Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Aberrant expression of E-cadherin and β-catenin proteins in placenta of bovine embryos derived from somatic cell nuclear transfer

H. R. Kohan-Ghadr A B , L. C. Smith B , D. R. Arnold C , B. D. Murphy B D and R. C. Lefebvre A B
+ Author Affiliations
- Author Affiliations

A Department of Clinical Sciences, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.

B Centre de recherche en reproduction animale, of the Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada.

C Departamento de Reprodução Animal, Universidade Estadual Paulista – FCAVJ/UNESP, Via de Acesso Prof. Paulo Donato Castellane, s/n city: Jaboticabal – SP 14884-900, Brazil.

D Corresponding author. Email: bruce.d.murphy@umontreal.ca

Reproduction, Fertility and Development 24(4) 588-598 https://doi.org/10.1071/RD11162
Submitted: 21 June 2011  Accepted: 27 August 2011   Published: 22 November 2011

Abstract

Abnormal placental development is common in the bovine somatic cell nuclear transfer (SCNT)-derived fetus. In the present study, we characterised the expression of E-cadherin and β-catenin, structural proteins of adherens junctions, in SCNT gestations as a model for impaired placentation. Cotyledonary tissues were separated from pregnant uteri of SCNT (n = 6) and control pregnancies (n = 8) obtained by artificial insemination. Samples were analysed by western blot, quantitative RT–PCR (qRT–PCR) and immunohistochemistry. Bovine trophectoderm cell lines derived from SCNT and control embryos were analysed to compare with the in utero condition. Although no differences in E-cadherin or β-catenin mRNA abundance were observed in fetal tissues between the two groups, proteins encoded by these genes were markedly under-expressed in SCNT trophoblast cells. Immunohistochemistry revealed a different pattern of E-cadherin and total β-catenin localisation in SCNT placentas compared with controls. No difference was observed in subcellular localisation of dephosphorylated active-β-catenin protein in SCNT tissues compared with controls. However, qRT–PCR confirmed that the wingless (WNT)/β-catenin signalling pathway target genes CCND1, CLDN1 and MSX1 were downregulated in SCNT placentas. No differences were detected between two groups of bovine trophectoderm cell lines. Our results suggest that impaired expression of E-cadherin and β-catenin proteins, along with defective β-catenin signalling during embryo attachment, specifically during placentation, is a molecular mechanism explaining insufficient placentation in the bovine SCNT-derived fetus.

Additional keywords: adhesion molecules placenta, bovine, trophoblast.


References

Aberle, H., Butz, S., Stappert, J., Weissig, H., Kemler, R., and Hoschuetzky, H. (1994). Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J. Cell Sci. 107, 3655–3663.
| 1:CAS:528:DyaK2MXivFyrtb0%3D&md5=c7ba9739dad958186c55929e7e3f21dbCAS | 7706414PubMed |

Akasaka, H., Sato, F., Morohashi, S., Wu, Y., Liu, Y., Kondo, J., Odagiri, H., Hakamada, K., and Kijima, H. (2010). Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells. BMC Cancer 10, 548.
Anti-apoptotic effect of claudin-1 in tamoxifen-treated human breast cancer MCF-7 cells.Crossref | GoogleScholarGoogle Scholar | 20937153PubMed |

Arnold, D. R., Lefebvre, R., and Smith, L. C. (2006). Characterization of the placenta specific bovine mammalian achaete scute-like homologue 2 (Mash2) gene. Placenta 27, 1124–1131.
Characterization of the placenta specific bovine mammalian achaete scute-like homologue 2 (Mash2) gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvFGhurs%3D&md5=b6b3baf12792a450b9acfeb5ab404dcfCAS | 16503349PubMed |

Baguisi, A., Behboodi, E., Melican, D., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M.J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overström, E. W., and Echelard, Y. (1999). Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.
Production of goats by somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXivFWrsbY%3D&md5=c07c58db5ee525d8ff06c7c1d408e260CAS | 10331804PubMed |

