Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Restricted feed intake in lactating primiparous sows. I. Effects on sow metabolic state and subsequent reproductive performance

J. L. Patterson A B , M. N. Smit A , S. Novak A , A. P. Wellen A and G. R. Foxcroft A
+ Author Affiliations
- Author Affiliations

A Swine Reproduction-Development Program, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.

B Corresponding author. Email: jennifer.patterson@ualberta.ca

Reproduction, Fertility and Development 23(7) 889-898 https://doi.org/10.1071/RD11015
Submitted: 9 January 2011  Accepted: 8 April 2011   Published: 19 August 2011

Abstract

The effects of feed restriction (60% of anticipated feed intake; Restrict; n = 60) during the last week of a 21-day lactation in primiparous sows compared with feeding at 90% of anticipated feed intake (Control; n = 60) on sow metabolic state, litter growth and sow reproductive performance after weaning were compared. Metabolisable energy (ME) derived from feed was lower, ME derived from body tissues was higher and litter growth rate was reduced (all P < 0.05) in Restrict sows during the last week of lactation. Treatment did not affect weaning-to-oestrus interval, pregnancy rate, ovulation rate, embryonic survival or the number of live embryos (P > 0.05) at Day 30 of gestation: However, embryo weight was greater (P < 0.05) in Control than in Restrict sows (1.55 ± 0.04 vs 1.44 ± 0.04 g, respectively). These data suggest the biology of the commercial sow has changed and reproductive performance of contemporary primiparous sows is increasingly resistant to the negative effects of lactational catabolism. Overall, catabolism negatively affected litter weaning weight and embryonic development of the next litter, but the extent to which individual sows used tissue mobilisation to support these litter outcomes was highly variable.

Additional keywords: catabolism, epigenetics.


References

Almeida, F. R., Kirkwood, R. N., Aherne, F. X., and Foxcroft, G. R. (2000). Consequences of different patterns of feed intake during the estrous cycle in gilts on subsequent fertility. J. Anim. Sci. 78, 1556–1563.
| 1:CAS:528:DC%2BD3cXktVCksb0%3D&md5=93c30f6816fbf3417e6185a4a3f30906CAS | 10875639PubMed |

Ashworth, C. J., Toma, L. M., and Hunter, M. G. (2009). Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philos. Trans. R Soc. Lond. B Biol. Sci. 364, 3351–3361.
Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability.Crossref | GoogleScholarGoogle Scholar | 19833647PubMed |

Bergsma, R., Kanis, E., Verstegen, M. W. A., van der Peet-Schwering, C. M. C., and Knol, E. F. (2009). Lactation efficiency as a result of body composition dynamics and feed intake in sows. Livest. Sci. 125, 208–222.
Lactation efficiency as a result of body composition dynamics and feed intake in sows.Crossref | GoogleScholarGoogle Scholar |

Burdge, G. C., Hanson, M. A., Slater-Jeffries, J. L., and Lillycrop, K. A. (2007). Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (foetal programming) by differences in nutrition during early life? Br. J. Nutr. 97, 1036–1046.
Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (foetal programming) by differences in nutrition during early life?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnt1Gju7c%3D&md5=a200d83c94e69a165fd9506e05f98bf6CAS | 17381976PubMed |

Clowes, E. J., Aherne, F. X., Foxcroft, G. R., and Baracos, V. E. (2003a). Selective protein loss in lactating sows is associated with reduced litter growth and ovarian function. J. Anim. Sci. 81, 753–764.
| 1:CAS:528:DC%2BD3sXit1Whtrg%3D&md5=c6debae5db119aca02e2844ac6f061f8CAS | 12661656PubMed |

Clowes, E. J., Aherne, F. X., Schaefer, A. L., Foxcroft, G. R., and Baracos, V. E. (2003b). Parturition body size and body protein loss during lactation influence performance during lactation and ovarian function at weaning in first-parity sows. J. Anim. Sci. 81, 1517–1528.
| 1:CAS:528:DC%2BD3sXksFeqtL8%3D&md5=0580e98a5ed7c5c9d6f92003fd8c0f43CAS | 12817500PubMed |

Everts, H., and Dekker, R. A. (1994). Balance trials and comparative slaughtering in breeding sows: description of techniques and observed accuracy. Livest. Prod. Sci. 37, 339–352.
Balance trials and comparative slaughtering in breeding sows: description of techniques and observed accuracy.Crossref | GoogleScholarGoogle Scholar |

Foxcroft, G. R., Aherne, F. X., Clowes, E. C., Miller, H., and Zak, L. J. (1995). Sow fertility: the role of suckling inhibition and metabolic status. In ‘Animal Science Research and Development; Moving Toward a New Century’. (Ed. M. Ivan.) pp. 377–393. (Centre for Food and Animal Research: Ottawa.)

