Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Sperm genome cloning used in biparental bovine embryo reconstruction

Gabriel Vichera A , Ramiro Olivera A , Pablo Sipowicz B , Martín Radrizzani B and Daniel Salamone A C
+ Author Affiliations
- Author Affiliations

A Laboratorio de Biotecnología Animal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417 Buenos Aires, Argentina.

B Laboratorio de Neuro y Citogenética Molecular, Universidad de San Martín, Av. Gral Paz 5445, B1650 Buenos Aires, Argentina.

C Corresponding author. Email: salamone@agro.uba.ar

Reproduction, Fertility and Development 23(6) 769-779 https://doi.org/10.1071/RD10252
Submitted: 2 October 2010  Accepted: 1 February 2011   Published: 30 June 2011

Abstract

The generation of androgenetic haploid embryos enables several haploid blastomeres to be obtained as identical copies of a single spermatozoon genome. In the present study, we compared the developmental ability of bovine androgenetic haploid embryos constructed by different methods, namely IVF and intracytoplasmic sperm injection (ICSI) before and after oocyte enucleation. Once obtained, the blastomeres of these androgenetic haploid embryos were used as male genome donors to reconstruct biparental embryos by fusion with matured oocytes. To verify the cytoplasmic contribution of androgenetic haploid blastomeres, we used spermatozoa incubated previously with exogenous DNA that coded for a green fluorescent protein gene (pCX-EGFP) and the enhanced green fluorescent protein (EGFP)-positive androgenetic haploid blastomeres generated were fused with mature oocytes. Of the reconstructed embryos reaching the cleavage and blastocyst stages, 85.1% and 9.0%, respectively, expressed EGFP (P > 0.05). EGFP expression was observed in 100% of reconstructed embryos, with 91.2% exhibiting homogenic expression. To confirm sperm genome incorporation, androgenetic haploid blastomeres generated by ICSI prior to enucleation and using Y chromosome sexed spermatozoa were used for biparental embryo reconstruction. Incorporation of the Y chromosome was confirmed by polymerase chain reaction and fluorescence in situ hybridisation analysis. In conclusion, the results of the present study prove that it is possible to use sperm genome replicates to reconstruct biparental bovine embryos and that it is a highly efficient technique to generate homogeneous transgene-expressing embryos.

Additional keywords: sexed haploid NT, sperm cloning, transgenesis.


References

Barra, J., and Renard, J. P. (1988). Diploid mouse embryos constructed at the late 2-cell stage from haploid parthenotes and androgenotes can develop to term. Development 102, 773–779.
| 1:STN:280:DyaL1M%2FgsVKhtQ%3D%3D&md5=837c30e3eb357be94177c983ed5c8509CAS | 3168788PubMed |

Barton, S. C., Surani, M. A., and Norris, M. L. (1984). Role of paternal and maternal genomes in mouse development. Nature 311, 374–376.
Role of paternal and maternal genomes in mouse development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2Fht1Kkug%3D%3D&md5=3502a02f5489a51c45e52539927de2dfCAS | 6482961PubMed |

Bavister, B. D., and Yanagimachi, R. (1977). The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol. Reprod. 16, 228–237.
The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FovVWgtQ%3D%3D&md5=62c6a004b1a7d84cdb439b4e02dfd93eCAS | 831847PubMed |

Brackett, B. G., and Oliphant, G. (1975). Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 12, 260–274.
Capacitation of rabbit spermatozoa in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28Xnt1WltQ%3D%3D&md5=51c4d5f0dde1ab549aba305b3a2fce83CAS | 1122333PubMed |

Brackett, B. G., Baranska, W., Sawicki, W., and Koprowski, H. (1971). Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc. Natl Acad. Sci. USA 68, 353–357.
Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M7htVynsA%3D%3D&md5=142b87eb1e81b7489d03c285ee6c3c84CAS |

Brinster, R. L., Sandgren, E. P., Behringer, R. R., and Palmiter, R. D. (1989). No simple solution for making transgenic mice. Cell 59, 239–241.
No simple solution for making transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1Knt7c%3D&md5=286275d825aa019ad3014947da33bca6CAS | 2805065PubMed |