Barcroft, L. C., Hay-Schmidt, A., Caveney, A., Gilfoyle, E., Overstrom, E. W., Hyttel, P., and Watson, A. J. (1998). Trophectoderm differentiation in the bovine embryo: characterization of a polarized epithelium. J. Reprod. Fertil. 114, 327–339.
Trophectoderm differentiation in the bovine embryo: characterization of a polarized epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXpsV2htg%3D%3D&md5=5f7c2271f5596d40e3cbea43580bdcfeCAS | 10070362PubMed |

Bek, S., and Kemler, R. (2002). Protein kinase CKII regulates the interaction of β-catenin with α-catenin and its protein stability. J. Cell Sci. 115, 4743–4753.
Protein kinase CKII regulates the interaction of β-catenin with α-catenin and its protein stability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXis1Krsw%3D%3D&md5=0196a5584c48b5eff8f7b66c1c380d4cCAS | 12432063PubMed |

Bettegowda, A., Patel, O. V., Ireland, J. J., and Smith, G. W. (2006). Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, β-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, β-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. Mol. Reprod. Dev. 73, 267–278.
Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, β-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, β-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhsVKht78%3D&md5=5066fa68a0c1d23c4f0f9cd097cc87d9CAS | 16261607PubMed |

Brieher, W. M., Yap, A. S., and Gumbiner, B. M. (1996). Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135, 487–496.
Lateral dimerization is required for the homophilic binding activity of C-cadherin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsVSntLc%3D&md5=0d73e18a8e04358b26e357b9fcde89b3CAS | 8896604PubMed |

Burghardt, R. C., Johnson, G. A., Jaeger, L. A., Ka, H., Garlow, J. E., Spencer, T. E., and Bazer, F. W. (2002). Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals. Cells Tissues Organs 172, 202–217.
Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsVSjur8%3D&md5=63ede2092711923a530199167d155992CAS | 12476049PubMed |

Campbell, K. H., Alberio, R., Choi, I., Fisher, P., Kelly, R. D., Lee, J. H., and Maalouf, W. (2005). Cloning: eight years after Dolly. Reprod. Domest. Anim. 40, 256–268.
Cloning: eight years after Dolly.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzls1KqsQ%3D%3D&md5=52aa0ae53a1d07ba0845628e8b344557CAS | 16008756PubMed |

Constant, F., Guillomot, M., Heyman, Y., Vignon, X., Laigre, P., Servely, J., Renard, P., and Chavatte-Palmer, P. (2006). Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois. Biol. Reprod. 75, 122–130.
Large offspring or large placenta syndrome? Morphometric analysis of late gestation bovine placentomes from somatic nuclear transfer pregnancies complicated by hydrallantois.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmtlyisbs%3D&md5=154f8dc45ef9275492a3cd55f682a3b8CAS | 16571872PubMed |

Dhawan, P., Singh, A. B., Deane, N. G., No, Y., Shiou, S. R., Schmidt, C., Neff, J., Washington, M. K., and Beauchamp, R. D. (2005). Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J. Clin. Invest. 115, 1765–1776.
Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvF2qtrs%3D&md5=0356daf584aeb61d752af83325cb0164CAS | 15965503PubMed |

El-Sayed, A., Hoelker, M., Rings, F., Salilew, D., Jennen, D., Tholen, E., Sirard, M. A., Schellander, K., and Tesfaye, D. (2006). Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. Physiol. Genomics 28, 84–96.
Large-scale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlCmtrzK&md5=3df176bd43bc3e4a707e7018766317b6CAS | 17018689PubMed |

Galceran, J., Farinas, I., Depew, M. J., Clevers, H., and Grosschedl, R. (1999). Wnt3a–/–-like phenotype and limb deficiency in Lef1–/– Tcf1–/– mice. Genes Dev. 13, 709–717.
Wnt3a–/–-like phenotype and limb deficiency in Lef1–/– Tcf1–/– mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXit1eisbg%3D&md5=bac54732e8da7516017945328de4f541CAS | 10090727PubMed |

Goldstein, B., Takeshita, H., Mizumoto, K., and Sawa, H. (2006). Wnt signals can function as positional cues in establishing cell polarity. Dev. Cell 10, 391–396.
Wnt signals can function as positional cues in establishing cell polarity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xislyhsb0%3D&md5=a5fac18da4ef30a1b6b76fcb053a3bf7CAS | 16516841PubMed |

