Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Cryotolerance of in vitro-produced porcine blastocysts is improved when using glucose instead of pyruvate and lactate during the first 2 days of embryo culture

M. Castillo-Martín A C , M. Yeste B , R. Morató B , T. Mogas B and S. Bonet A
+ Author Affiliations
- Author Affiliations

A Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Campus Montilivi, E-17071 Girona, Spain.

B Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, E-08193 Bellaterra, Spain.

C Corresponding author. Email: miriam.castillo@udg.edu

Reproduction, Fertility and Development 25(5) 737-745 https://doi.org/10.1071/RD12117
Submitted: 13 April 2012  Accepted: 12 June 2012   Published: 8 August 2012

Abstract

The objective of the present study was to determine the effects of replacing glucose with pyruvate and lactate during the first 48 h of in vitro culture (IVC) in NCSU-23 medium on embryo development, embryo quality and survival of porcine blastocysts after vitrification. To this end, in vitro-produced (IVP) porcine oocytes were cultured with either glucose for 6 days (IVC-Glu) or pyruvate–lactate from Day 0 to Day 2 and then with glucose until Day 6 (IVC-PyrLac). Blastocysts were vitrified on Day 6 using the Cryotop device and, after warming, survival rate and the apoptosis index were evaluated after 24 h incubation in NCSU-23 medium. No significant differences were observed between IVC-Glu and IVC-PyrLac in terms of cleavage rate, blastocyst yield, total number of cells per blastocyst or the apoptosis index (1.82 ± 0.75% vs 3.18 ± 0.88%, respectively) of non-vitrified embryos. However, a significant increase was seen in hatching/hatched blastocysts in the IVC-PyrLac compared with IVC-Glu treatment group (12.71 ± 1.20% vs 3.54 ± 0.47%, respectively). Regardless of treatment, vitrification impaired the survival rate and the apoptosis index. When comparing both treatments after warming, the percentage of apoptotic cells was significantly higher for blastocysts in the IVC-PyrLac compared with IVC-Glu group (18.55 ± 3.49% vs 9.12 ± 2.17%, respectively). In conclusion, under the conditions of the present study, replacement of glucose with pyruvate–lactate during the first 48 h of culture resulted in a lower cryotolerance of IVP porcine embryos.

Additional keywords: energy substrate, vitrification.


References

Beebe, L. F., McIlfactrick, S., and Nottle, M. B. (2007). The effect of energy substrate concentration and amino acids on the in vitro development of preimplantation porcine embryos. Cloning Stem Cells 9, 206–215.
The effect of energy substrate concentration and amino acids on the in vitro development of preimplantation porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXms1Wgtrg%3D&md5=91ab61cf963a57530ba0bb595a5586dcCAS | 17579553PubMed |

Betts, D. H., and King, W. A. (2001). Genetic regulation of embryo death and senescence. Theriogenology 55, 171–191.
Genetic regulation of embryo death and senescence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7nslartw%3D%3D&md5=6dbaec5793b855a43d617311b94eaee7CAS | 11198081PubMed |

Brison, D. R., and Schultz, R. M. (1997). Apoptosis during mouse blastocysts formation: evidence for a role for survival factors including transforming growth factor alpha. Biol. Reprod. 56, 1088–1096.
Apoptosis during mouse blastocysts formation: evidence for a role for survival factors including transforming growth factor alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXisl2mu7Y%3D&md5=8f356d872eba8209cec4bb619155fb8fCAS | 9160705PubMed |

Byrne, A. T., Southgate, J., Brison, D. R., and Leese, H. J. (1999). Analysis of apoptosis in the preimplantation bovine embryo using TUNEL. J. Reprod. Fertil. 117, 97–105.
Analysis of apoptosis in the preimplantation bovine embryo using TUNEL.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtlalt7k%3D&md5=5e9ef27b0af772b3503b0907bff27e23CAS | 10645250PubMed |

Carvajal, G., Cuello, C., Ruíz, M., Vázquez, J. M., Martínez, E. A., and Roca, J. (2004). Effects of centrifugation before freezing on boar sperm cryosurvival. J. Androl. 25, 389–396.
| 15064317PubMed |