Celebi, C., Auvray, P., Benvegnu, T., Plusquellec, D., Jegou, B., and Guillaudeux, T. (2002). Transient transmission of a transgene in mouse offspring following in vivo transfection of male germ cells. Mol. Reprod. Dev. 62, 477–482.
Transient transmission of a transgene in mouse offspring following in vivo transfection of male germ cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1Klsro%3D&md5=e974cad1112ddd1d160b6d3f1ab2e0d5CAS | 12112580PubMed |

Colley, A., Buhr, M., and Golovan, S. P. (2008). Single bovine sperm sex typing by amelogenin nested PCR. Theriogenology 70, 978–983.
Single bovine sperm sex typing by amelogenin nested PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKmsLvL&md5=735be31a19de401f81611b782c041bd7CAS | 18653223PubMed |

Cruz, N. T. D., Wilson, K. J., Cooney, M. A., Tecirlioglu, R. T., Lagutina, I., Galli, C., Holland, M. K., and French, A. J. (2008). Putative imprinted gene expression in uniparental bovine embryo models. Reprod. Fertil. Dev. 20, 589–597.
Putative imprinted gene expression in uniparental bovine embryo models.Crossref | GoogleScholarGoogle Scholar | 18577356PubMed |

Freed, J. J., and Mezger-Freed, L. (1970). Stable haploid cultured cell lines from frog embryos. Proc. Natl Acad. Sci. USA 65, 337–344.
Stable haploid cultured cell lines from frog embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c7htFCnug%3D%3D&md5=c85e4e5318b86ed1da9191fd2ca5d9bcCAS |

Hagemann, L. J., and First, N. L. (1992). Embryonic cytoplasmic extracts rescue murine androgenomes to the blastocyst stage. Development 114, 997–1001.
| 1:STN:280:DyaK38zhsF2ntA%3D%3D&md5=ce4f89b06423d33b9c5236be64596d61CAS | 1618159PubMed |

Hoelker, M., Mekchay, S., Schneider, H., Bracket, B. G., Tesfaye, D., Jennen, D., Tholen, E., Gilles, M., Rings, F., Griese, J., and Schellander, K. (2007). Quantification of DNA binding, uptake, transmission and expression in bovine sperm mediated gene transfer by RT-PCR: effect of transfection reagent and DNA architecture. Theriogenology 67, 1097–1107.
Quantification of DNA binding, uptake, transmission and expression in bovine sperm mediated gene transfer by RT-PCR: effect of transfection reagent and DNA architecture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislejtLk%3D&md5=04bc92e547eb97659b95f1ad1d987de9CAS | 17289138PubMed |

Holm, P., Booth, P., Schmidt, M., Greve, T., and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7pvVGnsw%3D%3D&md5=26633a11a012ea179b9a1f80585e2f19CAS | 10734366PubMed |

Ikawa, M., Kominami, K., Yoshimura, Y., Tanaka, K., Nishimune, Y., and Okabe, M. A. (1995). Rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP). FEBS Lett. 375, 125–128.
Rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslKitrw%3D&md5=466c78fde05f25288b2c27b085d71da8CAS | 7498460PubMed |

Kaneko, T., Moisyadi, S., Suganuma, R., Hohn, B., Yanagimachi, R., and Pelczar, P. (2005). Recombinase-mediated mouse transgenesis by intracytoplasmic sperm injection. Theriogenology 64, 1704–1715.
Recombinase-mediated mouse transgenesis by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWhsLfI&md5=435b063d1af61c6bb6dcb8533e86c4a9CAS | 15950270PubMed |

Kaneko-Ishino, T., Kohda, T., and Ishino, F. (2003). The regulation and biological significance of genomic imprinting in mammals. J. Biochem. 133, 699–711.
The regulation and biological significance of genomic imprinting in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Wit70%3D&md5=32b6e442ea50c59299d90ac3b893ce2bCAS | 12869525PubMed |

Kaufman, M. H., Lee, K. K. H., and Speirs, S. (1989). Post-implantation development and cytogenetic analysis of diandric heterozygous diploid mouse embryos. Cytogenet. Cell Genet. 52, 15–18.
Post-implantation development and cytogenetic analysis of diandric heterozygous diploid mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c7isFyrtg%3D%3D&md5=c1de83d1b82fa83125dfd66390ebf498CAS | 2612210PubMed |