Gomez, M. C., Pope, C. E., and Dresser, B. L. (2006). Nuclear transfer in cats and its application. Theriogenology 66, 72–81.
Nuclear transfer in cats and its application.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zls1Kmsg%3D%3D&md5=1ea575eb574443f1c15a650acae00bf2CAS | 16620927PubMed |

Hashizume, K., Ishiwata, H., Kizaki, K., Yamada, O., Takahashi, T., Imai, K., Patel, O., Akagi, S., Shimuzu, M., Takahashi, S., Katsuma, S., Shiojima, S., Hirasawa, A., Tsujiumoto, G., Todoroki, J., and Izaike, Y. (2002). Implantation and placental development in somatic cell clone recipient cows. Cloning Stem Cells 4, 197–209.
Implantation and placental development in somatic cell clone recipient cows.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvFSksrg%3D&md5=7373c8e0945f15ec9bcdf9f13236664dCAS | 12398801PubMed |

He, S., Pant, D., Schiffmacher, A., Meece, A., and Keefer, C. L. (2008). Lymphoid enhancer factor 1-mediated Wnt signaling promotes the initiation of trophoblast lineage differentiation in mouse embryonic stem cells. Stem Cells 26, 842–849.
Lymphoid enhancer factor 1-mediated Wnt signaling promotes the initiation of trophoblast lineage differentiation in mouse embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtFKltLs%3D&md5=bc26a0e8be8e2b2e148f5323ec2e8373CAS | 18192238PubMed |

Hendriksen, J., Jansen, M., Brown, C. M., van der Velde, H., van Ham, M., Galjart, N., Offerhaus, G. J., Fagotto, F., and Fornerod, M. (2008). Plasma membrane recruitment of dephosphorylated β-catenin upon activation of the Wnt pathway. J. Cell Sci. 121, 1793–1802.
Plasma membrane recruitment of dephosphorylated β-catenin upon activation of the Wnt pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotVygur8%3D&md5=2c26e37740a8eaa754ce7c31d9e2d660CAS | 18460581PubMed |

Heyman, Y., Chavatte-Palmer, P., LeBourhis, D., Camous, S., Vignon, X., and Renard, J. (2002). Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol. Reprod. 66, 6–13.
Frequency and occurrence of late-gestation losses from cattle cloned embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1ymug%3D%3D&md5=8e9e6531b48e2490e50dc5e5c42d3280CAS | 11751257PubMed |

Hill, J., Burghardt, R., Jones, K., Long, C., Looney, C., Shin, T., Spencer, T., Thompson, J., Winger, Q., and Westhusin, M. (2000). Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol. Reprod. 63, 1787–1794.
Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKhtL4%3D&md5=a0fe8919a46af7cfe7a3ebc5ac55229cCAS | 11090450PubMed |

Hill, J., Edwards, J., Sawyer, N., Blackwell, C., and Cibelli, J. (2001). Placental anomalies in a viable cloned calf. Cloning 3, 83–88.
Placental anomalies in a viable cloned calf.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387mvFSltA%3D%3D&md5=b2b5bcfdc61d052e735ccaac7d034a3bCAS | 11900642PubMed |

Huber, A. H., and Weis, W. I. (2001). The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402.
The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs1ait74%3D&md5=70c193dda560718f2f9c7a87be09194eCAS | 11348595PubMed |

Ishikawa, T., Tamai, Y., Zorn, A. M., Yoshida, H., Seldin, M. F., Nishikawa, S., and Taketo, M. M. (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128, 25–33.
| 1:CAS:528:DC%2BD3MXotVGlsw%3D%3D&md5=fb164b339b57d131290797a44b84a21dCAS | 11092808PubMed |

Jang, G., Jeon, H. Y., Ko, K. H., Park, H. J., Kang, S. K., Lee, B. C., and Hwang, W. S. (2005). Developmental competence and gene expression in preimplantation bovine embryos derived from somatic cell nuclear transfer using different donor cells. Zygote 13, 187–195.
Developmental competence and gene expression in preimplantation bovine embryos derived from somatic cell nuclear transfer using different donor cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVags7zL&md5=b2c94f8fb20e7a1baa8be10798f9d9b7CAS | 16261763PubMed |