Foxcroft, G. R., Dixon, W. T., Novak, S., Putman, C. T., Town, S. C., and Vinsky, M. D. A. (2006). The biological basis for prenatal programming of postnatal performance. J. Anim. Sci. 84, E105–E112.
| 16582081PubMed |

Foxcroft, G. R., Vinsky, M. D., Paradis, F., Tse, W.-Y., Town, S. C., Putman, C. T., Dyck, M. K., and Dixon, W. T. (2007). Macro-environment effects on oocytes and embryos in swine. Theriogenology 68, S30–S39.
Macro-environment effects on oocytes and embryos in swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotlaiur8%3D&md5=29cdec1f3d0bca08ae9c13fd2875c694CAS | 17524466PubMed |

Foxcroft, G. R., Dixon, W. T., Dyck, M. K., Novak, S., Harding, J. C. S., and Almeida, F. C. R. L. (2009). Prenatal programming of postnatal development in the pig. In ‘Control of Pig Reproduction VIII’. (Eds H. Rodriguez-Martinez, J. L. Vallet and A. J. Ziecik.) pp. 213–232. (Nottingham University Press: Nottingham.)

Geisert, R. D., and Schmitt, R. A. M. (2002). Early embryonic survival in the pig: can it be improved? J. Anim. Sci. 80, E54–E65.

Grandinson, K., Rydhmer, L., Strandberg, E., and Solanes, X. F. (2005). Genetic analysis of body condition in the sow during lactation, and its relation to piglet survival and growth. Anim. Sci. 80, 33–40.
Genetic analysis of body condition in the sow during lactation, and its relation to piglet survival and growth.Crossref | GoogleScholarGoogle Scholar |

Hunter, M. G. (2000). Oocyte maturation and ovum quality in pigs. Rev. Reprod. 5, 122–130.
Oocyte maturation and ovum quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiu7k%3D&md5=9621c226c51d554f640452144d5b1055CAS | 10864857PubMed |

Hurley, W. L. (2000). Mammary gland growth in the lactating sow. Livest. Prod. Sci. 70, 149–157.
Mammary gland growth in the lactating sow.Crossref | GoogleScholarGoogle Scholar |

Kim, S. W., and Wu, G. (2009). Regulatory role for amino acids in mammary gland growth and milk synthesis. Amino Acids 37, 89–95.
Regulatory role for amino acids in mammary gland growth and milk synthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlemt7g%3D&md5=799388531b57167a009ae8815b95e65aCAS | 18683019PubMed |

Kim, S. W., Hurley, W. L., Kan, I. K., and Easter, R. A. (1999a). Changes in tissue composition associated with mammary gland growth during lactation in sows. J. Anim. Sci. 77, 2510–2516.
| 1:CAS:528:DyaK1MXlvFerurk%3D&md5=116f3df8a16dcf6b4070044fefe420f3CAS | 10492459PubMed |

Kim, S. W., Osaka, I., Hurley, W. L., and Easter, R. A. (1999b). Mammary gland growth as influenced by litter size in latation sows: impact on lysine requirement. J. Anim. Sci. 77, 3316–3321.
| 1:CAS:528:DC%2BD3cXktFegsQ%3D%3D&md5=92423acd2145d026727ce7ad3824474dCAS | 10641879PubMed |

Kim, S. W., Hurley, W. L., Kan, I. K., and Easter, R. A. (2000). Growth of nursing pigs related to the characteristics of nursed mammary glands. J. Anim. Sci. 78, 1313–1318.
| 1:CAS:528:DC%2BD3cXjsFemurY%3D&md5=a7dc22a36994452e4a55025c71a23ba9CAS | 10834588PubMed |

Krackow, S. (1995). Potential mechanisms for sex ratio adjustment in mammals and birds. Biol. Rev. Camb. Philos. Soc. 70, 225–241.
Potential mechanisms for sex ratio adjustment in mammals and birds.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MzivFGnsw%3D%3D&md5=f867f8b560953f5c65fc2f1c5af6a0a9CAS | 7605846PubMed |

