Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Transforming growth factor-β (TGFβ) in porcine seminal plasma

Sean O’Leary A , David T. Armstrong A and Sarah A. Robertson A B
+ Author Affiliations
- Author Affiliations

A School of Paediatrics and Reproductive Health, The Robinson Institute, The University of Adelaide, SA 5005, Australia.

B Corresponding author. Email: sarah.robertson@adelaide.edu.au

Reproduction, Fertility and Development 23(6) 748-758 https://doi.org/10.1071/RD11001
Submitted: 3 January 2011  Accepted: 7 March 2011   Published: 21 June 2011

Abstract

Bioactive factors in seminal plasma induce cellular and molecular changes in the female reproductive tract after coitus. An active constituent of seminal plasma in mice and humans is the potent immune-modulating cytokine transforming growth factor-β (TGFβ). To investigate whether TGFβ is present in boar seminal plasma, TGFβ1 and TGFβ2 were measured by immunoassay. High levels of TGFβ1 and TGFβ2 were detected in 100% of seminal fluid samples from 73 boars. Both were predominantly in the active, not latent form. Interferon-γ (IFNγ) and lipopolysaccharide (LPS), agents that interact with TGFβ signalling, were detectable in 5% and 100% of samples, respectively. TGFβ1 and TGFβ2 concentrations varied widely between boars, but correlated with each other and with sperm density, and remained relatively constant within individual boars over a 6-month period. Frequent semen collection substantially diminished the concentration of both TGFβ isoforms. Using retrospective breeding data for 44 boars, no correlation between TGFβ content and boar reproductive performance by artificial insemination (AI) with diluted semen was found. It is concluded that TGFβ is abundant in boar seminal plasma, leading to the speculation that, in pigs, TGFβ may be a male–female signalling agent involved in immune changes in the female reproductive tract elicited by seminal fluid.

Additional keywords: immune tolerance, pregnancy, seminal fluid signalling.


References

Alexander, N. J., and Anderson, D. J. (1987). Immunology of semen. Fertil. Steril. 47, 192–204.
| 1:STN:280:DyaL2s7jsVejtg%3D%3D&md5=636a008465ff812cf8084c4954e09055CAS | 2434363PubMed |

Anderson, D. J., and Tarter, T. H. (1982). Immunosuppressive effects of mouse seminal plasma components in vivo and in vitro. J. Immunol. 128, 535–539.
| 1:STN:280:DyaL38%2FpvFCisw%3D%3D&md5=6fed47a9ac0e64c0c924e2cd9e06bbddCAS | 7054287PubMed |

Annes, J. P., Munger, J. S., and Rifkin, D. B. (2003). Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224.
Making sense of latent TGFβ activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVKgug%3D%3D&md5=911ded5750f12a7e55aec5b70442cecbCAS | 12482908PubMed |

Ashcroft, G. S. (1999). Bidirectional regulation of macrophage function by TGF-β. Microbes Infect. 1, 1275–1282.
Bidirectional regulation of macrophage function by TGF-β.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFehsb4%3D&md5=3280bf426ac0bf5446dd106e6a433314CAS | 10611755PubMed |

Baker, R. D., Dziuk, P. J., and Norton, H. W. (1968). Effect of volume of semen, number of sperm and drugs on transport of sperm in artificially inseminated gilts. J. Anim. Sci. 27, 88–93.
| 1:STN:280:DyaF1c7jt1GlsA%3D%3D&md5=f162b8c821d1c19c0cb7e1b92868fa66CAS | 5637672PubMed |

Bischof, R. J., Lee, C. S., Brandon, M. R., and Meeusen, E. (1994). Inflammatory response in the pig uterus induced by seminal plasma. J. Reprod. Immunol. 26, 131–146.
Inflammatory response in the pig uterus induced by seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fhslyksg%3D%3D&md5=5ddce2fb01025f40676dc47a74301bd9CAS | 7932389PubMed |

