Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Role of stem cells in large animal genetic engineering in the TALENs–CRISPR era

Ki-Eun Park A B and Bhanu Prakash V. L. Telugu A B C D
+ Author Affiliations
- Author Affiliations

A Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.

B Animal Bioscience and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705, USA.

C Present address: 2121 ANSC Building, University of Maryland, College Park, MD 20742, USA.

D Corresponding author. Email: btelugu@umd.edu

Reproduction, Fertility and Development 26(1) 65-73 https://doi.org/10.1071/RD13258
Published: 5 December 2013

Abstract

The establishment of embryonic stem cells (ESCs) and gene targeting technologies in mice has revolutionised the field of genetics. The relative ease with which genes can be knocked out, and exogenous sequences introduced, has allowed the mouse to become the prime model for deciphering the genetic code. Not surprisingly, the lack of authentic ESCs has hampered the livestock genetics field and has forced animal scientists into adapting alternative technologies for genetic engineering. The recent discovery of the creation of induced pluripotent stem cells (iPSCs) by upregulation of a handful of reprogramming genes has offered renewed enthusiasm to animal geneticists. However, much like ESCs, establishing authentic iPSCs from the domestic animals is still beset with problems, including (but not limited to) the persistent expression of reprogramming genes and the lack of proven potential for differentiation into target cell types both in vitro and in vivo. Site-specific nucleases comprised of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulated interspaced short palindromic repeats (CRISPRs) emerged as powerful genetic tools for precisely editing the genome, usurping the need for ESC-based genetic modifications even in the mouse. In this article, in the aftermath of these powerful genome editing technologies, the role of pluripotent stem cells in livestock genetics is discussed.

Additional keywords: embryonic stem cells, induced pluripotent stem cells, zinc finger nucleases.


References

Amaya, E., and Kroll, K. L. (1999). A method for generating transgenic frog embryos. Methods Mol. Biol. 97, 393–414.
| 1:STN:280:DyaK1Mznt1ehug%3D%3D&md5=17d4837d9287c8ec7f048629cbabc421CAS | 10443381PubMed |

Beck, C.W., and Slack, J.M. (2001). An amphibian with ambition: a new role for Xenopus in the 21st century. Genome Biol 2, reviews1029–reviews1029.5.
An amphibian with ambition: a new role for Xenopus in the 21st century.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVyns78%3D&md5=cbe109868fe513535daaa3be6ea29f18CAS | 11597339PubMed |

Bedell, V. M., Wang, Y., Campbell, J. M., Poshusta, T. L., Starker, C. G., Krug, R. G., Tan, W., Penheiter, S. G., Ma, A. C., Leung, A. Y., Fahrenkrug, S. C., Carlson, D. F., Voytas, D. F., Clark, K. J., Essner, J. J., and Ekker, S. C. (2012). In vivo genome editing using a high-efficiency TALEN system. Nature 491, 114–118.
In vivo genome editing using a high-efficiency TALEN system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtlylsr3K&md5=cba1c1cbc4d239bbd75ddabb77c780f1CAS | 23000899PubMed |

Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y. G., and Chandrasegaran, S. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297.
Stimulation of homologous recombination through targeted cleavage by chimeric nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXptVSi&md5=6de75dd7470f153688d174e4c41f4287CAS | 11113203PubMed |

Bibikova, M., Beumer, K., Trautman, J. K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.
Enhancing gene targeting with designed zinc finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVymsrk%3D&md5=8c3e230de9b46e84520c93a52db2da27CAS | 12730594PubMed |

Blomberg, L. A., and Telugu, B. P. (2012). Twenty years of embryonic stem cell research in farm animals. Reprod. Domest. Anim. 47, 80–85.
Twenty years of embryonic stem cell research in farm animals.Crossref | GoogleScholarGoogle Scholar | 22827354PubMed |

Boch, J., and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol. 48, 419–436.
Xanthomonas AvrBs3 family-type III effectors: discovery and function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Wgt7zN&md5=71e88f38605af3621e23998019602e59CAS | 19400638PubMed |

Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512.
Breaking the code of DNA binding specificity of TAL-type III effectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFensbnL&md5=2a06d92713b08e9dfecfc1fbac722653CAS | 19933107PubMed |

