Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH FRONT

Computational modelling of maternal interactions with spermatozoa: potentials and prospects

Mark Burkitt A B , Dawn Walker A , Daniela M. Romano A and Alireza Fazeli B C
+ Author Affiliations
- Author Affiliations

A The Department of Computer Science, University of Sheffield, Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP, UK.

B Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Level 4, The Jessop Wing, Tree Root Walk, Sheffield S10 2SF, UK.

C Corresponding author. Email: a.fazeli@sheffield.ac.uk

Reproduction, Fertility and Development 23(8) 976-989 https://doi.org/10.1071/RD11032
Submitted: 4 February 2011  Accepted: 12 July 2011   Published: 12 October 2011

Abstract

Understanding the complex interactions between gametes, embryos and the maternal tract is required knowledge for combating infertility and developing new methods of contraception. Here we present some main aspects of spermatozoa interactions with the mammalian oviduct before fertilisation and discuss how computational modelling can be used as an invaluable aid to experimental investigation in this field. A complete predictive computational model of gamete and embryo interactions with the female reproductive tract is a long way off. However, the enormity of this task should not discourage us from working towards it. Computational modelling allows us to investigate aspects of maternal communication with gametes and embryos, which are financially, ethically or practically difficult to look at experimentally. In silico models of maternal communication with gametes and embryos can be used as tools to complement in vivo experiments, in the same way as in vitro and in situ models.

Additional keywords: 3D, agent, oviduct, simulation.


References

Aggarwal, K., and Lee, K. H. (2003). Functional genomics and proteomics as a foundation for systems biology. Brief. Funct. Genomics Proteomics 2, 175–184.
Functional genomics and proteomics as a foundation for systems biology.CrossRef | 1:CAS:528:DC%2BD2cXivFWntQ%3D%3D&md5=48295a82f56674dd4560a00789f7ea84CAS |

Attur, M. G., Dave, M. N., Tsunoyama, K., Akamatsu, M., Kobori, M., Miki, J., Abramson, S. B., Katoh, M., and Amin, A. R. (2002). “A system biology” approach to bioinformatics and functional genomics in complex human diseases: arthritis. Curr. Issues Mol. Biol. 4, 129–146.
| 1:CAS:528:DC%2BD38XovFKgsLs%3D&md5=c4bdede6f16c3ed79a534c7c9c3a9eaaCAS | 12432964PubMed |

Bahat, A., Tur-Kaspa, I., Gakamsky, A., Giojalas, L. C., Breitbart, H., and Eisenbach, M. (2003). Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat. Med. 9, 149–150.
Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract.CrossRef | 1:CAS:528:DC%2BD3sXotlSjsA%3D%3D&md5=20107837b6c38a4325a035516098b897CAS | 12563318PubMed |

Bathe, K.-J. (2007). Finite element method. In ‘Wiley Encyclopedia of Computer Science and Engineering’. (Ed. B. Wah.) pp. 1–12. (John Wiley & Sons, Inc.: Hoboken, NJ.)

Battalia, D. E., and Yanagimachi, R. (1979). Enhanced and co-ordinated movement of the hamster oviduct during the periovulatory period. J. Reprod. Fertil. 56, 515–520.
Enhanced and co-ordinated movement of the hamster oviduct during the periovulatory period.CrossRef | 1:STN:280:DyaL3c%2FgvV2qsA%3D%3D&md5=1eae51b20625fdb682e39b6eb7555fbeCAS | 573324PubMed |

Bonabeau, E. (2002). Agent-based modeling: methods and techniques for simulating human systems. Proc. Natl. Acad. Sci. USA 99, 7280–7287.
Agent-based modeling: methods and techniques for simulating human systems.CrossRef | 1:CAS:528:DC%2BD38XjvVynsrc%3D&md5=54665d61f13563b87557f595d7286072CAS | 12011407PubMed |

Bottino, D., Mogilner, A., Roberts, T., Stewart, M., and Oster, G. (2002). How nematode sperm crawl. J. Cell Sci. 115, 367–384.
| 1:CAS:528:DC%2BD38Xht1CmsL4%3D&md5=fb8e3a3666e97f45c10fc7c65e19bc71CAS | 11839788PubMed |

Box, G., and Draper, N. (1986). ‘Empirical Model-building and Response Surface.’ (John Wiley & Sons, Inc.: New York, NY.)