Kuznyetsov, V., Kuznyetsova, I., Chmura, M., and Verlinsky, Y. (2007). Duplication of the sperm genome by human androgenetic embryo production: towards testing the paternal genome prior to fertilization. Reprod. Biomed. Online 14, 504–514.
Duplication of the sperm genome by human androgenetic embryo production: towards testing the paternal genome prior to fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFOjtro%3D&md5=191e453bbc44ad9d16003af3c5e3661eCAS | 17425836PubMed |

Lagutina, I., Lazzari, G., Duchi, R., and Galli, C. (2004). Developmental potential of bovine androgenetic and parthenogenetic embryos: a comparative study. Biol. Reprod. 70, 400–405.
Developmental potential of bovine androgenetic and parthenogenetic embryos: a comparative study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsl2jsg%3D%3D&md5=5db958cbc64f988cc0c71deff6530094CAS | 14561645PubMed |

Latham, K. E., and Solter, D. (1991). Effect of egg composition on the developmental capacity of androgenetic mouse embryos. Development 113, 561–568.
| 1:STN:280:DyaK387ks1altQ%3D%3D&md5=e06fc37cf8292336560fbba48c1e817dCAS | 1782866PubMed |

Lavitrano, M., Camaioni, A., Fazio, V. M., Dolci, S., Farace, M. G., and Spadafora, C. (1989). Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 57, 717–723.
Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFWlsb0%3D&md5=51cea542e185e751f1a4231a95f1ff5fCAS | 2720785PubMed |

Matsukawa, K., Turco, M. Y., Scapolo, P. A., Reynolds, L., Ptak, G., and Loi, P. (2007). Development of sheep androgenetic embryos is boosted following transfer of male pronuclei into androgenetic hemizygotes. Cloning Stem Cells 9, 374–381.
Development of sheep androgenetic embryos is boosted following transfer of male pronuclei into androgenetic hemizygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFSgs7zL&md5=2fa63374f77e5e037c43eb4ff06b76bfCAS | 17907948PubMed |

McGrath, J., and Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183.
Completion of mouse embryogenesis requires both the maternal and paternal genomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3gsFKguw%3D%3D&md5=5533860d6ffcc9f30b4832d9be3aa3efCAS | 6722870PubMed |

Miki, H., Hirose, M., Ogonuki, N., Inoue, K., Kezuka, F., Honda, A., Mekada, K., Hanaki, K. I., Iwafune, H., Yoshiki, A., Ishino, F., and Ogura, A. (2009). Efficient production of androgenetic embryos by round spermatid injection. Genesis 47, 155–160.
Efficient production of androgenetic embryos by round spermatid injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVWrt7o%3D&md5=6b7321a1049f6909a9bd69efdbbdb46aCAS | 19241381PubMed |

Murakami, M., Fahrudin, M., Varisanga, M., and Suzuki, T. (1999). Fluorescence expression by bovine embryos after pronuclear microinjection with the EGFP gene. J. Vet. Med. Sci. 61, 843–847.
Fluorescence expression by bovine embryos after pronuclear microinjection with the EGFP gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVGjtrk%3D&md5=12818b28a2fd00f0c0d55f3a71250f75CAS | 10458112PubMed |

Obata, Y., Ono, Y., Akuzawa, H., Kwon, O. Y., Yoshizawa, M., and Kono, T. (2000). Post-implantation development of mouse androgenetic embryos produced by in vitro fertilization of enucleated oocytes. Hum. Reprod. 15, 874–880.
Post-implantation development of mouse androgenetic embryos produced by in vitro fertilization of enucleated oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3gs1Okug%3D%3D&md5=9c52c548f4aaf9e390c779340952a249CAS | 10739836PubMed |

Park, C. H., Kim, H. S., Lee, S. G., and Lee, C. K. (2009). Methylation status of differentially methylated regions at Igf2/H19 locus in porcine gametes and preimplantation embryos. Genomics 93, 179–186.
Methylation status of differentially methylated regions at Igf2/H19 locus in porcine gametes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVCmtQ%3D%3D&md5=37d56365ba07abc545780385daf07827CAS | 18983907PubMed |

Pereyra-Bonnet, F., Fernández-Martín, R., Olivera, R., Jarazo, J., Vichera, G., Gibbons, A., and Salamone, D. (2008). A unique method to produce transgenic embryos in ovine, porcine, feline, bovine and equine species. Reprod. Fertil. Dev. 20, 741–749.
A unique method to produce transgenic embryos in ovine, porcine, feline, bovine and equine species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFWmsb7O&md5=b98d469444a5b510cd5de8ec206560ffCAS | 18842176PubMed |