Bovine Genome Sequencing and Analysis Consortium (2009). The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522–528.
The genome sequence of taurine cattle: a window to ruminant biology and evolution.Crossref | GoogleScholarGoogle Scholar | 19390049PubMed |

Bradley, A., Evans, M., Kaufman, M. H., and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256.
Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c7ptFGntQ%3D%3D&md5=9e52c712ac0497b8a038f10d2152259cCAS | 6717601PubMed |

Brinster, R. L., Chen, H. Y., Trumbauer, M., Senear, A. W., Warren, R., and Palmiter, R. D. (1981). Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231.
Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XpvVGrug%3D%3D&md5=68929f8ae0f18bb93bcf2b7c637f775aCAS | 6276022PubMed |

Brinster, R. L., Sandgren, E. P., Behringer, R. R., and Palmiter, R. D. (1989). No simple solution for making transgenic mice. Cell 59, 239–241.
No simple solution for making transgenic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXmt1Knt7c%3D&md5=b586b29c97598cd23d69e3cf5f7deee4CAS | 2805065PubMed |

Cabot, R. A., Kuhholzer, B., Chan, A. W., Lai, L., Park, K. W., Chong, K. Y., Schatten, G., Murphy, C. N., Abeydeera, L. R., Day, B. N., and Prather, R. S. (2001). Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim. Biotechnol. 12, 205–214.
Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntFSrtg%3D%3D&md5=65499d62d622af1e4eafe67e10b4011dCAS | 11808636PubMed |

Capecchi, M. R. (1980). High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488.
High efficiency transformation by direct microinjection of DNA into cultured mammalian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSlsQ%3D%3D&md5=a049785407f278c197c39e7c0f00d8dcCAS | 6256082PubMed |

Capecchi, M. R. (1989a). Altering the genome by homologous recombination. Science 244, 1288–1292.
Altering the genome by homologous recombination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFWhtLg%3D&md5=f34d0c8e3dde1dc20a44fcb33737ca02CAS | 2660260PubMed |

Capecchi, M. R. (1989b). The new mouse genetics: altering the genome by gene targeting. Trends Genet. 5, 70–76.
The new mouse genetics: altering the genome by gene targeting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXltFSjsbs%3D&md5=cad9434be07aab179258b50396cb485bCAS | 2660363PubMed |

Carbery, I. D., Ji, D., Harrington, A., Brown, V., Weinstein, E. J., Liaw, L., and Cui, X. (2010). Targeted genome modification in mice using zinc-finger nucleases. Genetics 186, 451–459.
Targeted genome modification in mice using zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOnt7rI&md5=602f0fd7576ae0648071ca6ee4a1d63eCAS | 20628038PubMed |

Carlson, D. F., Geurts, A. M., Garbe, J. R., Park, C. W., Rangel-Filho, A., O'Grady, S. M., Jacob, H. J., Steer, C. J., Largaespada, D. A., and Fahrenkrug, S. C. (2011). Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition. Transgenic Res. 20, 29–45.
Efficient mammalian germline transgenesis by cis-enhanced Sleeping Beauty transposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVyltA%3D%3D&md5=4fb343b500a13efa691b4391241eb53dCAS | 20352328PubMed |

Carlson, D. F., Tan, W., Lillico, S. G., Stverakova, D., Proudfoot, C., Christian, M., Voytas, D. F., Long, C. R., Whitelaw, C. B., and Fahrenkrug, S. C. (2012). Efficient TALEN-mediated gene knockout in livestock. Proc. Natl Acad. Sci. USA 109, 17 382–17 387.
Efficient TALEN-mediated gene knockout in livestock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVSltL3K&md5=9a590acd829e9cef0f8f3681ceb410b2CAS |

Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia, N. V., Bogdanove, A. J., and Voytas, D. F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82.
Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslOgtLo%3D&md5=c6557aa1c44b3b47d48fe1b4be5d0577CAS | 21493687PubMed |

Chang, N., Sun, C., Gao, L., Zhu, D., Xu, X., Zhu, X., Xiong, J. W., and Xi, J. J. (2013). Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res. 23, 465–472.
Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXltFCms7o%3D&md5=4901d1838272b28bed64769efeb6d912CAS | 23528705PubMed |

Cho, S. W., Kim, S., Kim, J. M., and Kim, J. S. (2013). Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232.
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFGhsL8%3D&md5=2c9fefbcd824152b504df2b8f3cdda89CAS | 23360966PubMed |

Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A. J., and Voytas, D. F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757–761.
Targeting DNA double-strand breaks with TAL effector nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFOnt7jP&md5=eeb1dc8312095bc6c866f307926707b5CAS | 20660643PubMed |

Clark, K. J., Carlson, D. F., Foster, L. K., Kong, B. W., Foster, D. N., and Fahrenkrug, S. C. (2007). Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol. 7, 42.
Enzymatic engineering of the porcine genome with transposons and recombinases.Crossref | GoogleScholarGoogle Scholar | 17640337PubMed |

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., and Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823.
Multiplex genome engineering using CRISPR/Cas systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ygtb8%3D&md5=bfb896966bdef22e8769c945e82f3528CAS | 23287718PubMed |

Cui, Z., Yang, Y., Kaufman, C. D., Agalliu, D., and Hackett, P. B. (2003). RecA-mediated, targeted mutagenesis in zebrafish. Mar. Biotechnol.) 5, 174–184.
RecA-mediated, targeted mutagenesis in zebrafish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvVersL0%3D&md5=b47e881a60ba80dc430d913b563acdd5CAS | 12876654PubMed |

Dahlem, T. J., Hoshijima, K., Jurynec, M. J., Gunther, D., Starker, C. G., Locke, A. S., Weis, A. M., Voytas, D. F., and Grunwald, D. J. (2012). Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 8, e1002861.
Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1CnsLfI&md5=13b573228cda3ae1f0eefcc147d0d0e3CAS | 22916025PubMed |

Dalloul, R. A., Long, J. A., Zimin, A. V., Aslam, L., Beal, K., Blomberg, L. A., Bouffard, P., Burt, D. W., Crasta, O., Crooijmans, R. P. M. A., et al. (2010). Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol. 8, e1000475.
Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis.Crossref | GoogleScholarGoogle Scholar | 20838655PubMed |

Deng, Y., Liu, Q., Luo, C., Chen, S., Li, X., Wang, C., Liu, Z., Lei, X., Zhang, H., Sun, H., Lu, F., Jiang, J., and Shi, D. (2012). Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors. Stem Cells Dev. 21, 2485–2494.
Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1yntr%2FL&md5=e05e4db4aeae130fea8fde960449e5a3CAS | 22420535PubMed |

Desjarlais, J. R., and Berg, J. M. (1993). Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc. Natl Acad. Sci. USA 90, 2256–2260.
Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXksVCmu74%3D&md5=1906c0403d6f12aa8b3a0fd83d097bcfCAS | 8460130PubMed |

Dong, Y., Xie, M., Jiang, Y., Xiao, N., Du, X., Zhang, W., Tosser-Klopp, G., Wang, J., Yang, S., Liang, J., Chen, W., Chen, J., Zeng, P., Hou, Y., Bian, C., Pan, S., Li, Y., Liu, X., Wang, W., Servin, B., Sayre, B., Zhu, B., Sweeney, D., Moore, R., Nie, W., Shen, Y., Zhao, R., Zhang, G., Li, J., Faraut, T., Womack, J., Zhang, Y., Kijas, J., Cockett, N., Xu, X., Zhao, S., Wang, J., and Wang, W. (2013). Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31, 135–141.
Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVOqs73F&md5=76f3809806161f76dfaac60be9ec1a0dCAS | 23263233PubMed |

Dupuy, A. J., Clark, K., Carlson, C. M., Fritz, S., Davidson, A. E., Markley, K. M., Finley, K., Fletcher, C. F., Ekker, S. C., Hackett, P. B., Horn, S., and Largaespada, D. A. (2002). Mammalian germ-line transgenesis by transposition. Proc. Natl Acad. Sci. USA 99, 4495–4499.
Mammalian germ-line transgenesis by transposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFShtbk%3D&md5=14e5a079e1aa4efad24109e654182c11CAS | 11904379PubMed |

Esteban, M. A., Xu, J., Yang, J., Peng, M., Qin, D., Li, W., Jiang, Z., Chen, J., Deng, K., Zhong, M., Cai, J., Lai, L., and Pei, D. (2009). Generation of induced pluripotent stem cell lines from tibetan miniature pig. J. Biol. Chem. 284, 17 634–17 640.
Generation of induced pluripotent stem cell lines from tibetan miniature pig.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVWks7g%3D&md5=574b3935a965fbf2fe69f6f30914bceaCAS |