Brokaw, C. (2001). Simulating the effects of fluid viscosity on the behaviour of sperm flagella. Math. Methods Appl. Sci. 24, 1351–1365.
Simulating the effects of fluid viscosity on the behaviour of sperm flagella.CrossRef |

Brokaw, C. J., and Luck, D. J. L. (1983). Bending patterns of chlamydomonas flagella I. Wild-type bending patterns. Cell Motil. Cytoskeleton 3, 131–150.
Bending patterns of chlamydomonas flagella I. Wild-type bending patterns.CrossRef | 1:STN:280:DyaL3s3osFWrsw%3D%3D&md5=c48f26d11b3c502326e2b9fe5bb38305CAS |

Burkitt, M., Romano, D. M., Walker, D., and Fazeli, A. (2010a). 3D modelling of complex biological structures: the oviduct. In ‘EG UK Theory and Practice of Computer Graphics’. pp. 255–262. (University of Sheffield: UK.)

Burkitt, M., Walker, D., Romano, D. M., and Fazeli, A. (2010b). Using computational systems biology to investigate sperm navigation and transport in the female reproductive tract. In ‘Systems Biology in Maternal Communication with Gametes and Embryos’. (Eds A. Fazeli and J. Grizelj.) (Gemini: Opatija, Croatia.)

Burkitt, M., Walker, D., Romano, D., and Fazeli, A. (2011a). Constructing complex 3D biological environments from medical imaging using high performance computing. IEEE ACM T. Comput. Bi. 99, .

Burkitt, M., Walker, D., Romano, D. M., and Fazeli, A. (2011b). Using computational modelling to investigate sperm navigation and behaviour in the female reproductive tract. Theriogenology , .

Butcher, E., Berg, E., and Kunkel, E. (2004). Systems biology in drug discovery. Nat. Biotechnol. 22, 1253–1259.
Systems biology in drug discovery.CrossRef | 1:CAS:528:DC%2BD2cXotFGqur0%3D&md5=3d486538a2ea1a932ecf105e16f913baCAS | 15470465PubMed |

Chaichana, T., Sun, Z., and Jewkes, J. (2011). Computation of hemodynamics in the left coronary artery with variable angulations. J. Biomech. , .
Computation of hemodynamics in the left coronary artery with variable angulations.CrossRef | 21550611PubMed |

Chilvers, M., and O’Callaghan, C. (2000). Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods. Thorax 55, 314–317.
Analysis of ciliary beat pattern and beat frequency using digital high speed imaging: comparison with the photomultiplier and photodiode methods.CrossRef | 1:STN:280:DC%2BD3c7oslyktA%3D%3D&md5=dc07525453c133a9f99c6568709c51d6CAS | 10722772PubMed |

Clayton, R. H., and Panfilov, A. V. (2008). A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96, 19–43.
A guide to modelling cardiac electrical activity in anatomically detailed ventricles.CrossRef | 1:STN:280:DC%2BD1c7jtlKqsw%3D%3D&md5=1538c4e8f4dee7edbb858fb69b06a64cCAS | 17825362PubMed |

Dauptain, A., Favier, J., and Bottaro, A. (2008). Hydrodynamics of ciliary propulsion. J. Fluids Structures 24, 1156–1165.
Hydrodynamics of ciliary propulsion.CrossRef |

de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103.
Modeling and simulation of genetic regulatory systems: a literature review.CrossRef | 1:CAS:528:DC%2BD38Xit1Kntr4%3D&md5=5d1502bd17d9e671b476511e8cc1e66dCAS | 11911796PubMed |

Debbaut, C., Monbaliu, D., Casteleyn, C., Cornillie, P., Van Loo, D., Masschaele, B., Pirenne, J., Simoens, P., Van Hoorebeke, L., and Segers, P. (2011). From vascular corrosion cast to electrical analog model for the study of human liver hemodynamics and perfusion. IEEE Trans. Biomed. Eng. 58, 25–35.
From vascular corrosion cast to electrical analog model for the study of human liver hemodynamics and perfusion.CrossRef | 20709637PubMed |

