Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

The effects of n-acetyl-l-cysteine supplementation on in vitro porcine oocyte maturation and subsequent fertilisation and embryonic development

B. D. Whitaker A B C , S. J. Casey A and R. Taupier A
+ Author Affiliations
- Author Affiliations

A Department of Agriculture, Ferrum College, PO Box 1000, Ferrum, VA 24088, USA.

B Present address: Department of Animal Science, The University of Findlay, 1000 North Main Street, Findlay, OH 45840, USA.

C Corresponding author. Email: whitaker@findlay.edu

Reproduction, Fertility and Development 24(8) 1048-1054 https://doi.org/10.1071/RD12002
Submitted: 21 June 2011  Accepted: 7 March 2012   Published: 10 April 2012

Abstract

The effects of supplementation with 1.5 mM n-acetyl-l-cysteine (NAC) during in vitro oocyte maturation were studied. Oocytes were supplemented with 1.5 mM NAC during maturation for 0 to 24 h, 24 to 48 h, or 0 to 48 h then subjected to IVF and embryo development. Oocytes were evaluated after maturation for intracellular glutathione concentration, superoxide dismutase and glutathione peroxidase activities and DNA fragmentation. Fertilisation and embryonic development success were also evaluated. There was no effect of treatment on intracellular glutathione concentrations, enzyme activities or fertilisation success rates. Supplementing NAC during maturation significantly decreased (P < 0.05) the percentage of oocytes with fragmented DNA compared with no NAC supplementation. Supplementing NAC from 24 to 48 h or 0 to 48 h resulted in a significantly higher (P < 0.05) percentage of oocytes with male pronuclei than for oocytes from the other treatment groups. There was no difference in the percentage of embryos cleaved by 48 h after IVF between treatment groups. Supplementing NAC from 24 to 48 h or 0 to 48 h resulted in a significantly higher (P < 0.05) percentage of embryos reaching the blastocyst stage by 144 h after IVF compared with the other treatment groups. These results indicate that supplementation of the oocyte maturation medium with 1.5 mM NAC, specifically during the last 24 h, improves male pronucleus formation and blastocyst development in pigs.

Additional keywords: antioxidants, in vitro fertilisation, oxidative stress, pigs, polyspermy.


References

Abeydeera, L. R. (2002). In vitro production of embryos in swine. Theriogenology 57, 257–273.
In vitro production of embryos in swine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktFylsQ%3D%3D&md5=6a6869bf9f8dc2d6ea5ac75974a0e38dCAS |

Abeydeera, L. R., and Day, B. N. (1997). In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium. Theriogenology 48, 537–544.
In vitro penetration of pig oocytes in a modified Tris-buffered medium: effect of BSA, caffeine and calcium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Whs7c%3D&md5=38482f06f296493cf83527c956d027d8CAS | 16728149PubMed |

Abeydeera, L. R., Wang, W. H., Cantley, T. C., Prather, R. S., and Day, B. N. (1998). Presence of mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology 50, 747–756.
Presence of mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnvFaktLs%3D&md5=5c9d522f1f023c24e24be401ed7980fdCAS | 10734449PubMed |

Ali, A. A., Bilodeau, J. F., and Sirard, M. A. (2003). Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development. Theriogenology 59, 939–949.
Antioxidant requirements for bovine oocytes varies during in vitro maturation, fertilization and development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXotVSh&md5=d141e6f0b3f45b4b7152cf1479d33423CAS | 12517395PubMed |

Anderson, M. E. (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555.
Determination of glutathione and glutathione disulfide in biological samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XmsFenuw%3D%3D&md5=c0f0ab8b2eb297a448eec893c74d1f5fCAS | 4088074PubMed |

Cetica, P. D., Pintos, L. N., Dalvit, G. C., and Beconi, M. T. (2001). Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation. IUBMB Life 51, 57–64.
Antioxidant enzyme activity and oxidative stress in bovine oocyte in vitro maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktlSmsL8%3D&md5=1f9047a1b1c71fbe7ca18331a4e758d3CAS | 11419698PubMed |

