellular swelling and spotty necrosis in spermatogonia observed in the protein-primed mice, the mice receiving peptide priming did not display pathological damage in seminiferous tubules and interstitial cells. Thus, the prime–boost immune regime with the FSHR-derived peptide potentially provides a much safer candidate for a contraceptive vaccine.

Additional keywords: contraceptive vaccine, immunisation, pathological damage, spermatogonia.


References

Alexander, J., Sidney, J., Southwood, S., Ruppert, J., Oseroff, C., Maewal, A., Snoke, K., Serra, H. M., Kubo, R. T., Sette, A., and Grey, H. M. (1994). Development of high-potency universal DR-restricted helper epitopes by modification of high-affinity DR-blocking peptides. Immunity 1, 751–761.
Development of high-potency universal DR-restricted helper epitopes by modification of high-affinity DR-blocking peptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXislWktL4%3D&md5=b290abfa47564d4ece30bf4af8ed5cc5CAS | 7895164PubMed |

Amory, J. K., and Bremner, W. (2001). Endocrine regulation of testicular function in men: implications for contraceptive development. Mol. Cell. Endocrinol. 182, 175–179.
Endocrine regulation of testicular function in men: implications for contraceptive development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFSqtrg%3D&md5=a462b7c1edecc5fafd0ccf0d4b95da78CAS | 11514052PubMed |

Foulkes, N. S., Schlotter, F., Pevet, P., and Sassone-Corsi, P. (1993). Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 362, 264–267.
Pituitary hormone FSH directs the CREM functional switch during spermatogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXit1Kjtrk%3D&md5=b49662e96b6cf0ba913ac217759e1489CAS | 7681549PubMed |

Fritz, I. B., Griswold, M. D., Louis, B. G., and Dorrington, J. H. (1978). Metabolic responses of Sertoli cells in culture to various concentrations of follicle-stimulating hormone and cholera toxin. Can. J. Biochem. 56, 875–879.
Metabolic responses of Sertoli cells in culture to various concentrations of follicle-stimulating hormone and cholera toxin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXnt1Q%3D&md5=fe7d0eed105031e2049e2962c979b781CAS | 215290PubMed |

Itoh, M., Hiramine, C., Tokunaga, Y., Mukasa, A., and Hojo, K. (1991). A new murine model of autoimmune orchitis induced by immunization with viable syngeneic testicular germ cells alone: II. Immunohistochemical findings of fully developed inflammatory lesion. Autoimmunity 10, 89–97.
A new murine model of autoimmune orchitis induced by immunization with viable syngeneic testicular germ cells alone: II. Immunohistochemical findings of fully developed inflammatory lesion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387ksVylsQ%3D%3D&md5=59b524b233a46c8a16e94af35c768179CAS | 1782329PubMed |

Krishnamurthy, H., Babu, P. S., Morales, C. R., and Sairam, M. R. (2001). Delay in sexual maturity of the follicle-stimulating hormone receptor knockout male mouse. Biol. Reprod. 65, 522–531.
Delay in sexual maturity of the follicle-stimulating hormone receptor knockout male mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Wnsrk%3D&md5=0b1e88a8f1c0b8b111bd6704e53b0938CAS | 11466221PubMed |

Lu, Q., and Shur, B. D. (1997). Sperm from beta 1,4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly. Development 124, 4121–4131.
| 1:CAS:528:DyaK2sXnt12gsbo%3D&md5=f6c91160cfb90f74942958150fa1a607CAS | 9374408PubMed |

Makler, A. (1980). The improved ten-micrometer chamber for rapid sperm count and motility evaluation. Fertil. Steril. 33, 337–338.
| 1:STN:280:DyaL3c7lslWltQ%3D%3D&md5=09ac30e61ae3c57ccea374743f99baeeCAS | 6892698PubMed |

Meduri, G., Bachelot, A., Cocca, M. P., Vasseur, C., Rodien, P., Kuttenn, F., Touraine, P., and Misrahi, M. (2008). Molecular pathology of the FSH receptor: new insights into FSH physiology. Mol. Cell. Endocrinol. 282, 130–142.
Molecular pathology of the FSH receptor: new insights into FSH physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVegt78%3D&md5=f6285ad3b04cbbe5f8ad342406eb7078CAS | 18248882PubMed |

Moudgal, N. R., Ravindranath, N., Murthy, G. S., Dighe, R. R., Aravindan, G. R., and Martin, F. (1992). Long-term contraceptive efficacy of vaccine of ovine follicle-stimulating hormone in male bonnet monkeys (Macaca radiata). J. Reprod. Fertil. 96, 91–102.
Long-term contraceptive efficacy of vaccine of ovine follicle-stimulating hormone in male bonnet monkeys (Macaca radiata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhs1CntQ%3D%3D&md5=a2334d2eaa44b1ddca67ce2ca8d27188CAS | 1432977PubMed |

Moudgal, N. R., Sairam, M. R., Krishnamurthy, H. N., Sridhar, S., Krishnamurthy, H., and Khan, H. (1997). Immunization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility. Endocrinology 138, 3065–3068.
Immunization of male bonnet monkeys (M. radiata) with a recombinant FSH receptor preparation affects testicular function and fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktVyhsLo%3D&md5=9cce56100f5e520646f6f28d2611b367CAS | 9202254PubMed |

Narula, A., Gu, Y. Q., O’Donnell, L., Stanton, P. G., Robertson, D. M., McLachlan, R. I., and Bremner, W. J. (2002). Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle-stimulating hormone suppression and not to intratesticular androgens. J. Clin. Endocrinol. Metab. 87, 3399–3406.
Variability in sperm suppression during testosterone administration to adult monkeys is related to follicle-stimulating hormone suppression and not to intratesticular androgens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVGju7c%3D&md5=f99fcd97cf4fa04fc259a999a15ac392CAS | 12107257PubMed |