Kan, N. G., Stemmler, M. P., Junghans, D., Kanzler, B., de Vries, W. N., Dominis, M., and Kemler, R. (2007). Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm. Development 134, 31–41.
Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsFart7k%3D&md5=4b81d6a06d02ba1754603d8cd5839deaCAS | 17138661PubMed |

Kemler, R. (1993). From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9, 317–321.
From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXmsVelsLo%3D&md5=d37f6733e1300a07e862be4c55d1c629CAS | 8236461PubMed |

Kohan-Ghadr, H., Lefebvre, R., Fecteau, G., Smith, L., Murphy, B., Suzuki Junior, J., Girard, C., and Hélie, P. (2008). Ultrasonographic and histological characterization of the placenta of somatic nuclear transfer-derived pregnancies in dairy cattle. Theriogenology 69, 218–230.
Ultrasonographic and histological characterization of the placenta of somatic nuclear transfer-derived pregnancies in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2sjmslCrtg%3D%3D&md5=2d5a65d869456facf38881d57c86412bCAS | 17983647PubMed |

Larue, L., Ohsugi, M., Hirchenhain, J., and Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc. Natl. Acad. Sci. USA 91, 8263–8267.
E-cadherin null mutant embryos fail to form a trophectoderm epithelium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlsFCjur8%3D&md5=6a5149c80bd1ce3f2c1b6e188af62d60CAS | 8058792PubMed |

Le, T. L., Yap, A. S., and Stow, J. L. (1999). Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J. Cell Biol. 146, 219–232.
| 1:CAS:528:DyaK1MXksFCjs7Y%3D&md5=ef678fa2cf221371bc60632abd0f671fCAS | 10402472PubMed |

Lee, B. C., Kim, M. K., Jang, G., Oh, H. J., Yuda, F., Kim, H. J., Hossein, M. S., Kim, J. J., Kang, S. K., Schatten, G., and Hwang, W. S (2005). Dogs cloned from adult somatic cells. Nature 436, 641.
Dogs cloned from adult somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFentLY%3D&md5=beef6963f291a29dd3a6507a51bf57f9CAS | 16079832PubMed |

Li, H. W., Cheung, A. N., Tsao, S. W., Cheung, A. L., and O, W. S. (2003). Expression of E-cadherin and β-catenin in trophoblastic tissue in normal and pathological pregnancies. Int. J. Gynecol. Pathol. 22, 63–70.
Expression of E-cadherin and β-catenin in trophoblastic tissue in normal and pathological pregnancies.Crossref | GoogleScholarGoogle Scholar | 12496700PubMed |

Li, F., Chong, Z. Z., and Maiese, K. (2006). Winding through the WNT pathway during cellular development and demise. Histol. Histopathol. 21, 103–124.
| 1:CAS:528:DC%2BD28Xpt1SrsQ%3D%3D&md5=1b2ec54881d22ef61e38235a48b7f9afCAS | 16267791PubMed |

Lickert, H., Bauer, A., Kemler, R., and Stappert, J. (2000). Casein kinase II phosphorylation of E-cadherin increases E-cadherin/β-catenin interaction and strengthens cell-cell adhesion. J. Biol. Chem. 275, 5090–5095.
Casein kinase II phosphorylation of E-cadherin increases E-cadherin/β-catenin interaction and strengthens cell-cell adhesion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsVymtr8%3D&md5=9948c38efdc3af70172328f5d5121445CAS | 10671552PubMed |

Miwa, N., Furuse, M., Tsukita, S., Niikawa, N., Nakamura, Y., and Furukawa, Y. (2001). Involvement of claudin-1 in the beta-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol. Res. 12, 469–476.
| 1:STN:280:DC%2BD383gs1Chtw%3D%3D&md5=c1e74a7ac21833e16f8ed3d700a75959CAS | 11939410PubMed |