Choe, C., Shin, Y. W., Kim, E. J., Cho, S. R., Kim, H. J., Choi, S. H., Han, M. H., Han, J., Son, D. S., and Kang, D. (2010). Synergistic effects of glutathione and beta-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with l–cysteine. J. Reprod. Dev. 56, 575–582.
Synergistic effects of glutathione and beta-mercaptoethanol treatment during in vitro maturation of porcine oocytes on early embryonic development in a culture system supplemented with l–cysteine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhslOhsro%3D&md5=0adbdf0377cf24d81036b55eab53eeedCAS | 20657156PubMed |

Çoyan, K., Başpınar, N., Bucak, M. N., Akalın, P. P., Ataman, M. B., Ömür, A. D., Güngör, S., Küçükgünay, S., Özkalp, B., and Sarıözkan, S. (2010). Influence of methionine and dithioerythritol on sperm motility, lipid peroxidation and antioxidant capacities during liquid storage of ram semen. Res. Vet. Sci. 89, 426–431.
Influence of methionine and dithioerythritol on sperm motility, lipid peroxidation and antioxidant capacities during liquid storage of ram semen.Crossref | GoogleScholarGoogle Scholar | 20403626PubMed |

Del Corso, A., Cappiello, M., and Mura, U. (1994). Thiol-dependant oxidation of enzymes: the last chance against oxidative stress. Int. J. Biochem. 26, 745–750.
Thiol-dependant oxidation of enzymes: the last chance against oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVCrtL0%3D&md5=b599d66ea5650149333a0366d998894eCAS | 8063003PubMed |

du Plessis, S. S., Hagenaar, K., and Lampiao, F. (2010). The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 42, 112–116.
The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFSms7g%3D&md5=496ad0ac83ad0c4b0c54465b16621523CAS | 20384801PubMed |

Fiers, W., Beyaert, R., Declercq, W., and Vandenabeele, P. (1999). More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18, 7719–7730.
More than one way to die: apoptosis, necrosis and reactive oxygen damage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1WgsA%3D%3D&md5=d2806f1231f2f8dc1e4d97619385a110CAS | 10618712PubMed |

Flohé, L., and Ötting, F. (1984). Superoxide dismutase assays. Methods Enzymol. 105, 93–104.
Superoxide dismutase assays.Crossref | GoogleScholarGoogle Scholar | 6328209PubMed |

Gil, M. A., Parrilla, I., Vazquez, J. M., Roca, J., and Martinez, E. A. (2010). Advances in swine in vitro embryo production technologies. Reprod. Domest. Anim. 45, 40–48.
Advances in swine in vitro embryo production technologies.Crossref | GoogleScholarGoogle Scholar | 20591064PubMed |

Günzler, W. A., Kremers, H., and Flohé, L. (1974). An improved coupled test procedure for glutathione peroxidase in blood. Z. Klin. Chem. Klin. Biochem. 12, 444–448.
| 4154542PubMed |

Halliwell, B., and Gutteridge, J. M. (1988). Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Hum. Toxicol. 7, 7–13.
Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhsVCktL0%3D&md5=945c4648e1a0e48d6fe1a749183540c8CAS | 3278973PubMed |

Hayes, J. D., and McLellan, L. I. (1999). Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res. 31, 273–300.
Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmslGjsL8%3D&md5=3e98f6aa10e88e5ac4fb4ed0552670a3CAS | 10517533PubMed |

Hunter, M. G. (2000). Oocyte maturation and ovum quality in pigs. Rev. Reprod. 5, 122–130.
Oocyte maturation and ovum quality in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsleiu7k%3D&md5=07501fa3d74eef8d63ee5883b5814454CAS | 10864857PubMed |