Casas, I., Sancho, S., Briz, M., Pinart, E., Bussalleu, E., Yeste, M., and Bonet, S. (2009). Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. Theriogenology 72, 930–948.
Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGlsr3E&md5=cb921d94176a753cb4a0458fc6565cd2CAS | 19651432PubMed |

Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989). An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.
An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1Mzkt1emtA%3D%3D&md5=af36e5a7868a120439a9f0cc1975a358CAS | 2760894PubMed |

Cuello, C., Berthelot, F., Delaleu, B., Venturi, E., Pastor, L. M., Vazquez, J. M., Roca, J., Martinat-Botté, F., and Martinez, E. A. (2007). The effectiveness of the stereomicroscopic evaluation of embryo quality in vitrified–warmed porcine blastocysts: an ultrastructural and cell death study. Theriogenology 67, 970–982.
The effectiveness of the stereomicroscopic evaluation of embryo quality in vitrified–warmed porcine blastocysts: an ultrastructural and cell death study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7hsFenuw%3D%3D&md5=26bdf2e593d35dfd8af6d1bf318d86c0CAS | 17208290PubMed |

Du, Y., Li, J., Kragh, P. M., Zhang, Y., Schmidt, M., Bogh, I. B., Zhang, X., Purup, S., Kuwayama, M., Jorgensen, A. L., Pedersen, A. M., Villemoes, K., Yang, H., Bolund, L., and Vajta, G. (2007a). Piglets born from vitrified cloned blastocysts produced with a simplified method of delipation and nuclear transfer. Cloning Stem Cells 9, 469–476.
Piglets born from vitrified cloned blastocysts produced with a simplified method of delipation and nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKksw%3D%3D&md5=22bab206071c06ca21bdfacd6dee4330CAS | 18154508PubMed |

Du, Y., Zhang, Y., Li, J., Kragh, P. M., Kuwayama, M., Ieda, S., Zhang, X., Schmidt, M., Bogh, I. B., Purup, S., Pedersen, A. M., Villemoes, K., Yang, H., Bolund, L., and Vajta, G. (2007b). Simplified cryopreservation of porcine cloned blastocysts. Cryobiology 54, 181–187.
Simplified cryopreservation of porcine cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjvFehtrc%3D&md5=84bdd5847164b7a1e2098b86b5572690CAS | 17359960PubMed |

Esaki, R., Ueda, H., Kurome, M., Hirakawa, K., Tomii, R., Yoshioka, H., Ushijima, H., Kuwayama, M., and Nagashima, H. (2004). Cryopreservation of porcine embryos derived from in vitro-matured oocytes. Biol. Reprod. 71, 432–437.
Cryopreservation of porcine embryos derived from in vitro-matured oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmtFWgtLs%3D&md5=b20cc78bdd8f0cbcdd4ea45b4f1c542cCAS | 15044264PubMed |

Fabian, D., Gjorret, J. O., Berthelot, F., Martinat-Botté, F., and Maddox-Hyttel, P. (2005). Ultrastructure and cell death of in vivo derived and vitrified porcine blastocysts. Mol. Reprod. Dev. 70, 155–165.
Ultrastructure and cell death of in vivo derived and vitrified porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXltlSktw%3D%3D&md5=71d82aeaa26fd32f83e820a964f21214CAS | 15570616PubMed |

Flood, M. R., and Wiebold, J. L. (1988). Glucose metabolism by preimplantation pig embryos. J. Reprod. Fertil. 84, 7–12.
Glucose metabolism by preimplantation pig embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVOqsrk%3D&md5=5a2edf0fd63cd4af3e0c2158b94d7a51CAS | 3184061PubMed |

Gandhi, A. P., Lane, M., Gardner, D. L., and Krisher, R. L. (2001). Substrate utilization in porcine embryos cultured in NCSU23 and G1.2/G2.2 sequential culture media. Mol. Reprod. Dev. 58, 269–275.
Substrate utilization in porcine embryos cultured in NCSU23 and G1.2/G2.2 sequential culture media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtVSiu7o%3D&md5=04af5004ee9d766d2d120d3e550e2a6aCAS | 11170267PubMed |