Demott, R. P., and Suarez, S. S. (1992). Hyperactivated sperm progress in the mouse oviduct. Biol. Reprod. 46, 779–785.
Hyperactivated sperm progress in the mouse oviduct.CrossRef | 1:STN:280:DyaK383ntlOisA%3D%3D&md5=4793fb3fcc45fe523f7c2e55d57f5daeCAS | 1591334PubMed |

Dillon, R., and Fauci, L. (2000). An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J. Theor. Biol. 207, 415–430.
An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating.CrossRef | 1:STN:280:DC%2BD3M7hsFynug%3D%3D&md5=ac4db658513629f329eb0bd7a38624e1CAS | 11082310PubMed |

Dillon, R., Fauci, L., Omoto, C., and Yang, X. (2007). Fluid dynamic models of flagellar and ciliary beating. Ann. N. Y. Acad. Sci. 1101, 494–505.
Fluid dynamic models of flagellar and ciliary beating.CrossRef | 17344534PubMed |

Eisenbach, M., and Giojalas, L. (2006). Sperm guidance in mammals – an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7, 276–285.
Sperm guidance in mammals – an unpaved road to the egg.CrossRef | 1:CAS:528:DC%2BD28Xjt12qsLY%3D&md5=ba4551e974a87446ae5f4552d87a9e01CAS | 16607290PubMed |

Evans, D. J. W., Lawford, P. V., Gunn, J., Walker, D., Hose, D. R., Smallwood, R. H., Chopard, B., Krafczyk, M., Bernsdorf, J., and Hoekstra, A. (2008). The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery. Philos. Transact. A Math. Phys. Eng. Sci. 366, 3343–3360.
The application of multiscale modelling to the process of development and prevention of stenosis in a stented coronary artery.CrossRef | 1:STN:280:DC%2BD1crgsleruw%3D%3D&md5=67676e466167f5acc167cf4353a9c3d4CAS |

Fauci, L., and Dillon, R. (2006). Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371–394.
Biofluidmechanics of reproduction.CrossRef |

Fazeli, A., and Pewsey, E. (2008). Maternal communication with gametes and embryos: a complex interactome. Brief. Funct. Genomics Proteomics 7, 111–118.
Maternal communication with gametes and embryos: a complex interactome.CrossRef |

Finkelstein, A., Hetherington, J., Li, L., Margoninski, O., Saffrey, P., Seymour, R., and Warner, A. (2004). Computational challenges of systems biology. Computer 37, 26–33.
Computational challenges of systems biology.CrossRef |

Foo, J., and Lim, C. (2008). Biofluid mechanics of the human reproductive process: modelling of the complex interaction and pathway to the oocytes. Zygote 16, 343–354.
Biofluid mechanics of the human reproductive process: modelling of the complex interaction and pathway to the oocytes.CrossRef | 18652708PubMed |

Foote, R. (2007). Mathematics and complex systems. Science 318, 410–412.
Mathematics and complex systems.CrossRef | 1:CAS:528:DC%2BD2sXhtFOjtbzE&md5=12232d457b5cd5abfef3279bc00a7dfeCAS | 17947574PubMed |

Friedrich, B., and Jülicher, F. (2007). Chemotaxis of sperm cells. Proc. Natl. Acad. Sci. USA 104, 13 256–13 261.
Chemotaxis of sperm cells.CrossRef | 1:CAS:528:DC%2BD2sXps1Kgtrs%3D&md5=81b738edbcfc76d4a521cf76fb40345fCAS |

Friedrich, B. M., Riedel-Kruse, I. H., Howard, J., and Julicher, F. (2010). High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory. J. Exp. Biol. 213, 1226–1234.
High-precision tracking of sperm swimming fine structure provides strong test of resistive force theory.CrossRef | 1:STN:280:DC%2BC3c3hsleqsw%3D%3D&md5=e072bea0ed1d568ea18847fc6f32c0a5CAS | 20348333PubMed |

Georgiou, S., Snijders, A., Sostaric, E., Aflatoonian, R., Vazquez, J., Vazquez, J., Roca, J., Martinez, E., Wright, P., and Fazeli, A. (2007). Modulation of the oviductal environment by gametes. J. Proteome Res. 6, 4656–4666.
Modulation of the oviductal environment by gametes.CrossRef | 1:CAS:528:DC%2BD2sXhtlWmu73O&md5=7b8bd74a29a748e414759b74fa3c4eaeCAS |