Nakano, H., Shimada, A., Imai, K., Takahashi, T., and Hashizume, K. (2005). The cytoplasmic expression of E-cadherin and β-catenin in bovine trophoblasts during binucleate cell differentiation. Placenta 26, 393–401.
The cytoplasmic expression of E-cadherin and β-catenin in bovine trophoblasts during binucleate cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1KrsL0%3D&md5=25f871689653b1b81ef848e2a401b789CAS | 15850644PubMed |

Nelson, W. J., and Nusse, R. (2004). Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487.
Convergence of Wnt, β-catenin, and cadherin pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhslCgsbo%3D&md5=9dec637faf67b40ef41a18bad2c507b0CAS | 15001769PubMed |

Odelberg, S. J., Kollhoff, A., and Keating, M. T. (2000). Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–1109.
Dedifferentiation of mammalian myotubes induced by msx1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ajsA%3D%3D&md5=dc9c19c0b56e8cbc84d7bb918860a0e8CAS | 11163185PubMed |

Oliveira, S. S., and Morgado-Diaz, J. A. (2007). Claudins: multifunctional players in epithelial tight junctions and their role in cancer. Cell. Mol. Life Sci. 64, 17–28.
Claudins: multifunctional players in epithelial tight junctions and their role in cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhs1ajuro%3D&md5=8c4e71b49079bcefc3586bb1f0282821CAS | 17115119PubMed |

Pafilis, J., Batistatou, A., Iliopoulou, A., Tsanou, E., Bakogiannis, A., Dassopoulos, G., and Charalabopoulos, K. (2007). Expression of adhesion molecules during normal pregnancy. Cell Tissue Res. 329, 1–11.
Expression of adhesion molecules during normal pregnancy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVaisbk%3D&md5=2a7903de7f5c39f1528e4c7a94a122ffCAS | 17406899PubMed |

Parr, B. A., Cornish, V. A., Cybulsky, M. I., and McMahon, A. P. (2001). Wnt7b regulates placental development in mice. Dev. Biol. 237, 324–332.
Wnt7b regulates placental development in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFyiurw%3D&md5=48abbcce10cd2a6167094f73409d9d90CAS | 11543617PubMed |

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45.
A new mathematical model for relative quantification in real-time RT-PCR.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38nis12jtw%3D%3D&md5=3cfd2ff99dae9a87dc2a76cece195022CAS | 11328886PubMed |

Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36.
Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR.Crossref | GoogleScholarGoogle Scholar | 11972351PubMed |

Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., Czerwenka, K., Husslein, P., and Knofler, M. (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am. J. Pathol. 168, 1134–1147.
Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjslOht7k%3D&md5=425b304635e61e43607ce2fe446ab8a9CAS | 16565489PubMed |

Portela, V. M., Zamberlam, G., and Price, C. A. (2010). Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells. Fertil. Steril. 93, 2050–2055.
Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVOitrw%3D&md5=7f2101d82d543a92b5a9b1df5cd3d158CAS | 19324349PubMed |

Ruijter, J. M., Ramakers, C., Hoogaars, W. M., Karlen, Y., Bakker, O., van den Hoff, M. J., and Moorman, A. F. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, e45.
Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3lslGhtA%3D%3D&md5=62db3801f2656ff4501f6b95b7e51606CAS | 19237396PubMed |

Sefton, M., Johnson, M. H., Clayton, L., and McConnell, J. M. (1996). Experimental manipulations of compaction and their effects on the phosphorylation of uvomorulin. Mol. Reprod. Dev. 44, 77–87.
Experimental manipulations of compaction and their effects on the phosphorylation of uvomorulin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XivV2mt78%3D&md5=4c760d5eaa98017705773fac6ca66a44CAS | 8722695PubMed |

Song, L., Li, Y., Wang, K., Wang, Y. Z., Molotkov, A., Gao, L., Zhao, T., Yamagami, T., Wang, Y., Gan, Q., Pleasure, D. E., and Zhou, C. J. (2009). Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development 136, 3161–3171.
Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSitr7O&md5=d85f3dd02a9420c8600a58b2424cfb20CAS | 19700620PubMed |