Gardner, D. K., Lane, M., Calderon, I., and Leeton, J. (1996). Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril. 65, 349–353.
| 1:STN:280:DyaK287lsVSitA%3D%3D&md5=d7660c39b413615df6b75cbf252f2a56CAS | 8566260PubMed |

Greve, T., and Callesen, H. (2004). Integrating new technologies with embryology and animal production. Reprod. Fertil. Dev. 16, 113–122.
Integrating new technologies with embryology and animal production.Crossref | GoogleScholarGoogle Scholar | 14972109PubMed |

Grisart, B., Massip, A., and Dessy, F. (1994). Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J. Reprod. Fertil. 101, 257–264.
Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2FhslygtA%3D%3D&md5=ce4d762e033acd4c19583a21ae560ed8CAS | 7932357PubMed |

Han, Y. M., Yamashima, H., Koyama, N., Lee, K. K., and Fukui, Y. (1994). Effects of quality and development stage on the survival of IVF-derived bovine blastocysts cultured in vitro after freezing and thawing. Theriogenology 42, 645–654.
Effects of quality and development stage on the survival of IVF-derived bovine blastocysts cultured in vitro after freezing and thawing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVehtQ%3D%3D&md5=ea22960eb9da4c6502c8f0d005ff500eCAS | 16727570PubMed |

Hardy, K. (1997). Cell death in the mammalian blastocyst. Mol. Hum. Reprod. 3, 919–925.
Cell death in the mammalian blastocyst.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FlsFKntg%3D%3D&md5=4de9d6387cf0fa34d46824ba48b3f28eCAS | 9395266PubMed |

Holm, P., Booth, P. J., and Callesen, H. (2002). Kinetics of early in vitro development of bovine in vivo- and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media. Reproduction 123, 553–565.
Kinetics of early in vitro development of bovine in vivo- and in vitro-derived zygotes produced and/or cultured in chemically defined or serum-containing media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFGhtbs%3D&md5=7fe7f672ff16ef8c98bcf4ed1dd55a0aCAS | 11914118PubMed |

Isom, S. C., Li, R. F., Whitworth, K. M., and Prather, R. S. (2012). Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcineembryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis. Mol. Reprod. Dev. 79, 197–207.
Timing of first embryonic cleavage is a positive indicator of the in vitro developmental potential of porcineembryos derived from in vitro fertilization, somatic cell nuclear transfer and parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Oiur7M&md5=bd30a8df9137bd558520f82019b68470CAS | 22213403PubMed |

Karja, N. W., Medvedev, S., Onishi, A., Fuchimoto, D., Iwamoto, M., Otoi, T., and Nagai, T. (2004). Effect of replacement of pyruvate–lactate in culture medium with glucose on preimplantational development of porcine embryos in vitro. J. Reprod. Dev. 50, 587–592.
Effect of replacement of pyruvate–lactate in culture medium with glucose on preimplantational development of porcine embryos in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjs1yjtQ%3D%3D&md5=2ee3ce769582cf2f6e49091b7f3f4ff2CAS | 15514466PubMed |

Karja, N. W., Kikuchi, K., Fahrudin, M., Ozawa, M., Somfai, T., Ohnuma, K., Noguchi, J., Kaneko, H., and Nagai, T. (2006). Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions. Reprod. Biol. Endocrinol. 4, 54.
Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions.Crossref | GoogleScholarGoogle Scholar | 17087833PubMed |

Kawakami, M., Kato, Y., and Tsunoda, Y. (2008). The effects of time of first cleavage, developmental stage, and delipidation of nuclear-transferred porcine blastocysts on survival following vitrification. Anim. Reprod. Sci. 106, 402–411.
The effects of time of first cleavage, developmental stage, and delipidation of nuclear-transferred porcine blastocysts on survival following vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1yku7g%3D&md5=8456734c6e4ac8ca2e262aaa99887ac9CAS | 17628361PubMed |

Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., Akita, T., and Nagai, T. (2002). Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–1041.
Successful piglet production after transfer of blastocysts produced by a modified in vitro system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlClur8%3D&md5=9de8bbe9ad73c180e5f2fffcc16ea9a1CAS | 11906923PubMed |