Ginalski, K. (2006). Comparative modeling for protein structure prediction. Curr. Opin. Struct. Biol. 16, 172–177.
Comparative modeling for protein structure prediction.CrossRef | 1:CAS:528:DC%2BD28Xjs1Grs7o%3D&md5=80fbb27253a43229eb76d0fd7a07b6e3CAS | 16510277PubMed |

Giojalas, L., Rovasio, R., Fabro, G., Gakamsky, A., and Eisenbach, M. (2004). Timing of sperm capacitation appears to be programmed according to egg availability in the female genital tract. Fertil. Steril. 82, 247–249.
Timing of sperm capacitation appears to be programmed according to egg availability in the female genital tract.CrossRef | 15237027PubMed |

Gray, J. (1929). The mechanism of ciliary movement. Am. Nat. 63, 68–81.
The mechanism of ciliary movement.CrossRef |

Gray, J., and Hancock, G. J. (1955). The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32, 802–814.

Grimm, V. (1994). Mathematical models and understanding in ecology. Ecol. Modell. 75–76, 641–651.
Mathematical models and understanding in ecology.CrossRef |

Grimm, V. (1999). Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol. Modell. 115, 129–148.
Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future?CrossRef |

Grimm, V., Frank, K., Jeltsch, F., Brandl, R., Uchmaski, J., and Wissel, C. (1996). Pattern-oriented modelling in population ecology. Sci. Total Environ. 183, 151–166.
Pattern-oriented modelling in population ecology.CrossRef | 1:CAS:528:DyaK28XitlGnu70%3D&md5=d6e61eeca6bf0c684b968b99cdddfc00CAS |

Gueron, S., and Levit-Gurevich, K. (2001). A three-dimensional model for ciliary motion based on the internal 9 + 2 structure. Proc. Biol. Sci. 268, 599–607.
A three-dimensional model for ciliary motion based on the internal 9 + 2 structure.CrossRef | 1:STN:280:DC%2BD3MvjsFSntg%3D%3D&md5=0ceca0eb02c861952be27a775b55e40dCAS | 11297177PubMed |

Gueron, S., and Liron, N. (1993). Simulations of three-dimensional ciliary beats and cilia interactions. Biophys. J. 65, 499–507.
Simulations of three-dimensional ciliary beats and cilia interactions.CrossRef | 1:STN:280:DyaK3sznvFWrsg%3D%3D&md5=bed1263f54f3e384d0542017dfdcb18fCAS | 8369453PubMed |

Harper, M. (1982). Sperm and egg transport. In ‘Germ Cells and Fertilization’. (Eds C. R. Austin and R. V. Short.) pp. 102–127. (Cambridge University Press: Cambridge, England.)

Ho, H. C., and Suarez, S. S. (2001). Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122, 519–526.
Hyperactivation of mammalian spermatozoa: function and regulation.CrossRef | 1:CAS:528:DC%2BD3MXotFGltb8%3D&md5=d70dc885be671cd64bb8bbc91986f1e8CAS | 11570958PubMed |

Hoekstra, A., Chopard, B., Lawford, P., Hose, R., Krafczyk, M., and Bernsdorf, J. (2006). Introducing complex automata for modelling multi-scale complex systems. In ‘Proceedings of European Conference on Complex Systems ECCS ’06’. (European Complex Systems Society: Oxford, England.)

Holdsworth, D., and Thornton, M. (2002). Micro-CT in small animal and specimen imaging. Trends Biotechnol. 20, S34–S39.
Micro-CT in small animal and specimen imaging.CrossRef |

Hood, L., Heath, J. R., Phelps, M. E., and Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science 306, 640–643.
Systems biology and new technologies enable predictive and preventative medicine.CrossRef | 1:CAS:528:DC%2BD2cXos1KqtLY%3D&md5=b06799eaa973fe4bee2ba36788076b43CAS | 15499008PubMed |