Nielsen, T. T., Trottier, N. L., Stein, H. H., Bellaver, C., and Easter, R. A. (2002). The effect of litter size and day of lactation on amino acid uptake by the porcine mammary glands. J. Anim. Sci. 80, 2402–2411.
| 1:CAS:528:DC%2BD38XntVygsbc%3D&md5=96a2778cba60f7e44583878c7f8bc142CAS | 12350018PubMed |

Noblet, J., Close, W. H., Heavens, R. P., and Brown, D. (1985). Studies on the energy metabolism of the pregnant sow 1. Uterus and mammary tissue development. Br. J. Nutr. 53, 251–265.
Studies on the energy metabolism of the pregnant sow 1. Uterus and mammary tissue development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28%2FltFekug%3D%3D&md5=679cd8fb6ccf40268883c6e92e30b552CAS | 4063272PubMed |

Oliver, G., Novak, S., Patterson, J. L., Pasternak, J. A., Paradis, F., Norrby, M., Oxtoby, K., Dyck, M. K., Dixon, W. T., and Foxcroft, G. R. (2011). Restricted feed intake in lactating primiparous sows. II: effects on subsequent litter sex ratio and embryonic gene expression. Reprod. Fertil. Dev 23, 889–898.
Restricted feed intake in lactating primiparous sows. II: effects on subsequent litter sex ratio and embryonic gene expression.Crossref | GoogleScholarGoogle Scholar |

Patterson, J. L., Cameron, A. C., Smith, T. A., Kummer, A. B., Schott, R. L., Greiner, L. L., Connor, J. F., and Foxcroft, G. R. (2010). The effect of gonadotrophin treatment at weaning on primiparous sow performance. Swine Health Prod. 18, 196–199.

Pluske, J. R., Williams, I. H., Zak, L. J., Clowes, E. J., Cegielski, A. C., and Aherne, F. X. (1998). Feeding lactating primiparous sows to establish three divergent metabolic states: III. Milk production and pig growth. J. Anim. Sci. 76, 1165–1171.
| 1:CAS:528:DyaK1cXis1Ggurs%3D&md5=7ec6404ce30e7fadb44f9c2395f4388fCAS | 9581941PubMed |

Pope, W. R., Xie, S., Broermann, D. M., and Nephew, K. P. (1990). Causes and consequences of early embryonic diversity in pigs. J. Reprod. Fertil. Suppl. 40, 251–260.
| 1:STN:280:DyaK3c3osF2gug%3D%3D&md5=0dd367b444a738ca9e7082b4342fc457CAS |

Quesnel, H. (2009). Nutritional and lactational effects on follicular development in the pig. In ‘Control of Pig Reproduction VIII’. (Eds H. Rodriguez-Martinez, J. L. Vallet and A. J. Ziecik.) pp. 121–134. (Nottingham University Press: Nottingham.)

Quesnel, H., Etienne, M., and Père, M. C. (2007). Influence of litter size on metabolic status and reproductive axis in primiparous sows. J. Anim. Sci. 85, 118–128.
Influence of litter size on metabolic status and reproductive axis in primiparous sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsFartQ%3D%3D&md5=79c15e96fb324239916b3a3441f386d7CAS | 17179547PubMed |

Ramanau, A., Kluge, H., Spilke, J., and Eder, K. (2004). Supplementation of sows with l-carnitine during pregnancy and lactation improves growth of the piglets during the suckling period through increased milk production. J. Nutr. 134, 86–92.
| 1:CAS:528:DC%2BD2cXitlClsg%3D%3D&md5=b61216a21a2af6cca5790e3e20e0ab0bCAS | 14704298PubMed |

Schenkel, A. C., Bernardi, M. L., Bortolozzo, F. P., and Wentz, I. (2010). Body reserve mobilization during lactation in first parity sows and its effect on second litter size. Livest. Sci. 132, 165–172.
Body reserve mobilization during lactation in first parity sows and its effect on second litter size.Crossref | GoogleScholarGoogle Scholar |

Sinclair, K. D., Lea, R. G., Rees, W. D., and Young, L. E. (2007). The developmental origins of health and disease: current theories and epigenetic mechanisms. Reproduction 64, 425–443.
| 1:CAS:528:DC%2BD1cXpvVyrsbs%3D&md5=5bb5d702706b188711ff2682a0f28497CAS |