Kim, H. S., Lee, G. S., Hyun, S. H., Lee, S. H., Nam, D. H., Jeong, Y. W., Kim, S., Kang, S. K., Lee, B. C., and Hwang, W. S. (2004). Improved in vitro development of porcine embryos with different energy substrates and serum. Theriogenology 61, 1381–1393.
Improved in vitro development of porcine embryos with different energy substrates and serum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVOmu74%3D&md5=a692fd360933bb1214438b677b4bc197CAS | 15036970PubMed |

Kim, J. H., Niwa, K., Lim, J. M., and Okuda, K. (1993). Effects of phosphate, energy substrates, and amino acids on development of in vitro-matured, in vitro-fertilized bovine oocytes in a chemically defined, protein-free culture medium. Biol. Reprod. 48, 1320–1325.
Effects of phosphate, energy substrates, and amino acids on development of in vitro-matured, in vitro-fertilized bovine oocytes in a chemically defined, protein-free culture medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1yrtrs%3D&md5=c3aba07b44447a94d2aff7ee730afb33CAS | 8318585PubMed |

Kimura, N., Tsunoda, S., Iuchi, Y., Abe, H., Totsukawa, K., and Fujii, J. (2010). Intrinsic oxidative stress causes either 2-cell arrest or cell death depending on development stage of the embryos from SOD1-deficient mice. Mol. Hum. Reprod. 16, 441–451.
Intrinsic oxidative stress causes either 2-cell arrest or cell death depending on development stage of the embryos from SOD1-deficient mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVyjsb8%3D&md5=cde07d8c15ac5ee51fec673e3e202545CAS | 20223891PubMed |

Kirk, A. D. (2003). Crossing the bridge: large animal models in translational transplantation research. Immunol. Rev. 196, 176–196.
Crossing the bridge: large animal models in translational transplantation research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSlsLvJ&md5=6cc228aa52d5b64ddfa751b5e5be2976CAS | 14617205PubMed |

Kuwayama, M., Vajta, G., Kato, O., and Leibo, S. P. (2005). Highly efficient vitrification method for cryopreservation of human oocytes. Reprod. Biomed. Online 11, 300–308.
Highly efficient vitrification method for cryopreservation of human oocytes.Crossref | GoogleScholarGoogle Scholar | 16176668PubMed |

Li, R., Lai, L., Wax, D., Hao, Y., Murphy, C. N., Rieke, A., Samuel, M., Linville, M. L., Korte, S. W., Evans, R. W., Turk, J. R., Kang, J. X., Witt, W. T., Dai, Y., and Prather, R. S. (2006). Cloned transgenic swine via in vitro production and cryopreservation. Biol. Reprod. 75, 226–230.
Cloned transgenic swine via in vitro production and cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVWgsLk%3D&md5=ce61ed0fc9d80fe6b204c3fce0693e18CAS | 16672718PubMed |

Long, C. R., Dobrinsky, J. R., Garrett, W. M., and Johnson, L. A. (1998). Dual labeling of the cytoskeleton and DNA strand breaks in porcine embryos produced in vivo and in vitro. Mol. Reprod. Dev. 51, 59–65.
Dual labeling of the cytoskeleton and DNA strand breaks in porcine embryos produced in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVGrs7Y%3D&md5=6f4e29a3527e138e147ce39126dac1c7CAS | 9712318PubMed |

Lunney, J. K. (2007). Advances in swine biomedical model genomics. Int. J. Biol. Sci. 3, 179–184.
Advances in swine biomedical model genomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsl2qt7s%3D&md5=ad69d2967968ab4c15dcd28f7af0290cCAS | 17384736PubMed |

Macháty, Z., Day, B. N., and Prather, R. S. (1998). Development of early porcine embryos in vitro and in vivo. Biol. Reprod. 59, 451–455.
Development of early porcine embryos in vitro and in vivo.Crossref | GoogleScholarGoogle Scholar | 9687321PubMed |

Matsunari, H., and Nagashima, H. (2009). Application of genetically modified and cloned pigs in translational research. J. Reprod. Dev. 55, 225–230.
Application of genetically modified and cloned pigs in translational research.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFehtLg%3D&md5=736983f607637c54c8e55fc7f2e24794CAS | 19571468PubMed |