Hornberg, J., Bruggeman, F., Westerhoff, H., and Lankelma, J. (2006). Cancer: a systems biology disease. Biosystems 83, 81–90.
Cancer: a systems biology disease.CrossRef | 1:CAS:528:DC%2BD28XhtlGiurs%3D&md5=2d93ae5a937f357db9e401b981ac6621CAS | 16426740PubMed |

Hughey, J., Lee, T., and Covert, M. (2010). Computational modeling of mammalian signaling networks. WIREs Syst. Biol. Med. 2, 194–209.
| 1:CAS:528:DC%2BC3cXmtVSqs78%3D&md5=c0f612a57d255f22ef6d42c039664e99CAS |

Hunter, R. H. F. (2008). Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles. Mol. Reprod. Dev. 75, 167–174.
Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles.CrossRef | 1:STN:280:DC%2BD2snkslOlsg%3D%3D&md5=2a20cafd0cb5e4918633e3dae7c30e4eCAS |

Hyakutake, T., Hashimoto, Y., Yanase, S., Matsuura, K., and Naruse, K. (2009). Application of a numerical simulation to improve the separation efficiency of a sperm sorter. Biomed. Microdevices 11, 25–33.
Application of a numerical simulation to improve the separation efficiency of a sperm sorter.CrossRef | 18815887PubMed |

Ideker, T., Galitski, T., and Hood, L. (2001). A NEW APPROACH TO DECODING LIFE: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372.
A NEW APPROACH TO DECODING LIFE: systems biology.CrossRef | 1:CAS:528:DC%2BD3MXos1anurw%3D&md5=6d6384cea7883dad809cbaefa4c00347CAS | 11701654PubMed |

Ishikawa, M., Tsutsui, H., Cosson, J., Oka, Y., and Morisawa, M. (2004). Strategies for sperm chemotaxis in the siphonophores and ascidians: a numerical simulation study. Biol. Bull. 206, 95–102.
Strategies for sperm chemotaxis in the siphonophores and ascidians: a numerical simulation study.CrossRef | 15111364PubMed |

Jackson, D., Holcombe, M., and Ratnieks, F. (2004). Trail geometry gives polarity to ant foraging networks. Nature 432, 907–909.
Trail geometry gives polarity to ant foraging networks.CrossRef | 1:CAS:528:DC%2BD2cXhtVOht7rF&md5=a8de9d5b41b3ca0df7c9ca6b4e50051eCAS | 15602563PubMed |

Kapetanovic, I. (2008). Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem.-Biol. Interact. 171, 165–176.
| 1:CAS:528:DC%2BD1cXhsVSitr4%3D&md5=4f36fc3e2962512b5098f70e2dcc8b61CAS | 17229415PubMed |

Katagiri, F. (2003). Attacking complex problems with the power of systems biology. Plant Physiol. 132, 417–419.
Attacking complex problems with the power of systems biology.CrossRef | 1:CAS:528:DC%2BD3sXkslers7k%3D&md5=810fdb48c21df34b34af7bfec77476e3CAS | 12805572PubMed |

Kirschner, D., and Linderman, J. (2009). Mathematical and computational approaches can complement experimental studies of host–pathogen interactions. Cell. Microbiol. 11, 531–539.
Mathematical and computational approaches can complement experimental studies of host–pathogen interactions.CrossRef | 1:CAS:528:DC%2BD1MXktVajsrg%3D&md5=6b5b7654d5e17e8f82e8db61e9613157CAS | 19134115PubMed |

Kitano, H. (2002a). Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr. Genet. 41, 1–10.
Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology.CrossRef | 1:CAS:528:DC%2BD38XktVKlsr8%3D&md5=ed29821e282981eff7aa2dceb009ffbeCAS | 12073094PubMed |

Kitano, H. (2002b). Systems biology: a brief overview. Science 295, 1662–1664.
Systems biology: a brief overview.CrossRef | 1:CAS:528:DC%2BD38Xhsleitb0%3D&md5=22038f6c940e7fbed30021f682857c49CAS | 11872829PubMed |

Klauschen, F., Angermann, B. R., and Meier-Schellersheim, M. (2007). Understanding diseases by mouse click: the promise and potential of computational approaches in systems biology. Clin. Exp. Immunol. 149, 424–429.
Understanding diseases by mouse click: the promise and potential of computational approaches in systems biology.CrossRef | 1:STN:280:DC%2BD2svnvFKrug%3D%3D&md5=809f8b7468bb98294c28739e30ef6687CAS | 17666096PubMed |

Li, G., Citrin, D., Miller, R., Camphausen, K., Mueller, B., Mychalczak, B., and Song, Y. (2008). 3D and 4D medical image registration combined with image segmentation and visualization. In ‘Encyclopaedia of Healthcare Information Systems’. (Eds N. Wickramasinghe and E. Geisler.) pp. 1–9. (IGI Global.: Hershey, PA.)