Brussow, K. P., Ratky, J., and Rodriguez-Martinez, H. (2008). Fertilization and early embryonic development in the porcine fallopian tube. Reprod. Domest. Anim. 43, 245–251.
Fertilization and early embryonic development in the porcine fallopian tube.Crossref | GoogleScholarGoogle Scholar | 18638131PubMed |

Chu, T. M., and Kawinski, E. (1998). Plasmin, substilisin-like endoproteases, tissue plasminogen activator and urokinase plasminogen activator are involved in activation of latent TGF-β1 in human seminal plasma. Biochem. Biophys. Res. Commun. 253, 128–134.
Plasmin, substilisin-like endoproteases, tissue plasminogen activator and urokinase plasminogen activator are involved in activation of latent TGF-β1 in human seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFShs70%3D&md5=71d34c9d719a927ccc9fc3148d336802CAS | 9875232PubMed |

Chu, T. M., Nocera, M. A., Flanders, K. C., and Kawinski, E. (1996). Localisation of seminal plasma transforming growth factor-beta1 on human spermatozoa: an immunocytochemical study. Fertil. Steril. 66, 327–330.
| 1:STN:280:DyaK28zgsF2rsw%3D%3D&md5=f6c6bb7829c00f559d38473f993d1988CAS | 8690124PubMed |

Claus, R. (1990). Physiological role of seminal components in the reproductive tract of the female pig. J. Reprod. Fertil. Suppl. 40, 117–131.
| 1:STN:280:DyaK3c3osF2hug%3D%3D&md5=00c7bc1b32928b39840ec6f8a5460ef6CAS | 2192032PubMed |

Desai, K. V., and Kondaiah, P. (2000). Androgen ablation results in differential regulation of transforming growth factor-beta isoforms in rat male accessory sex organs and epididymis. J. Mol. Endocrinol. 24, 253–260.
Androgen ablation results in differential regulation of transforming growth factor-beta isoforms in rat male accessory sex organs and epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVCit7Y%3D&md5=b6704f43ddd2679eece2b131111eb440CAS | 10750026PubMed |

D’Orazio, T. J., and Niederkorn, J. Y. (1998). A novel role for TGF-beta and IL-10 in the induction of immune privilege. J. Immunol. 160, 2089–2098.
| 1:CAS:528:DyaK1cXhtlertLc%3D&md5=24d7f4bc103872007159157e19cacf9dCAS | 9498745PubMed |

Dzuik, P. J. (1977). Reproduction in pigs. In ‘Reproduction in Domestic Animals’. (Eds H. H. Cole and P. T. Cupps.) pp. 455–474. (Academic Press: New York.)

Flowers, W. L., and Esbenshade, K. L. (1993). Optimizing management of natural and artificial matings in swine. J. Reprod. Fertil. 48, 217–228.
| 1:STN:280:DyaK2c7psVClug%3D%3D&md5=cdc53b882b45e569e8142ef16898244eCAS |

Foley, C. W., Zehmer, R. B., Shotts, E. B., and Williams, D. J. (1971). Bacterial flora of boar reproductive tract and semen. Am. J. Vet. Res. 32, 1447–1450.
| 1:STN:280:DyaE38%2FgsVShtQ%3D%3D&md5=d1e9a326a9d7830e6cc4497acb48efa9CAS | 4937617PubMed |

Gann, P. H., Klein, K. G., Chatterton, R. T., Ellman, A. E., Grayhack, J. T., Nadler, R. B., and Lee, C. (1999). Growth factors in expressed prostatic fluid from men with prostate cancer, BPH and clinically normal prostates. Prostate 40, 248–255.
Growth factors in expressed prostatic fluid from men with prostate cancer, BPH and clinically normal prostates.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzltVGltQ%3D%3D&md5=ccc30bd830bea165b74b492ca3fbd6f7CAS | 10420153PubMed |

Gatza, C. E., Oh, S. Y., and Blobe, G. C. (2010). Roles for the type III TGF-β receptor in human cancer. Cell. Signal. 22, 1163–1174.
Roles for the type III TGF-β receptor in human cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlyntb8%3D&md5=dbef2001720d368f3c65ef0e36bf518cCAS | 20153821PubMed |

Glynn, D., Sharkey, D. J., and Robertson, S. A. (2004). Interferon gamma inhibits female reproductive tract responsiveness to seminal plasma. In ‘Society for Study of Reproduction, 37th Annual Meeting’. Vancouver, British Columbia, Canada. p. 242. (Biology of Reproduction: Madison, WI.)