Issels, R. D., Nagele, A., Eckert, K. G., and Wilmanns, W. (1988). Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and N-acetylcysteine. Biochem. Pharmacol. 37, 881–888.
Promotion of cystine uptake and its utilization for glutathione biosynthesis induced by cysteamine and N-acetylcysteine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhvVSju78%3D&md5=1b2a57b71fafcae3a68c6a9144fd1d96CAS | 3345201PubMed |

Iwamoto, M., Onishi, A., Fuchimoto, D., Somfai, T., Takeda, K., Tagami, T., Hanada, H., Noguchi, J., Kaneko, H., Nagai, T., and Kikuchi, K. (2005). Low oxygen tension during in vitro maturation of porcine follicular oocytes improves parthenogenetic activation and subsequent development to the blastocyst stage. Theriogenology 63, 1277–1289.
Low oxygen tension during in vitro maturation of porcine follicular oocytes improves parthenogenetic activation and subsequent development to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 15725436PubMed |

Kishida, R., Lee, E. S., and Fukui, Y. (2004). In vitro maturation of porcine oocytes using a defined medium and developmental capacity after intracytoplasmic sperm injection. Theriogenology 62, 1663–1676.
In vitro maturation of porcine oocytes using a defined medium and developmental capacity after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2crktlWrtA%3D%3D&md5=e75f87701803f4fe00391f3ccee49769CAS | 15511553PubMed |

Mattioli, M., Galeati, G., Bacci, M. L., and Seren, E. (1988). Follicular factors influence oocyte fertilizability by modulating the intercellular cooperation between cumulus cells and oocyte. Gamete Res. 21, 223–232.
Follicular factors influence oocyte fertilizability by modulating the intercellular cooperation between cumulus cells and oocyte.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M3jt12ksA%3D%3D&md5=306e5d24561e8d823fb2ce7c531d23e6CAS | 3246367PubMed |

Nadin, S. B., Vargas–Roig, L. M., and Ciocca, D. R. (2001). A silver-staining method for single-cell gel assay. J. Histochem. Cytochem. 49, 1183–1186.
A silver-staining method for single-cell gel assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsFyltLk%3D&md5=3d0c5f30fbcae83b15dcc2c16b63cd0fCAS | 11511687PubMed |

Nagai, T. (2001). The improvement of in vitro maturation systems for bovine and porcine oocytes. Theriogenology 55, 1291–1301.
The improvement of in vitro maturation systems for bovine and porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisrc%3D&md5=79d11494bd2eccecc8563b772e1ccde7CAS | 11327685PubMed |

Nishikimi, A., Mukai, J., and Yamada, M. (1999). Nuclear translocation of nuclear factor kappa B in early 1-cell mouse embryos. Biol. Reprod. 60, 1536–1541.
Nuclear translocation of nuclear factor kappa B in early 1-cell mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjsVeiurs%3D&md5=6a5451b4a08b8f3dac2e8d7ebfc88a75CAS | 10330116PubMed |

Petters, R. M., and Wells, C. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=36d4abfea214f4649cde59e3386610e8CAS | 8145215PubMed |

Shao, D. Z., Lee, J. J., Huang, W. T., Liao, J. F., and Lin, M. T. (2004). Inhibition of nuclear factor-kappa B prevents staphylococcal enterotoxin A-induced fever. Mol. Cell. Biochem. 262, 177–185.
Inhibition of nuclear factor-kappa B prevents staphylococcal enterotoxin A-induced fever.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslWgsrg%3D&md5=9364b227b3309f963656d15cd8aa82eeCAS | 15532722PubMed |

Tatemoto, H., Sakurai, N., and Muto, N. (2000). Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells. Biol. Reprod. 63, 805–810.
Protection of porcine oocytes against apoptotic cell death caused by oxidative stress during in vitro maturation: role of cumulus cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu78%3D&md5=94405b7a063834d36079657031e3d253CAS | 10952924PubMed |

Tatemoto, H., Muto, N., Sunagawa, I., Shinjo, A., and Nakada, T. (2004). Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid. Biol. Reprod. 71, 1150–1157.
Protection of porcine oocytes against cell damage caused by oxidative stress during in vitro maturation: role of superoxide dismutase activity in porcine follicular fluid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvVGqt7c%3D&md5=8ddfb079af7bd86aa1d04f53ad379b3aCAS | 15175235PubMed |