Lindemann, C. (2007). The geometric clutch as a working hypothesis for future research on cilia and flagella. Ann. N. Y. Acad. Sci. 1101, 477–493.
The geometric clutch as a working hypothesis for future research on cilia and flagella.CrossRef | 17303832PubMed |

Lyons, R. A., Saridogan, E., and Djahanbakhch, O. (2006). The reproductive significance of human fallopian tube cilia. Hum. Reprod. Update 12, 363–372.
The reproductive significance of human fallopian tube cilia.CrossRef | 1:STN:280:DC%2BD28vmt1OqsA%3D%3D&md5=1c096fb1031b727e389f7a1fefc216c5CAS | 16565155PubMed |

Marzo, A., Singh, P., Larrabide, I., Radaelli, A., Coley, S., Gwilliam, M., Wilkinson, I. D., Lawford, P., Reymond, P., Patel, U., Frangi, A., and Hose, D. R. (2011). Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann. Biomed. Eng. 39, 884–896.
Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions.CrossRef | 20972626PubMed |

Mastroianni, L. (1999). The fallopian tube and reproductive health. J. Pediatr. Adolesc. Gynecol. 12, 121–126.
The fallopian tube and reproductive health.CrossRef | 10546902PubMed |

Materi, W., and Wishart, D. S. (2007). Computational systems biology in drug discovery and development: methods and applications. Drug Discov. Today 12, 295–303.
Computational systems biology in drug discovery and development: methods and applications.CrossRef | 1:CAS:528:DC%2BD2sXjs1OntLY%3D&md5=ab351ef24e0109bbfa57607876b9561fCAS | 17395089PubMed |

Noble, D. (2002a). Modeling the heart – from genes to cells to the whole organ. Science 295, 1678–1682.
Modeling the heart – from genes to cells to the whole organ.CrossRef | 1:CAS:528:DC%2BD38Xhsleiuro%3D&md5=8cd5989a9abe88dd57940564d0c4a842CAS | 11872832PubMed |

Noble, D. (2002b). The rise of computational biology. Nat. Rev. Mol. Cell Biol. 3, 459–463.
The rise of computational biology.CrossRef | 12042768PubMed |

Noble, D. (2003). The future: putting Humpty-Dumpty together again. Biochem. Soc. Trans. 31, 156–158.
| 1:CAS:528:DC%2BD3sXptF2lug%3D%3D&md5=27a3b8d1981e09b52d9cebc60e09665fCAS | 12546675PubMed |

Oren-Benaroya, R., Kipnis, J., and Eisenbach, M. (2007). Phagocytosis of human post-capacitated spermatozoa by macrophages. Hum. Reprod. 22, 2947–2955.
Phagocytosis of human post-capacitated spermatozoa by macrophages.CrossRef | 1:CAS:528:DC%2BD2sXht1Shu7bI&md5=23b7947508afeb93e07dc1af476e7e41CAS | 17766922PubMed |

Poddar, A. H., Krol, A., Beaumont, J., Price, R. L., Slamani, M. A., Fawcett, J., Subramanian, A., Coman, I. L., Lipson, E. D., and Feiglin, D. H. (2005). Ultrahigh resolution 3D model of murine heart from micro-CT and serial confocal laser scanning microscopy images. In ‘Nuclear Science Symposium and Medical Imaging Conference’. pp. 2615–2617. (IEEE: Fajardo, Puerto Rico.)