Medvedev, S., Onishi, A., Fuchimoto, D., Iwamoto, M., and Nagai, T. (2004). Advanced in vitro production of pig blastocysts obtained through determining the time or glucose supplementation. J. Reprod. Dev. 50, 71–76.
Advanced in vitro production of pig blastocysts obtained through determining the time or glucose supplementation.Crossref | GoogleScholarGoogle Scholar | 15007204PubMed |

Men, H., Agca, Y., Critser, E. S., and Critser, J. K. (2005). Beneficial effects of serum supplementation during in vitro production of porcine embryos on their ability to survive cryopreservation by open pulled straw vitrification. Theriogenology 64, 1340–1349.
Beneficial effects of serum supplementation during in vitro production of porcine embryos on their ability to survive cryopreservation by open pulled straw vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslyjtr4%3D&md5=7e9f8b05507c1c3554ebfefbfa1fd7a8CAS | 16139610PubMed |

Men, H., Agca, Y., Riley, L. K., and Critser, J. K. (2006). Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis. Theriogenology 66, 2008–2016.
Improved survival of vitrified porcine embryos after partial delipation through chemically stimulated lipolysis and inhibition of apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVGjtL3K&md5=8113186a0e98af3eaac45780840fc526CAS | 16870242PubMed |

Morató, R., Izquierdo, D., Paramio, M. T., and Mogas, T. (2010). Survival and apoptosis rates after vitrification in cryotop devices of in vitro-produced calf and cow blastocysts at different developmental stages. Reprod. Fertil. Dev. 22, 1141–1147.
Survival and apoptosis rates after vitrification in cryotop devices of in vitro-produced calf and cow blastocysts at different developmental stages.Crossref | GoogleScholarGoogle Scholar | 20797352PubMed |

Nagashima, H., Kashiwazaki, N., Ashman, R. J., Grupen, C. G., and Nottle, M. B. (1995). Cryopreservation of porcine embryos. Nature 374, 416.
Cryopreservation of porcine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXkslSls7Y%3D&md5=e7d65cd7af4e813020a585d2774d558cCAS | 7700349PubMed |

Nagashima, H., Hiruma, K., Saito, H., Tomii, R., Ueno, S., Nakayama, N., Matsunari, H., and Kurome, M. (2007). Production of live piglets following cryopreservation of embryos derived from in vitro-matured oocytes. Biol. Reprod. 76, 900–905.
Production of live piglets following cryopreservation of embryos derived from in vitro-matured oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1OhsLY%3D&md5=78e60edb5a8f646ccbca6e25fa58bc1bCAS | 17267701PubMed |

Nakano, K., Matsunari, H., Nakayama, N., Ogawa, B., Kurome, M., Takahashi, M., Matsumoto, M., Murakami, H., Kaji, Y., and Nagashima, H. (2011). Cloned porcine embryos can maintain developmental ability after cryopreservation at the morula stage. J. Reprod. Dev. 57, 312–316.
Cloned porcine embryos can maintain developmental ability after cryopreservation at the morula stage.Crossref | GoogleScholarGoogle Scholar | 21242653PubMed |

Nedambale, T. L., Dinnyés, A., Yang, X., and Tian, X. C. (2004). Bovine blastocysts development in vitro: timing, sex, and viability following vitrification. Biol. Reprod. 71, 1671–1676.
Bovine blastocysts development in vitro: timing, sex, and viability following vitrification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1yitro%3D&md5=4389223a44c71a7f836036ef40d8fe47CAS | 15253921PubMed |

Nichol, R., Hunter, R. H., Gardner, D. K., Leese, H. J., and Cooke, G. M. (1992). Concentrations of energy substrates in oviductal fluid and blood plasma of pigs during the peri-ovulatory period. J. Reprod. Fertil. 96, 699–707.
Concentrations of energy substrates in oviductal fluid and blood plasma of pigs during the peri-ovulatory period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXpvVyqsA%3D%3D&md5=f135dde07a17962f3f15accc677a869cCAS | 1339849PubMed |

Park, S. Y., Kim, E. Y., Cui, X. S., Tae, J. C., Lee, W. D., Kim, N. H., Park, S. P., and Lim, J. H. (2006). Increase in DNA fragmentation and apoptosis-related gene expression in frozen–thawed bovine blastocysts. Zygote 14, 125–131.
Increase in DNA fragmentation and apoptosis-related gene expression in frozen–thawed bovine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkvVyltb8%3D&md5=7b500d7b109c8caa234edc98c3579499CAS | 16719948PubMed |