Whitaker, B. D., and Knight, J. W. (2004). Exogenous γ-glutamyl cycle compounds supplemented to in vitro maturation medium influence in vitro fertilization, culture and viability of porcine oocytes and embryos. Theriogenology 62, 311–322.
Exogenous γ-glutamyl cycle compounds supplemented to in vitro maturation medium influence in vitro fertilization, culture and viability of porcine oocytes and embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1SksL8%3D&md5=071b55eb9d6c48086e672ddbd5f55414CAS | 15159123PubMed |

Whitaker, B. D., and Knight, J. W. (2008). Mechanisms of oxidative stress in porcine oocytes and the role of anti-oxidants. Reprod. Fertil. Dev. 20, 694–702.
Mechanisms of oxidative stress in porcine oocytes and the role of anti-oxidants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlCnu7s%3D&md5=ef0c7c5cebb441d6d5778a05f295c67dCAS | 18671917PubMed |

Whitaker, B. D., and Knight, J. W. (2010). Effects of N-acetyl-cysteine and N-acetyl-cysteine-amide supplementation on in vitro-matured porcine oocytes. Reprod. Domest. Anim. 45, 755–759.
| 1:CAS:528:DC%2BC3cXhtlSgtLjK&md5=822647bd480dea3c26946b5531ecf9e4CAS | 19220795PubMed |

Wu, W., Goldstein, G., Adams, C., Matthews, R. H., and Ercal, N. (2006). Separation and quantification of N-acetyl-L-cysteine and N-acetyl-cysteine-amide by HPLC with fluorescence detection. Biomed. Chromatogr. 20, 415–422.
Separation and quantification of N-acetyl-L-cysteine and N-acetyl-cysteine-amide by HPLC with fluorescence detection.Crossref | GoogleScholarGoogle Scholar | 16167305PubMed |

Xu, D. X., Chen, Y. H., Wang, H., Zhao, L., Wang, J. P., and Wei, W. (2005). Effect of N-acetylcysteine on lipopolysaccharide-induced intra-uterine fetal death and intra-uterine growth retardation in mice. Toxicol. Sci. 88, 525–533.
Effect of N-acetylcysteine on lipopolysaccharide-induced intra-uterine fetal death and intra-uterine growth retardation in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Wis7zF&md5=56f0d3d1a4af443ac1ee51ba5c1926c6CAS | 16162852PubMed |

Yim, C. Y., Hibbs, J. B., McGregor, J. R., Galinsky, R. E., and Samlowski, W. E. (1994). Use of N-acetyl cysteine to increase intracellular glutathione during the induction of antitumor responses by IL-2. J. Immunol. 152, 5796–5805.
| 1:CAS:528:DyaK2cXkvVSlur4%3D&md5=a8a33e853213d64d8a217e240a0c69baCAS | 8207209PubMed |

Yoshida, M., Ishigaki, K., Nagai, T., Chikyu, M., and Pursel, V. G. (1993). Glutathione concentration during maturation and after fertilization in pig oocytes relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 49, 89–94.
Glutathione concentration during maturation and after fertilization in pig oocytes relevance to the ability of oocytes to form male pronucleus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkvFahtLY%3D&md5=deb38d8ade8cf0ff2e119acbb804a79bCAS | 8353194PubMed |

Zhang, W., Liu, Y., An, A., Huang, D., Qi, Y., and Zhang, Y. (2011). Mediating effect of ROS on mtDNA damage and low ATP content induced by arsenic trioxide in mouse oocytes. Toxicol. In Vitro 25, 979–984.
Mediating effect of ROS on mtDNA damage and low ATP content induced by arsenic trioxide in mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsFajsLw%3D&md5=db0194f0b84f2b5dec7473cd10c4582dCAS | 21419842PubMed |