Pop, M., and Salzberg, S. (2008). Bioinformatics challenges of new sequencing technology. Trends Genet. 24, 142–149.
Bioinformatics challenges of new sequencing technology.CrossRef | 1:CAS:528:DC%2BD1cXislKht78%3D&md5=f3eeaddf6b59185b35af5697ac84d5c4CAS | 18262676PubMed |

Richmond, P., Walker, D., Coakley, S., and Romano, D. M. (2010). High performance cellular level agent-based simulation with FLAME for the GPU. Brief. Bioinform. 11, 334–347.
High performance cellular level agent-based simulation with FLAME for the GPU.CrossRef | 20123941PubMed |

Riffell, J., and Zimmer, R. (2007). Sex and flow: the consequences of fluid shear for sperm egg interactions. J. Exp. Biol. 210, 3644–3660.
Sex and flow: the consequences of fluid shear for sperm egg interactions.CrossRef | 17921166PubMed |

Salekdeh, G., and Komatsu, S. (2007). Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7, 2976–2996.
Crop proteomics: aim at sustainable agriculture of tomorrow.CrossRef | 1:CAS:528:DC%2BD2sXhtVelsL7K&md5=44821efd225d1521ff62659acc4cce7dCAS | 17639607PubMed |

Samsonova, A., Niranjan, M., Russell, S., and Brazma, A. (2007). Prediction of gene expression in embryonic structures of Drosophila melanogaster. PLOS Comput. Biol. 3, e144.
Prediction of gene expression in embryonic structures of Drosophila melanogaster.CrossRef | 17658945PubMed |

Sargent, R. (2005). Verification and validation of simulation models. In ‘WSC ‘05: Proceedings of the 37th Conference on Winter Simulation’. pp. 130–143. (Winter Simulation Conference: Orlando, FL.)

Sauer, U., Heinemann, M., and Zamboni, N. (2007). Getting closer to the whole picture. Science 316, 550–551.
Getting closer to the whole picture.CrossRef | 1:CAS:528:DC%2BD2sXltVegt7g%3D&md5=d2400d5ad393a1b2185374a22a6c1b73CAS | 17463274PubMed |

Scott, A. (2004). Reductionism revisited. J. Conscious. Stud. 11, 51–68.

Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U., and Gaul, U. (2008). Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535–540.
Predicting expression patterns from regulatory sequence in Drosophila segmentation.CrossRef | 1:CAS:528:DC%2BD1cXhs1ent7w%3D&md5=8455c5de96fbcc07da71053e65c33ca6CAS | 18172436PubMed |

Seo, D.-b., Agca, Y., Feng, Z., and Critser, J. (2007). Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid. Nanofluid. 3, 561–570.
Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure.CrossRef |

Seytanoglu, A., Georgiou, S., Sostaric, E., Watson, P., Holt, W., and Fazeli, A. (2008). Oviductal cell proteome alterations during the reproductive cycle in pigs. J. Proteome Res. 7, 2825–2833.
Oviductal cell proteome alterations during the reproductive cycle in pigs.CrossRef | 1:CAS:528:DC%2BD1cXmvFCit7s%3D&md5=9fde7c37623a8df5aaa614ab11b4f3b7CAS | 18540664PubMed |

Smith, T. T., and Yanagimachi, R. (1990). The viability of hamster spermatozoa stored in the isthmus of the oviduct: the importance of sperm-epithelium contact for sperm survival. Biol. Reprod. 42, 450–457.
The viability of hamster spermatozoa stored in the isthmus of the oviduct: the importance of sperm-epithelium contact for sperm survival.CrossRef | 1:STN:280:DyaK3c3lsVansQ%3D%3D&md5=0e6fc78a88fc813f117f45649be6bb98CAS | 2340331PubMed |

Smith, D. J., Gaffney, E. A., Blake, J. R., and Kirkman-Brown, J. C. (2009). Human sperm accumulation near surfaces: a simulation study. J. Fluid Mech. 621, 289–320.
Human sperm accumulation near surfaces: a simulation study.CrossRef |

Suarez, S. S. (1987). Sperm transport and motility in the mouse oviduct: observations in situ. Biol. Reprod. 36, 203–210.
Sperm transport and motility in the mouse oviduct: observations in situ.CrossRef | 1:STN:280:DyaL2s7osFKkug%3D%3D&md5=6cae67335891a88f92bbb435c7aaf4d9CAS | 3567275PubMed |