Gorelik, L., and Flavell, R. A. (2002). Transforming growth factor-beta in T-cell biology. Nat. Rev. Immunol. 2, 46–53.
Transforming growth factor-beta in T-cell biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhslyitL8%3D&md5=767aac0d0ed3a9b86da81038f430630cCAS | 11905837PubMed |

Hao, Y., Mathialagan, N., Walters, E., Mao, J., Lai, L., Becker, D., Li, W., Critser, J., and Prather, R. S. (2006). Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes. Biol. Reprod. 75, 726–733.
Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFCgt7nM&md5=c88190c84b5dd870562cbb730627fb78CAS | 16870945PubMed |

Ingman, W. V., and Robertson, S. A. (2009). The essential roles of TGFB1 in reproduction. Cytokine Growth Factor Rev. 20, 233–239.
The essential roles of TGFB1 in reproduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsFaitLs%3D&md5=da919aa4e552764546860bcfb1430eb5CAS | 19497778PubMed |

Kelly, R. W., and Critchley, H. O. (1997). Immunomodulation by human seminal plasma: a benefit for spermatozoon and pathogen? Hum. Reprod. 12, 2200–2207.
| 1:CAS:528:DyaK2sXns1yitLg%3D&md5=109d63e9b07ea4c18a69df65d86ed6c3CAS | 9402282PubMed |

Knight, P. G., and Glister, C. (2006). TGF-beta superfamily members and ovarian follicle development. Reproduction 132, 191–206.
TGF-beta superfamily members and ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1Wjsr0%3D&md5=e3952199251c52a7267a52410fc3d2c7CAS | 16885529PubMed |

Lawrence, D. A. (1996). Transforming growth factor-beta: a general review. Eur. Cytokine Netw. 7, 363–374.
| 1:CAS:528:DyaK28Xmt1yqt7c%3D&md5=e844d34f7007bfe101a736eea4af67aaCAS | 8954178PubMed |

Lawrence, D. A. (2001). Latent TGF-β: an overview. Mol. Cell. Biochem. 219, 163–170.
Latent TGF-β: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjt1amurg%3D&md5=266cd39d31766ccac6aa22d52e1da573CAS | 11354248PubMed |

Lee, C., Sintich, S. M., Mathews, E. P., Shah, A. H., Kundu, S. D., Perry, K. T., Cho, J. S., Ilio, K. Y., Cronauer, M. V., Janulis, L., and Sensibar, J. A. (1999). Transforming growth factor-β in benign and malignant prostate. Prostate 39, 285–290.
Transforming growth factor-β in benign and malignant prostate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjslyjsb8%3D&md5=8f726c0fa9ac8d12738b0d0658fb0fb0CAS | 10344218PubMed |

Letterio, J. J., and Roberts, A. B. (1998). Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 16, 137–161.
Regulation of immune responses by TGF-β.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXislyhsrk%3D&md5=28f97d786438e8eeecd08ae5728a1b58CAS | 9597127PubMed |

Mah, J., Tilton, J. E., Williams, G. L., Johnson, J. N., and Marchello, M. J. (1985). The effect of repeated mating at short intervals on reproductive performance of gilts. J. Anim. Sci. 60, 1052–1054.
| 1:STN:280:DyaL2M7ot1eksg%3D%3D&md5=c3677ae4fc4f57929deb0bf246dda1cbCAS | 3988653PubMed |

Mann, T. (1954). ‘The Biochemistry of Semen.’ (Methuen: London.)