Perry, A. C., Wakayama, T., Kishikawa, H., Kasai, T., Okabe, M., Toyoda, Y., and Yanagimachi, R. (1999). Mammalian transgenesis by intracytoplasmic sperm injection. Science 284, 1180–1183.
Mammalian transgenesis by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlajsbk%3D&md5=47e2a9dd067fa1d10ba16220facc4170CAS | 10325231PubMed |

SAS Institute (1989). ‘SAS/STAT: User’s Guide, Version 6, Vol. 1.’ 4th edn. (SAS Institute: Cary, NC.)

Smith, K., and Spadafora, C. (2005). Sperm-mediated gene transfer: applications and implications. Bioessays 27, 551–562.
Sperm-mediated gene transfer: applications and implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksFOhsrY%3D&md5=df70596cb440f28616970310ceb59810CAS | 15832378PubMed |

Surani, M. A. H., Barton, S. C., and Norris, M. L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548–550.
Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7mvVWltg%3D%3D&md5=134a7665634946a4a9dab2181f1ac754CAS | 6709062PubMed |

Surani, M. A. H., Barton, S. C., and Norris, M. L. (1986). Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome. Cell 45, 127–136.
Nuclear transplantation in the mouse: heritable differences between parental genomes after activation of the embryonic genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xit1amtr0%3D&md5=e71792b325655c6f806c8b72f61d44a8CAS | 3955655PubMed |

Szczygiel, M. A., Moisyadi, S., and Ward, W. S. (2003). Expression of foreign DNA is associated with paternal chromosome degradation in intracytoplasmic sperm injection-mediated transgenesis in the mouse. Biol. Reprod. 68, 1903–1910.
Expression of foreign DNA is associated with paternal chromosome degradation in intracytoplasmic sperm injection-mediated transgenesis in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt12ltbg%3D&md5=e9f5480380a015f21e0b255ba1d2487bCAS | 12606337PubMed |

Vajta, G., Peura, T. T., Holm, P., Paldi, A., Greve, T., Trouson, A. O., and Callesen, H. (2000). New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol. Reprod. Dev. 55, 256–264.
New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFelsbY%3D&md5=ce4fcee33b7f6e707fdecc49d8f52a6eCAS | 10657044PubMed |

Vichera, G., Alfonso, J., Duque, C. C., Silvestre, M. A., Pereyra-Bonnet, F., Fernandez-Martın, R., and Salamone, D. (2009). Chemical activation with a combination of ionomycin and dehydroleucodine for production of parthenogenetic, ICSI and cloned bovine embryos. Reprod. Domest. Anim. 45, e306–e312.
Chemical activation with a combination of ionomycin and dehydroleucodine for production of parthenogenetic, ICSI and cloned bovine embryos.Crossref | GoogleScholarGoogle Scholar |

Vichera, G., Moro, L., and Salamone, D. (2011). Efficient transgene expression in IVF and parthenogenetic bovine embryos by intracytoplasmic injection of DNA–liposome complexes. Reprod. Domest. Anim. 46, 214–220.
Efficient transgene expression in IVF and parthenogenetic bovine embryos by intracytoplasmic injection of DNA–liposome complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlt1WntrY%3D&md5=b56e4d233555896d75a00b670b4b57c0CAS | 20565700PubMed |

Yamauchi, Y., Doe, B., Ajduk, A., and Ward, M. A. (2007). Genomic DNA damage in mouse transgenesis. Biol. Reprod. 77, 803–812.
Genomic DNA damage in mouse transgenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1CnurfK&md5=39da07c03ba95d56aec41f4b21e9da6aCAS | 17652664PubMed |

Yanagimachi, R. (2005). Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals. Reprod. Biomed. Online 10, 247–288.
Intracytoplasmic injection of spermatozoa and spermatogenic cells: its biology and applications in humans and animals.Crossref | GoogleScholarGoogle Scholar | 15823233PubMed |

Yi, M., Hong, N., and Hong, Y. (2009). Generation of Medaka fish haploid embryonic stem cells. Science 326, 430–433.
Generation of Medaka fish haploid embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1GgtLfI&md5=557827ce88f6d3584a252891eebea0ddCAS | 19833967PubMed |