Spencer, T. E., Johnson, G. A., Bazer, F. W., and Burghardt, R. C. (2004). Implantation mechanisms: insights from the sheep. Reproduction 128, 657–668.
Implantation mechanisms: insights from the sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFSlsw%3D%3D&md5=a3ed04dad60f8fc449bc2efa5be8c6ceCAS | 15579583PubMed |

Stemmler, M. P., and Bedzhov, I. (2010). A CDH1HA knock-in allele rescues the CDH1–/– phenotype but shows essential Cdh1 function during placentation. Dev. Dyn. 239, 2330–2344.
A CDH1HA knock-in allele rescues the CDH1–/– phenotype but shows essential Cdh1 function during placentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ejsLbO&md5=33eb8cf03b2990c695d544a8bbbc99c5CAS | 20652949PubMed |

Stevens, C. B., Davies, A. L., Battista, S., Lewis, J. H., and Fekete, D. M. (2003). Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev. Biol. 261, 149–164.
Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmslegtrg%3D&md5=07dc1490d713d17dc9c6eb3b6aedd51aCAS | 12941626PubMed |

Talbot, N. C., Powell, A. M., Camp, M., and Ealy, A. D. (2007). Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation. In Vitro Cell. Dev. Biol. Anim. 43, 59–71.
Establishment of a bovine blastocyst-derived cell line collection for the comparative analysis of embryos created in vivo and by in vitro fertilization, somatic cell nuclear transfer, or parthenogenetic activation.Crossref | GoogleScholarGoogle Scholar | 17570020PubMed |

Tsukita, S., and Furuse, M. (2002). Claudin-based barrier in simple and stratified cellular sheets. Curr. Opin. Cell Biol. 14, 531–536.
Claudin-based barrier in simple and stratified cellular sheets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVCrtLs%3D&md5=fce06da27522b0f1240878ce3fc9ea94CAS | 12231346PubMed |

Vajta, G., Lewis, I., and Tecirlioglu, R. (2006). Handmade somatic cell cloning in cattle. In ‘Methods in Molecular Biology, Vol. 348: Nuclear Transfer Protocols: Cell Reprogramming and Transgenesis’. (Ed. PJ Verma) pp. 183–195. (Humana Press Inc.: New York, NY)

Wakayama, T., and Yanagimachi, R. (1999). Cloning of male mice from adult tail-tip cells. Nat. Genet. 22, 127–128.
Cloning of male mice from adult tail-tip cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVelsLs%3D&md5=6d6b948419d060c9868c3979ab4a9087CAS | 10369248PubMed |

Willert, J., Epping, M., Pollack, J. R., Brown, P. O., and Nusse, R. (2002). A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev. Biol. 2, 8.
A transcriptional response to Wnt protein in human embryonic carcinoma cells.Crossref | GoogleScholarGoogle Scholar | 12095419PubMed |

Wilmut, I., Schnieke, A., McWhir, J., Kind, A., and Campbell, K. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385, 810–813.
Viable offspring derived from fetal and adult mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFamsLs%3D&md5=be70a94a4cd6cfedb112a9a140c92995CAS | 9039911PubMed |

Xue, W. C., Feng, H. C., Tsao, S. W., Chan, K. Y., Ngan, H. Y., Chiu, P. M., Maccalman, C. D., and Cheung, A. N. (2003). Methylation status and expression of E-cadherin and cadherin-11 in gestational trophoblastic diseases. Int. J. Gynecol. Cancer 13, 879–888.
Methylation status and expression of E-cadherin and cadherin-11 in gestational trophoblastic diseases.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srpsVCisQ%3D%3D&md5=6189a7caed570701803a141d1566c887CAS | 14675328PubMed |

Yurdakan, G., Ekem, T. E., Bahadir, B., Gun, B. D., Kuzey, G. M., and Ozdamar, S. O. (2008). Expression of adhesion molecules in first trimester spontaneous abortions and their role in abortion pathogenesis. Acta Obstet. Gynecol. Scand. 87, 775–782.
Expression of adhesion molecules in first trimester spontaneous abortions and their role in abortion pathogenesis.Crossref | GoogleScholarGoogle Scholar | 18607815PubMed |