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=36d4abfea214f4649cde59e3386610e8CAS | 8145215PubMed |

Pomar, F. J., Teerds, K. J., Kidson, A., Colenbrander, B., Tharasanit, T., Aguilar, B., and Roelen, B. A. (2005). Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology 63, 2254–2268.
Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFyrtbg%3D&md5=c623dec111452db257d94070e2fa4d22CAS | 15826688PubMed |

Prather, R. S., Hawley, R. J., Carter, D. B., Lai, L., and Greenstein, J. L. (2003). Transgenic swine for biomedicine and agriculture. Theriogenology 59, 115–123.
Transgenic swine for biomedicine and agriculture.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38jjslKktg%3D%3D&md5=a49144221e856cfe8f1dc2bea3c5e510CAS | 12499023PubMed |

Rath, D., Niemann, H., and Torres, C. R. L. (1995). In vitro development to blastocysts of early porcine embryos produced in vivo or in vitro. Theriogenology 43, 913–926.
In vitro development to blastocysts of early porcine embryos produced in vivo or in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28zgtVCgug%3D%3D&md5=ca43cfe06622fdcebac16c71368fe561CAS | 16727681PubMed |

Rath, D., Long, C. R., Dobrinsky, J. R., Welch, G. R., Schreier, L. L., and Johnson, L. A. (1999). In vitro production of sexed embryos for gender preselection: high-speed sorting of X-chromosome bearing sperm to produce pigs after embryo transfer. J. Anim. Sci. 77, 3346–3352.
| 1:CAS:528:DC%2BD3cXktFegtQ%3D%3D&md5=0dbd1a7eda107a0e72d078785ba2be24CAS | 10641883PubMed |

Rizos, D., Ward, F., Boland, M. P., and Lonergan, P. (2001). Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification. Theriogenology 56, 1–16.
Effect of culture system on the yield and quality of bovine blastocysts as assessed by survival after vitrification.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvhvV2qtg%3D%3D&md5=095457730acc77aef8d54838dd61f862CAS | 11467505PubMed |

Rizos, D., Gutiérrez-Adán, A., Pérez-Garnelo, S., De La Fuente, J., Boland, M. P., and Lonergan, P. (2003). Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression. Biol. Reprod. 68, 236–243.
Bovine embryo culture in the presence or absence of serum: implications for blastocyst development, cryotolerance, and messenger RNA expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjtFWj&md5=d9ce5e4263f5d4c6e1c4fe250cea18aaCAS | 12493719PubMed |

Robertson, I., and Nelson, R. E. (1998). Certification and identification of the embryo. In ‘Manual of the International Embryo Transfer Society’. (Eds D. A. Stringfellow and S. M. Seidel.) pp. 103–134. (International Embryo Transfer Society: Savoy, IL.)

Romek, M., Gajda, B., Krzysztofowicz, E., Kepczyński, M., and Smorag, Z. (2011). Lipid content in pig blastocysts cultured in the presence or absence of protein and vitamin E or phenazine ethosulfate. Folia Biol. 59, 45–52.
Lipid content in pig blastocysts cultured in the presence or absence of protein and vitamin E or phenazine ethosulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVChu7o%3D&md5=3c41ce439a18d6c65428b239c0cd2a87CAS |

Rubessa, M., Boccia, L., Campanile, G., Longobardi, V., Albarella, S., Tateo, A., Zicarelli, L., and Gasparrini, B. (2011). Effect of energy source during culture on in vitro embryo development, resistance to cryopreservation and sex ratio. Theriogenology 76, 1347–1355.
Effect of energy source during culture on in vitro embryo development, resistance to cryopreservation and sex ratio.Crossref | GoogleScholarGoogle Scholar | 21820719PubMed |

Schini, S. A., and Bavister, B. D. (1988). Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–1192.
Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhtFahurw%3D&md5=fa28f66ee47d1e2efb69bc3f72519745CAS | 3219389PubMed |