Esteban, M. A., Peng, M., Deli, Z., Cai, J., Yang, J., Xu, J., Lai, L., and Pei, D. (2010). Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life 62, 277–282.
| 1:CAS:528:DC%2BC3cXktVCkt7s%3D&md5=9c0ee94c4a7e338ca6555b4698c5691aCAS | 20101630PubMed |

Evans, M. J. (2001). The cultural mouse. Nat. Med. 7, 1081–1083.
The cultural mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns12ksLs%3D&md5=8333096086e3c6527f489b34dae40fbcCAS | 11590418PubMed |

Evans, M. J., Bradley, A., Kuehn, M. R., and Robertson, E. J. (1985). The ability of EK cells to form chimeras after selection of clones in G418 and some o bservations on the integration of retroviral vector proviral DNA into EK cells. Cold Spring Harb. Symp. Quant. Biol. 50, 685–689.
| 1:CAS:528:DyaL28XkvFans7o%3D&md5=3e6a16be7935e8448b0c0aa97753368aCAS | 3868502PubMed |

Ezashi, T., Telugu, B. P., Alexenko, A. P., Sachdev, S., Sinha, S., and Roberts, R. M. (2009). Derivation of induced pluripotent stem cells from pig somatic cells. Proc. Natl Acad. Sci. USA 106, 10 993–10 998.
Derivation of induced pluripotent stem cells from pig somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVSnur0%3D&md5=8ec1e467ca65c0d0c23ee27fdb6712bfCAS |

Ezashi, T., Telugu, B. P., and Roberts, R. M. (2012). Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reprod. Domest. Anim. 47, 92–97.
Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells?Crossref | GoogleScholarGoogle Scholar | 22827356PubMed |

Fan, N., Chen, J., Shang, Z., Dou, H., Ji, G., Zou, Q., Wu, L., He, L., Wang, F., Liu, K., Liu, N., Han, J., Zhou, Q., Pan, D., Yang, D., Zhao, B., Ouyang, Z., Liu, Z., Zhao, Y., Lin, L., Zhong, C., Wang, Q., Wang, S., Xu, Y., Luan, J., Liang, Y., Yang, Z., Li, J., Lu, C., Vajta, G., Li, Z., Ouyang, H., Wang, H., Wang, Y., Yang, Y., Liu, Z., Wei, H., Luan, Z., Esteban, M. A., Deng, H., Yang, H., Pei, D., Li, N., Pei, G., Liu, L., Du, Y., Xiao, L., and Lai, L. (2013). Piglets cloned from induced pluripotent stem cells. Cell Res. 23, 162–166.
Piglets cloned from induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjslSqtQ%3D%3D&md5=4cc7eea82bb9b86a5dbb73eabe63c91bCAS | 23247628PubMed |

Federspiel, M. J., and Hughes, S. H. (1997). Retroviral gene delivery. Methods Cell Biol. 52, 179–214.
Retroviral gene delivery.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFagurc%3D&md5=ba3c6d38b7981e07901c80ec5c74a5a1CAS | 9379950PubMed |

Feschotte, C., and Pritham, E. J. (2007). DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41, 331–368.
DNA transposons and the evolution of eukaryotic genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXns1Sisw%3D%3D&md5=812af282682e89233d43964ac95e61d8CAS | 18076328PubMed |

Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., and Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells. Nat. Biotechnol. , .
High-frequency off-target mutagenesis induced by CRISPR–Cas nucleases in human cells.Crossref | GoogleScholarGoogle Scholar | 23792628PubMed |

Gandolfi, F. (2000). Sperm-mediated transgenesis. Theriogenology 53, 127–137.
Sperm-mediated transgenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvV2jsA%3D%3D&md5=9c2695e0f050a672a4f55af0d07a32daCAS | 10735068PubMed |

Garrels, W., Mátés, L., Holler, S., Dalda, A., Taylor, U., Petersen, B., Niemann, H., Izsvák, Z., Ivics, Z., and Kues, W. A. (2011). Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome. PLoS ONE 6, e23573.
Germline transgenic pigs by Sleeping Beauty transposition in porcine zygotes and targeted integration in the pig genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Sqt7fM&md5=bd355e7493bcbe8af8a584fd1efba886CAS | 21897845PubMed |