Suarez, S. (2008a). Control of hyperactivation in sperm. Hum. Reprod. Update 14, 647–657.
Control of hyperactivation in sperm.CrossRef | 1:CAS:528:DC%2BD1cXht1Ois7%2FK&md5=8df914dc7d3c20eb23ef34beda4d7dc6CAS | 18653675PubMed |

Suarez, S. S. (2008b). Regulation of sperm storage and movement in the mammalian oviduct. Int. J. Dev. Biol. 52, 455–462.
Regulation of sperm storage and movement in the mammalian oviduct.CrossRef | 18649258PubMed |

Suarez, S. S., and Pacey, A. A. (2006). Sperm transport in the female reproductive tract. Hum. Reprod. Update 12, 23–37.
Sperm transport in the female reproductive tract.CrossRef | 1:STN:280:DC%2BD2MnmslSgtA%3D%3D&md5=e82e4f77b1828d6441801b4e384e67e0CAS | 16272225PubMed |

Sun, F., Bahat, A., Gakamsky, A., Girsh, E., Katz, N., Giojalas, L., Tur-Kaspa, I., and Eisenbach, M. (2005). Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum. Reprod. 20, 761–767.
Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants.CrossRef | 1:CAS:528:DC%2BD2MXhsFSgsbg%3D&md5=6868408349d392216022f1ae0f5b4f15CAS | 15591080PubMed |

Taylor, G. (1951). Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 209, 447–461.
Analysis of the swimming of microscopic organisms.CrossRef |

Tienthai, P., Johannisson, A., and Rodriguez-Martinez, H. (2004). Sperm capacitation in the porcine oviduct. Anim. Reprod. Sci. 80, 131–146.
Sperm capacitation in the porcine oviduct.CrossRef | 1:STN:280:DC%2BD2c7kt1Oquw%3D%3D&md5=a6a9b635a21bb7ce86e481e969284354CAS | 15036522PubMed |

Walker, D., and Southgate, J. (2009). The virtual cell – a candidate co-ordinator for ‘middle-out’ modelling of biological systems. Brief. Bioinform. 10, 450–461.
The virtual cell – a candidate co-ordinator for ‘middle-out’ modelling of biological systems.CrossRef | 1:CAS:528:DC%2BD1MXnsFWqu7k%3D&md5=d7fc5f8a80e22c15aefe4d777b0bc157CAS | 19293250PubMed |

Wilke, A. (2003). Bioinformatics support for high-throughput proteomics. J. Biotechnol. 106, 147–156.
Bioinformatics support for high-throughput proteomics.CrossRef | 1:CAS:528:DC%2BD3sXpsVSrtrs%3D&md5=ef3149b0022bf8a89b6f325030fdafe7CAS | 14651857PubMed |

Wissel, C. (1992). Aims and limits of ecological modelling exemplified by island theory. Ecol. Modell. 63, 1–12.
Aims and limits of ecological modelling exemplified by island theory.CrossRef |

Wolfram, S. (1984). Cellular automata as models of complexity. Nature 311, 419–424.
Cellular automata as models of complexity.CrossRef |

Yang, X., Dillon, R., and Fauci, L. (2008). An integrative computational model of multiciliary beating. Bull. Math. Biol. 70, 1192–1215.
An integrative computational model of multiciliary beating.CrossRef | 18236120PubMed |

Zervomanolakis, I., Ott, H. W., Hadziomerovic, D., Mattle, V., Seeber, B. E., Virgolini, I., Heute, D., Kissler, S., Leyendecker, G., and Wildt, L. (2007). Physiology of upward transport in the human female genital tract. Ann. N. Y. Acad. Sci. 1101, 1–20.
Physiology of upward transport in the human female genital tract.CrossRef | 1:CAS:528:DC%2BD2sXlvFCgs70%3D&md5=42d159adfbe82b988694d36ea51747b9CAS | 17416925PubMed |

Zinzen, R., Senger, K., Levine, M., and Papatsenko, D. (2006). Computational models for neurogenic gene expression in the Drosophila embryo. Curr. Biol. 16, 1358–1365.
Computational models for neurogenic gene expression in the Drosophila embryo.CrossRef | 1:CAS:528:DC%2BD28XmsFSltb8%3D&md5=ec139e96417d7b7683ad32e881ee88abCAS | 16750631PubMed |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (19.9 MB) Export Citation Cited By (4)