Seidel, G. E. (2006). Modifying oocytes and embryos to improve their cryopreservation. Theriogenology 65, 228–235.
Modifying oocytes and embryos to improve their cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Gitr3O&md5=9ec48d016fc630c5fe27dc463930d869CAS | 16263160PubMed |

Shirazi, A., Nazari, H., Ahmadi, E., Heidari, B., and Shams-Esfandabadi, N. (2009). Effect of culture system on survival rate of vitrified bovine embryos produced in vitro. Cryobiology 59, 285–290.
Effect of culture system on survival rate of vitrified bovine embryos produced in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2murrL&md5=5d5bd5690787430c1409e4c3f2f14f6aCAS | 19716813PubMed |

Stringfellow, D. A., and Givens, M. D. (2010). Recommendations for the sanitary handling of in vivo derived embryos. In ‘Manual of the International Embryo Transfer Society: A Procedural Guide and General Information for the Use of Embryo Transfer Technology, Emphasizing Sanitary Procedures’. 4th edn. (Eds D. A. Stringfellow, M. D. Givens.) pp. 65–68. (International Embryo Transfer Society: Champaign, IL.)

Swain, J. E., Bormann, C. L., Clark, S. G., Walters, E. M., Wheeler, M. B., and Krisher, R. L. (2002). Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction 123, 253–260.
Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsFChtr4%3D&md5=c73d9e3324bdb13f91083b2df8cca135CAS | 11866692PubMed |

Thompson, J. G., Simpson, A. C., Pugh, P. A., and Tervit, H. R. (1992). Requirement for glucose during in vitro culture of sheep preimplantation embryos. Mol. Reprod. Dev. 31, 253–257.
Requirement for glucose during in vitro culture of sheep preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xitlalsbw%3D&md5=2fbf371d3b8be8968f8d720622aa4646CAS | 1571159PubMed |

Thompson, J. G., Bell, A. C., Pugh, P. A., and Tervit, H. R. (1993). Metabolism of pyruvate by pre-elongation sheep embryos and effect of pyruvate and lactate concentrations during culture in vitro. Reprod. Fertil. Dev. 5, 417–423.
Metabolism of pyruvate by pre-elongation sheep embryos and effect of pyruvate and lactate concentrations during culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXitFenu7c%3D&md5=4b62b0f892f1abd3d9d432ac53fd8f4dCAS | 8153391PubMed |

Torres, C. R. L., and Rath, D. (1992). In vitro culture of porcine embryos to the blastocyst stage after in vivo and in vitro fertilization. Theriogenology 37, 283.
In vitro culture of porcine embryos to the blastocyst stage after in vivo and in vitro fertilization.Crossref | GoogleScholarGoogle Scholar |

Vajta, G., Zhang, Y., and Macháty, Z. (2007). Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reprod. Fertil. Dev. 19, 403–423.
Somatic cell nuclear transfer in pigs: recent achievements and future possibilities.Crossref | GoogleScholarGoogle Scholar | 17257528PubMed |

Westendorf, P., Richter, L., and Treu, H. (1975). Zur Tiefgefrierung von Ebersperma. Labor und Besamungsergebnisse mit dem Hülsenberger Pailetten-Verfahren. Dtsch. Tierarztl. Wochenschr. 82, 261–267.
| 1:STN:280:DyaE28%2FmsFyntg%3D%3D&md5=1f8b0e6f8ee6b25039c7b3beeca3f0f8CAS | 1104331PubMed |

Wongsrikeao, P., Otoi, T., Taniguchi, M., Karja, N. W., Agung, B., Nii, M., and Nagai, T. (2006). Effects of hexoses on in vitro oocyte maturation and embryo development in pigs. Theriogenology 65, 332–343.
Effects of hexoses on in vitro oocyte maturation and embryo development in pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlCqtb%2FI&md5=d22d8bbe373eb1aebbe0587dcd657257CAS | 15967489PubMed |

Yoshioka, K., Suzuki, C., Tanaka, A., Anas, I. M., and Iwamura, S. (2002). Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66, 112–119.
Birth of piglets derived from porcine zygotes cultured in a chemically defined medium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1yksQ%3D%3D&md5=b18379f4b4fbc1397fea5c6744a9f023CAS | 11751272PubMed |