Garrels, W., Ivics, Z., and Kues, W. A. (2012). Precision genetic engineering in large mammals. Trends Biotechnol. 30, 386–393.
Precision genetic engineering in large mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvFyktr4%3D&md5=2015375d84484e54b82122567c74d404CAS | 22521716PubMed |

Gordon, J. W., Scangos, G. A., Plotkin, D. J., Barbosa, J. A., and Ruddle, F. H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl Acad. Sci. USA 77, 7380–7384.
Genetic transformation of mouse embryos by microinjection of purified DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtVSmtbk%3D&md5=67e2b8541304c755d61f59dbcd9ee84fCAS | 6261253PubMed |

Graessmann, A., Graessmann, M., Topp, W. C., and Botchan, M. (1979). Retransformation of a simian virus 40 revertant cell line, which is resistant to viral and DNA infections, by microinjection of viral DNA. J. Virol. 32, 989–994.
| 1:CAS:528:DyaL3cXptVOlsA%3D%3D&md5=4cd12025c2dbb10d299650c57116d20dCAS | 229275PubMed |

Groenen, M. A. M., Archibald, A. L., Uenishi, H., Tuggle, C. K., Takeuchi, Y., Rothschild, M. F., Rogel-Gaillard, C., Park, C., Milan, D., Megens, H.-J., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491, 393–398.
Analyses of pig genomes provide insight into porcine demography and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Ogs7rF&md5=f2b68a92502cff47607530b489c30ef0CAS |

Hackett, P. B., Ekker, S. C., Largaespada, D. A., and McIvor, R. S. (2005). Sleeping beauty transposon-mediated gene therapy for prolonged expression. Adv. Genet. 54, 189–232.
Sleeping beauty transposon-mediated gene therapy for prolonged expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXivFWrt7k%3D&md5=14dee97751f804bb80c56183ace3c2c0CAS | 16096013PubMed |

Hall, V. J., Kristensen, M., Rasmussen, M. A., Ujhelly, O., Dinnyes, A., and Hyttel, P. (2012). Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells. Cell. Reprogram. 14, 204–216.
Temporal repression of endogenous pluripotency genes during reprogramming of porcine induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XotlCgtb0%3D&md5=5ce337fbf8c53f34e02a5f8c01aff30aCAS | 22578162PubMed |

Hammer, R. E., Pursel, V. G., Rexroad, C. E., Wall, R. J., Bolt, D. J., Ebert, K. M., Palmiter, R. D., and Brinster, R. L. (1985). Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683.
Production of transgenic rabbits, sheep and pigs by microinjection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXkvF2lsLs%3D&md5=3aa773781aae75385acf9f84f1db6094CAS | 3892305PubMed |

Hofmann, A., Kessler, B., Ewerling, S., Weppert, M., Vogg, B., Ludwig, H., Stojkovic, M., Boelhauve, M., Brem, G., Wolf, E., and Pfeifer, A. (2003). Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep. 4, 1054–1058.
Efficient transgenesis in farm animals by lentiviral vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXosFajtLs%3D&md5=c6a96130c926c51a7742d42e86d107e6CAS | 14566324PubMed |

Horvath, P., and Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170.
CRISPR/Cas, the immune system of bacteria and archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1eguw%3D%3D&md5=68a003400ecaa94b1fe7ad71eeecf212CAS | 20056882PubMed |

Huang, B., Li, T., Alonso-Gonzalez, L., Gorre, R., Keatley, S., Green, A., Turner, P., Kallingappa, P. K., Verma, V., and Oback, B. (2011). A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 6, e24501.
A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1alur7L&md5=567ec24adb2f6e3c8687cfd0925f4b38CAS | 21912700PubMed |

Hwang, W. Y., Fu, Y., Reyon, D., Maeder, M. L., Tsai, S. Q., Sander, J. D., Peterson, R. T., Yeh, J. R., and Joung, J. K. (2013). Efficient genome editing in zebrafish using a CRISPR–Cas system. Nat. Biotechnol. 31, 227–229.
Efficient genome editing in zebrafish using a CRISPR–Cas system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFCkurk%3D&md5=cee3265c853ca0ddfc4b4ee38b213123CAS | 23360964PubMed |