Naz, R. K. (2009). Status of contraceptive vaccines. Am. J. Reprod. Immunol. 61, 11–18.
Status of contraceptive vaccines.Crossref | GoogleScholarGoogle Scholar | 19086987PubMed |

Nechamen, C. A., and Dias, J. A. (2000). Human follicle-stimulating hormone receptor trafficking and hormone-binding sites in the amino terminus. Mol. Cell. Endocrinol. 166, 101–110.
Human follicle-stimulating hormone receptor trafficking and hormone-binding sites in the amino terminus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtlGktLk%3D&md5=da667acf9caf9c9f0bbf6f2a6e02557cCAS | 10996428PubMed |

Panina-Bordignon, P., Tan, A., Termijtelen, A., Demotz, S., Corradin, G., and Lanzavecchia, A. (1989). Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur. J. Immunol. 19, 2237–2242.
Universally immunogenic T cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvFKhu78%3D&md5=a70c0baaea93c77bdf3cf3abd69032f5CAS | 2481588PubMed |

Pieczenik, G. (2003). Are the universes of antibodies and antigens symmetrical? Reprod. Biomed. Online 6, 154–156.
Are the universes of antibodies and antigens symmetrical?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXisl2nt74%3D&md5=95d561a11d4a46640eeee0093a3acd53CAS | 12675989PubMed |

Rao, A. J., Ramachandra, S. G., Ramesh, V., Couture, L., Abdennebi, L., Salesse, R., and Remy, J. J. (2004). Induction of infertility in adult male bonnet monkeys by immunization with phage-expressed peptides of the extracellular domain of FSH receptor. Reprod. Biomed. Online 8, 385–391.
Induction of infertility in adult male bonnet monkeys by immunization with phage-expressed peptides of the extracellular domain of FSH receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjslygu70%3D&md5=2b46b34356e875f77494f3dc2b31bd03CAS | 15149560PubMed |

Reddy, P. S., and Pushpalatha, T. (2006). Reduction of spermatogenesis and steroidogenesis in mice after fentin and fenbutatin administration. Toxicol. Lett. 166, 53–59.
Reduction of spermatogenesis and steroidogenesis in mice after fentin and fenbutatin administration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xosl2ksrw%3D&md5=032345a8c989c79a5f25351f043bab5fCAS | 16806747PubMed |

Remy, J. J., Couture, L., Pantel, J., Haertle, T., Rabesona, H., Bozon, V., Pajot-Augy, E., Robert, P., Troalen, F., Salesse, R., and Bidart, J. M. (1996). Mapping of HCG-receptor complexes. Mol. Cell. Endocrinol. 125, 79–91.
Mapping of HCG-receptor complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVSqsg%3D%3D&md5=c80d997b227cd4aabdcdeb27481fe9c3CAS | 9027346PubMed |

Subramanian, S., Karande, A. A., and Adiga, P. R. (2000). Immunocontraceptive potential of major antigenic determinants of chicken riboflavin carrier protein in the female rat. Vaccine 19, 1172–1179.
Immunocontraceptive potential of major antigenic determinants of chicken riboflavin carrier protein in the female rat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitlCrtg%3D%3D&md5=32cbb72a00d938a38ffca9709a11acfdCAS | 11137254PubMed |

Talbot, P., and Chacon, R. S. (1981). A triple-stain technique for evaluating normal acrosome reactions of human sperm. J. Exp. Zool. 215, 201–208.
A triple-stain technique for evaluating normal acrosome reactions of human sperm.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL38%2FgvFKjsQ%3D%3D&md5=eb81845c8da699e9034a6db9a5f9db67CAS | 6168732PubMed |

Tayama, K., Fujita, H., Takahashi, H., Nagasawa, A., Yano, N., Yuzawa, K., and Ogata, A. (2006). Measuring mouse sperm parameters using a particle counter and sperm quality analyser: a simple and inexpensive method. Reprod. Toxicol. 22, 92–101.
Measuring mouse sperm parameters using a particle counter and sperm quality analyser: a simple and inexpensive method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFSktb0%3D&md5=b9cac9dd6421cd8ee85c5e2b84c35b83CAS | 16431076PubMed |

Themmen, A. P. N., and Huhtaniemi, I. T. (2000). Mutations of gonadotrophins and gonadotrophin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function. Endocr. Rev. 21, 551–583.
Mutations of gonadotrophins and gonadotrophin receptors: elucidating the physiology and pathophysiology of pituitary-gonadal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2ru7Y%3D&md5=2a537314b31298dc2d46053c77d38606CAS | 11041448PubMed |

Wickings, E. J., and Nieschlag, E. (1980). Suppression of spermatogenesis over two years in Rhesus monkeys actively immunized with follicle-stimulating hormone. Fertil. Steril. 34, 269–274.
| 1:CAS:528:DyaL3cXlvVSis7g%3D&md5=3af8ac9fac2dc8c1fe86537e0550e9bcCAS | 6773823PubMed |

Yan, P., He, W., Liang, Z., Chen, Z., Shang, X., He, H., Tang, Y., Ni, B., Zhang, J., Shen, Z., Wu, Y., and Li, J. (2009a). A novel dominant B-cell epitope of FSHR identified by molecular docking induced specific immune response and suppressed fertility. Gynecol. Endocrinol. 25, 828–838.
A novel dominant B-cell epitope of FSHR identified by molecular docking induced specific immune response and suppressed fertility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFSqtLnF&md5=09f4e1ff45f0b107fb1c33be6fd5d620CAS | 19906003PubMed |