Massagué, J. (2000). How cells read TGF-β signals. Nat. Rev. Mol. Cell Biol. 1, 169–178.
How cells read TGF-β signals.Crossref | GoogleScholarGoogle Scholar | 11252892PubMed |

McGrath, L. J., Ingman, W. V., Robker, R. L., and Robertson, S. A. (2009). Exogenous transforming growth factor beta1 replacement and fertility in male Tgfb1 null mutant mice. Reprod. Fertil. Dev. 21, 561–570.
Exogenous transforming growth factor beta1 replacement and fertility in male Tgfb1 null mutant mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXksF2ru7s%3D&md5=957a2aaa6056dce76c7a67184a7f4000CAS | 19383262PubMed |

Murray, F. A., and Grifo, A. P. J. (1986). Intrauterine infusion of killed semen to increase litter size in gilts. J. Anim. Sci. 62, 187–190.

Murray, F. A., Grifo, A. P., and Parker, C. F. (1983). Increased litter size in gilts by intrauterine infusion of seminal and sperm antigens before breeding. J. Anim. Sci. 56, 895–900.
| 1:STN:280:DyaL3s3ht12msg%3D%3D&md5=988ace50c2dc5efc9e41a7d7ce9381a1CAS | 6682857PubMed |

Nocera, M., and Chu, T. M. (1995). Characterization of latent transforming growth factor-beta from human seminal plasma. Am. J. Reprod. Immunol. 33, 282–291.
| 1:STN:280:DyaK28%2FjslOkug%3D%3D&md5=5afa8d22b3e389ab50f885a7c09a1ec1CAS | 7546247PubMed |

Novak, S., Ruiz-Sanchez, A., Dixon, W. T., Foxcroft, G. R., and Dyck, M. K. (2010). Seminal plasma proteins as potential markers of relative fertility in boars. J. Androl. 31, 188–200.
Seminal plasma proteins as potential markers of relative fertility in boars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Shtbw%3D&md5=aec55870361ea1eaa9295ce8bd80c1bfCAS | 19713565PubMed |

O’Leary, S., Robertson, S. A., and Armstrong, D. T. (2002). The influence of seminal plasma on ovarian function in pigs – a novel inflammatory mechanism? J. Reprod. Immunol. 57, 225–238.
The influence of seminal plasma on ovarian function in pigs – a novel inflammatory mechanism?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOms7k%3D&md5=fcf9415e33f1004def1de43b2ca02a2aCAS | 12385845PubMed |

O’Leary, S., Jasper, M. J., Warnes, G. M., Armstrong, D. T., and Robertson, S. A. (2004). Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig. Reproduction 128, 237–247.
Seminal plasma regulates endometrial cytokine expression, leukocyte recruitment and embryo development in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntFeit70%3D&md5=f4fa6b7585edd51ecb67c33d6a324966CAS | 15280563PubMed |

O’Leary, S., Jasper, M. J., Robertson, S. A., and Armstrong, D. T. (2006). Seminal plasma regulates ovarian progesterone production, leukocyte recruitment and follicular cell responses in the pig. Reproduction 132, 147–158.
Seminal plasma regulates ovarian progesterone production, leukocyte recruitment and follicular cell responses in the pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xot1Ogt74%3D&md5=70b795da3113d74fb114c92da214b680CAS | 16816340PubMed |

Politch, J. A., Tucker, L., Bowman, F. P., and Anderson, D. J. (2007). Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men. Hum. Reprod. 22, 2928–2935.
Concentrations and significance of cytokines and other immunologic factors in semen of healthy fertile men.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Shu7fK&md5=9bc6f1fa77dbf299fff6ee0d3eea944dCAS | 17855405PubMed |

Reed, S. G. (1999). TGF-β in infections and infectious diseases. Microbes Infect. 1, 1313–1325.
TGF-β in infections and infectious diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFehsbs%3D&md5=b32b898546b114cec8bc67c09267d469CAS | 10611760PubMed |

Robertson, S. A. (2005). Seminal plasma and male factor signalling in the female reproductive tract. Cell Tissue Res. 322, 43–52.
Seminal plasma and male factor signalling in the female reproductive tract.Crossref | GoogleScholarGoogle Scholar | 15909166PubMed |