Jaenisch, R. (1976). Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proc. Natl Acad. Sci. USA 73, 1260–1264.
Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287ns1CksQ%3D%3D&md5=c84fbde45bfa59f3877ed980504a50d9CAS | 1063407PubMed |

Jähner, D., Haase, K., Mulligan, R., and Jaenisch, R. (1985). Insertion of the bacterial gpt gene into the germ line of mice by retroviral infection. Proc. Natl Acad. Sci. USA 82, 6927–6931.
Insertion of the bacterial gpt gene into the germ line of mice by retroviral infection.Crossref | GoogleScholarGoogle Scholar | 2413448PubMed |

Jamieson, A. C., Wang, H., and Kim, S. H. (1996). A zinc finger directory for high-affinity DNA recognition. Proc. Natl Acad. Sci. USA 93, 12 834–12 839.
A zinc finger directory for high-affinity DNA recognition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvV2ls7g%3D&md5=dccc21f1ed3b0ca5d7ec28ad00bec38bCAS |

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., and Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821.
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOqsb3L&md5=00dfe3d82f6f6bc7955e77317a7c2a37CAS | 22745249PubMed |

Katter, K., Geurts, A. M., Hoffmann, O., Mates, L., Landa, V., Hiripi, L., Moreno, C., Lazar, J., Bashir, S., Zidek, V., Popova, E., Jerchow, B., Becker, K., Devaraj, A., Walter, I., Grzybowksi, M., Corbett, M., Filho, A. R., Hodges, M. R., Bader, M., Ivics, Z., Jacob, H. J., Pravenec, M., Bosze, Z., Rulicke, T., and Izsvak, Z. (2013). Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J. 27, 930–941.
Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjvVOqtro%3D&md5=8146f59610787651a05b09dbada5b923CAS | 23195032PubMed |

Kim, Y. G., Cha, J., and Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl Acad. Sci. USA 93, 1156–1160.
Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xptl2luw%3D%3D&md5=5af4a47a4db22d8a2f7e364c920e392fCAS | 8577732PubMed |

Kim, Y., Kweon, J., Kim, A., Chon, J. K., Yoo, J. Y., Kim, H. J., Kim, S., Lee, C., Jeong, E., Chung, E., Kim, D., Lee, M. S., Go, E. M., Song, H. J., Kim, H., Cho, N., Bang, D., Kim, S., and Kim, J. S. (2013). A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31, 251–258.
A library of TAL effector nucleases spanning the human genome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlKksbs%3D&md5=9b8e4ed868250228852a52e623c89884CAS | 23417094PubMed |

Klug, A. (2010). The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231.
The discovery of zinc fingers and their applications in gene regulation and genome manipulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpslShsbc%3D&md5=fa4cd79885707e80a174415bf3de0d52CAS | 20192761PubMed |

Kong, B. W., Carlson, D. F., Fahrenkrug, S. C., and Foster, D. N. (2008). Application of the Sleeping Beauty transposon system to avian cells. Anim. Genet. 39, 180–186.
Application of the Sleeping Beauty transposon system to avian cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltlWhsL0%3D&md5=11dcbf805adea3ad9407cc7963ab3b10CAS | 18318790PubMed |

Kroll, K. L., and Amaya, E. (1996). Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173–3183.
| 1:CAS:528:DyaK28Xms1Ogs78%3D&md5=3f6d5dd406a51896efce9461a22e1055CAS | 8898230PubMed |

Kucherlapati, R. S., Eves, E. M., Song, K. Y., Morse, B. S., and Smithies, O. (1984). Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc. Natl Acad. Sci. USA 81, 3153–3157.
Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlt1Cis7g%3D&md5=d5c4960a5648ca16fea503919cebe61eCAS | 6328502PubMed |

Kues, W. A., and Niemann, H. (2011). Advances in farm animal transgenesis. Prev. Vet. Med. 102, 146–156.
Advances in farm animal transgenesis.Crossref | GoogleScholarGoogle Scholar | 21601297PubMed |

Laible, G. (2009). Enhancing livestock through genetic engineering: recent advances and future prospects. Comp. Immunol. Microbiol. Infect. Dis. 32, 123–137.
Enhancing livestock through genetic engineering: recent advances and future prospects.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7ht1WntQ%3D%3D&md5=551a7a64a37a52b1ef00012954206e1eCAS | 18243310PubMed |