Ten Napel, J., de Vries, A. G., Buiting, G. A. J., Luiting, P., Merks, J. W. M., and Brascamp, E. W. (1995). Genetics of the interval from weaning to estrus in first-litter sows: distribution of data, direct response to selection, and heritability. J. Anim. Sci. 73, 2193–2203.
| 1:CAS:528:DyaK2MXnsVCnsbk%3D&md5=28f881234faa9d33cde5e41bf6b57245CAS | 8567452PubMed |

Valros, A., Rundgren, M., Špinka, M., Saloniemi, H., Tydhmer, L., Hultén, F., Uvnäs-Moberg, K., Tománek, J., Krejcí, P., and Algers, B. (2003). Metabolic state of the sow, nursing behavior and milk production. Livest. Prod. Sci. 79, 155–167.
Metabolic state of the sow, nursing behavior and milk production.Crossref | GoogleScholarGoogle Scholar |

Van den Brand, H., Soede, N. M., and Kemp, B. (2000). Dietary energy source at two feeding levels during lactation of primiparous sows: II. Effects on periestrus hormone profiles and embryonal survival. J. Anim. Sci. 78, 405–411.
| 1:CAS:528:DC%2BD3cXisVCjtLg%3D&md5=6a8a59fffddb277c0af2e0a0fdee5d56CAS | 10709932PubMed |

Vinsky, M. D., Novak, S., Dixon, W. T., Dyck, M. K., and Foxcroft, G. R. (2006). Nutritional restriction in lactating primiparous sows selectively affects female embryo survival and overall litter development. Reprod. Fertil. Dev. 18, 347–355.
Nutritional restriction in lactating primiparous sows selectively affects female embryo survival and overall litter development.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD287ms1Slug%3D%3D&md5=ea395c1f4337a51163b1354cb6863fe4CAS | 16554010PubMed |

Vinsky, M. D., Murdoch, G. K., Dixon, W. T., Dyck, M. K., and Foxcroft, G. R. (2007a). Altered epigenetic variance in surviving litters from nutritionally restricted lactating primiparous sows. Reprod. Fertil. Dev. 19, 430–435.
Altered epigenetic variance in surviving litters from nutritionally restricted lactating primiparous sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtFKnsL0%3D&md5=ed4fef954de01426c21054c8158fc2dcCAS | 17394790PubMed |

Vinsky, M. D., Paradis, F., Dixon, W. T., Dyck, M. K., and Foxcroft, G. R. (2007b). Ontogeny of metabolic effects on embryonic development in lactating and weaned primiparous sows. Reprod. Fertil. Dev. 19, 603–611.
Ontogeny of metabolic effects on embryonic development in lactating and weaned primiparous sows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1KgtrY%3D&md5=9989a3d92c21b8edb3f93c33d83fdeb8CAS | 17601407PubMed |

Yang, H., Foxcroft, G. R., Pettigrew, J. E., Johnston, L. J., Shurson, G. C., Costa, A. N., and Zak, L. J. (2000). Impact of dietary lysine intake during lactation on follicular development and oocyte maturation after weaning in primiparous sows. J. Anim. Sci. 78, 993–1000.
| 1:CAS:528:DC%2BD3cXjslCgs7w%3D&md5=de80c25e270ef0e9c3991ae0d2c1f391CAS | 10784190PubMed |

Young, L. E., Sinclair, K. D., and Wilmut, I. (1998). Large offspring syndrome in cattle and sheep. Rev. Reprod. 3, 155–163.
Large offspring syndrome in cattle and sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntlaltL8%3D&md5=cff78c8ba0918655e205b40cf2dd6b49CAS | 9829550PubMed |

Zak, L. J., Cosgrove, J. R., Aherne, F. X., and Foxcroft, G. R. (1997a). Pattern of feed intake, and associated metabolic and endocrine changes, differentially affect post-weaning fertility in the primiparous lactating sow. J. Anim. Sci. 75, 208–216.
| 1:CAS:528:DyaK2sXhtVGkur0%3D&md5=03232cb4c47603f0d45bf20610a1c625CAS | 9027568PubMed |

Zak, L. J., Xu, X., Hardin, R. T., and Foxcroft, G. R. (1997b). Impact of different patterns of feed intake during lactation in the primiparous sow on follicular development, oocyte maturation and embryo survival. J. Reprod. Fertil. 110, 99–106.
Impact of different patterns of feed intake during lactation in the primiparous sow on follicular development, oocyte maturation and embryo survival.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVans74%3D&md5=bef6a9ab81a404a85a2abd88f60987b4CAS | 9227363PubMed |