Robertson, S. A. (2007). Seminal fluid signalling in the female reproductive tract: lessons from rodents and pigs. J. Anim. Sci. 85, E36–E44.
Seminal fluid signalling in the female reproductive tract: lessons from rodents and pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7itlWkug%3D%3D&md5=5ba942b43af96b69b53fe5bf19df9f0aCAS | 17085725PubMed |

Robertson, S. A., Ingman, W. V., O’Leary, S., Sharkey, D. J., and Tremellen, K. P. (2002). Transforming growth factor β – a mediator of immune deviation in seminal plasma. J. Reprod. Immunol. 57, 109–128.
Transforming growth factor β – a mediator of immune deviation in seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVOmsr8%3D&md5=2671890788992492d42ad97c3d87c814CAS | 12385837PubMed |

Robertson, S. A., Guerin, L. R., Bromfield, J. J., Branson, K. M., Ahlstrom, A. C., and Care, A. S. (2009a). Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol. Reprod. 80, 1036–1045.
Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsVajsrc%3D&md5=b63656f5051ee4e7942f3bd3437db37fCAS | 19164169PubMed |

Robertson, S. A., Guerin, L. R., Moldenhauer, L. M., and Hayball, J. D. (2009b). Activating T regulatory cells for tolerance in early pregnancy – the contribution of seminal fluid. J. Reprod. Immunol. 83, 109–116.
Activating T regulatory cells for tolerance in early pregnancy – the contribution of seminal fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVynsbbJ&md5=40d11e55908419418e57855ecc463a04CAS | 19875178PubMed |

Rodriguez-Martinez, H., Saravia, F., Wallgren, M., Martinez, E. A., Sanz, L., Roca, J., Vazquez, J. M., and Calvete, J. J. (2010). Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow. J. Reprod. Immunol. 84, 57–65.
Spermadhesin PSP-I/PSP-II heterodimer induces migration of polymorphonuclear neutrophils into the uterine cavity of the sow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkt1aqtA%3D%3D&md5=3f4ffeecd3972bf4bfd6f40ec49dbe4aCAS | 19948361PubMed |

Schaefer, T. M., Desouza, K., Fahey, J. V., Beagley, K. W., and Wira, C. R. (2004). Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells. Immunology 112, 428–436.
Toll-like receptor (TLR) expression and TLR-mediated cytokine/chemokine production by human uterine epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFKgu70%3D&md5=558ff3047c5304691d2b2f6693452429CAS | 15196211PubMed |

Sivaramakrishnan, G., Jasper, M. J., O’Leary, S., and Robertson, S. A. (2004). Probiotic Lactobacillus in semen. Reprod. Fertil. Dev. 16, 95..

Skjervold, H. (1975). Comparison of litter size by use of natural and by artificial mating. Z. Tierzucht. ZuchtBiol. 92, 252–259.
Comparison of litter size by use of natural and by artificial mating.Crossref | GoogleScholarGoogle Scholar |

Sporn, M. B. (1999). TGF-β: 20 years and counting. Microbes Infect. 1, 1251–1253.
TGF-β: 20 years and counting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFehsLk%3D&md5=b3c192638f255b5b42472bcbf28ab7ccCAS | 10611752PubMed |

Srivastava, M. D., Lippes, J., and Srivastava, B. I. (1996). Cytokines of the human reproductive tract. Am. J. Reprod. Immunol. 36, 157–166.
| 1:STN:280:DyaK2s%2FivVKquw%3D%3D&md5=a7312f33a82503248312477a15317c79CAS | 8874712PubMed |

Tremellen, K. P., Seamark, R. F., and Robertson, S. A. (1998). Seminal transforming growth factor beta1 stimulates granulocyte–macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus. Biol. Reprod. 58, 1217–1225.
Seminal transforming growth factor beta1 stimulates granulocyte–macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFClt7k%3D&md5=1445678bcf6e2ece07d0c19e14ab6a7cCAS | 9603256PubMed |