Lam, K. N., van Bakel, H., Cote, A. G., van der Ven, A., and Hughes, T. R. (2011). Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays. Nucleic Acids Res. 39, 4680–4690.
Sequence specificity is obtained from the majority of modular C2H2 zinc-finger arrays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvVKnsLw%3D&md5=874f9f64387ac6c2bdd69ed8d385e42eCAS | 21321018PubMed |

Lavitrano, M., Forni, M., Varzi, V., Pucci, L., Bacci, M. L., Di Stefano, C., Fioretti, D., Zoraqi, G., Moioli, B., Rossi, M., Lazzereschi, D., Stoppacciaro, A., Seren, E., Alfani, D., Cortesini, R., and Frati, L. (1997). Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation. Transplant. Proc. 29, 3508–3509.
Sperm-mediated gene transfer: production of pigs transgenic for a human regulator of complement activation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1aktg%3D%3D&md5=0877fea16afa3289a257d60a6210c98aCAS | 9414813PubMed |

Lavitrano, M., Busnelli, M., Cerrito, M. G., Giovannoni, R., Manzini, S., and Vargiolu, A. (2006). Sperm-mediated gene transfer. Reprod. Fertil. Dev. 18, 19–23.
Sperm-mediated gene transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlanu7vJ&md5=948a07ebe282fffb6ad3caac9ef15b06CAS | 16478599PubMed |

Li, M., Zhang, D., Hou, Y., Jiao, L., Zheng, X., and Wang, W. H. (2003). Isolation and culture of embryonic stem cells from porcine blastocysts. Mol. Reprod. Dev. 65, 429–434.
Isolation and culture of embryonic stem cells from porcine blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlsVKqu70%3D&md5=df2845a947d00a272df76e81e4daa221CAS | 12840816PubMed |

Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P., and Yang, B. (2011). TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 39, 359–372.
TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain.Crossref | GoogleScholarGoogle Scholar | 20699274PubMed |

Liu, H., Zhu, F., Yong, J., Zhang, P., Hou, P., Li, H., Jiang, W., Cai, J., Liu, M., Cui, K., Qu, X., Xiang, T., Lu, D., Chi, X., Gao, G., Ji, W., Ding, M., and Deng, H. (2008). Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell 3, 587–590.
Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCqsLjN&md5=2fb9fa73f4bb227b6f3809004e55ca70CAS | 19041774PubMed |

Liu, J., Balehosur, D., Murray, B., Kelly, J. M., Sumer, H., and Verma, P. J. (2012). Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77, 338–46e1.
Generation and characterization of reprogrammed sheep induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1WjtQ%3D%3D&md5=6557d89b56f1459b345e2ebd72d59f3aCAS | 21958637PubMed |

Luciw, P. A., Bishop, J. M., Varmus, H. E., and Capecchi, M. R. (1983). Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA. Cell 33, 705–716.
Location and function of retroviral and SV40 sequences that enhance biochemical transformation after microinjection of DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXltFKqurY%3D&md5=3990bd8bb833388812fd558ab90fcd9fCAS | 6307525PubMed |

Lyall, J., Irvine, R. M., Sherman, A., McKinley, T. J., Nunez, A., Purdie, A., Outtrim, L., Brown, I. H., Rolleston-Smith, G., Sang, H., and Tiley, L. (2011). Suppression of avian influenza transmission in genetically modified chickens. Science 331, 223–226.
Suppression of avian influenza transmission in genetically modified chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjslSjtA%3D%3D&md5=b674c4dfd86b9b41b378ac524382c934CAS | 21233391PubMed |

Maeder, M. L., Thibodeau-Beganny, S., Osiak, A., Wright, D. A., Anthony, R. M., Eichtinger, M., Jiang, T., Foley, J. E., Winfrey, R. J., Townsend, J. A., Unger-Wallace, E., Sander, J. D., Muller-Lerch, F., Fu, F., Pearlberg, J., Gobel, C., Dassie, J. P., Pruett-Miller, S. M., Porteus, M. H., Sgroi, D. C., Iafrate, A. J., Dobbs, D., McCray, P. B., Cathomen, T., Voytas, D. F., and Joung, J. K. (2008). Rapid ‘open-source’ engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301.
Rapid ‘open-source’ engineering of customized zinc-finger nucleases for highly efficient gene modification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsFOgtb8%3D&md5=c105edbc552c46070798d0b49859eaf2CAS | 18657511PubMed |

Mahfouz, M. M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., and Zhu, J. K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl Acad. Sci. USA 108, 2623–2628.
De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXitFelu74%3D&md5=04d139ac87a21d50389a4d5e390c1b3eCAS | 21262818PubMed |

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., Norville, J. E., and Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826.
RNA-guided human genome engineering via Cas9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXit1ygtb0%3D&md5=feea56dec344455680094f0d1bd3542fCAS | 23287722PubMed |

Meyer, M., de Angelis, M. H., Wurst, W., and Kuhn, R. (2010). Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl Acad. Sci. USA 107, 15 022–15 026.
Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSmt7vP&md5=14bcef5e8978c333389c409007c63805CAS |

Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., Hinkley, S. J., Dulay, G. P., Hua, K. L., Ankoudinova, I., Cost, G. J., Urnov, F. D., Zhang, H. S., Holmes, M. C., Zhang, L., Gregory, P. D., and Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148.
A TALE nuclease architecture for efficient genome editing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1WisrvI&md5=22cb081cd903a6b6093bd13eef3227a7CAS | 21179091PubMed |

Moehle, E. A., Rock, J. M., Lee, Y. L., Jouvenot, Y., DeKelver, R. C., Gregory, P. D., Urnov, F. D., and Holmes, M. C. (2007). Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc. Natl Acad. Sci. USA 104, 3055–3060.
Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtVWls74%3D&md5=e281469d2c7b74c039a131598cdecfacCAS | 17360608PubMed |

Montserrat, N., Garreta, E., Gonzalez, F., Gutierrez, J., Eguizabal, C., Ramos, V., Borros, S., and Izpisua Belmonte, J. C. (2011). Simple generation of human induced pluripotent stem cells using poly-beta-amino esters as the non-viral gene delivery system. J. Biol. Chem. 286, 12 417–12 428.
Simple generation of human induced pluripotent stem cells using poly-beta-amino esters as the non-viral gene delivery system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktVKqu7k%3D&md5=9ec88ffd1493873778a40c231ee1f111CAS |

Montserrat, N., de Onate, L., Garreta, E., Gonzalez, F., Adamo, A., Eguizabal, C., Hafner, S., Vassena, R., and Izpisua Belmonte, J. C. (2012). Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant. 21, 815–825.
Generation of feeder-free pig induced pluripotent stem cells without Pou5f1.Crossref | GoogleScholarGoogle Scholar | 21944493PubMed |

Morbitzer, R., Elsaesser, J., Hausner, J., and Lahaye, T. (2011). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. 39, 5790–5799.
Assembly of custom TALE-type DNA binding domains by modular cloning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptlOqu7c%3D&md5=9e124d7516acae51a36be9391bea0c7bCAS | 21421566PubMed |

Moscou, M. J., and Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501.
A simple cipher governs DNA recognition by TAL effectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFensbjP&md5=eafed71ce9624e3e073a299ecdfb6b0fCAS | 19933106PubMed |

Nagy, K., Sung, H. K., Zhang, P., Laflamme, S., Vincent, P., Agha-Mohammadi, S., Woltjen, K., Monetti, C., Michael, I. P., Smith, L. C., and Nagy, A. (2011). Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev. 7, 693–702.
Induced pluripotent stem cell lines derived from equine fibroblasts.Crossref | GoogleScholarGoogle Scholar | 21347602PubMed |

Ni, J., Clark, K. J., Fahrenkrug, S. C., and Ekker, S. C. (2008). Transposon tools hopping in vertebrates. Brief. Funct. Genomic. Proteomic. 7, 444–453.
Transposon tools hopping in vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXotVymtA%3D%3D&md5=afde7359cac8290dd438b39c461ecef2CAS | 19109308PubMed |

Niemann, H. (2004). Transgenic pigs expressing plant genes. Proc. Natl Acad. Sci. USA 101, 7211–7212.
Transgenic pigs expressing plant genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksFaksr8%3D&md5=c7daa772ad05d383ad7ddc25ed2f7e70CAS | 15128943PubMed |

Notarianni, E., Laurie, S., Moor, R. M., and Evans, M. J. (1990). Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J. Reprod. Fertil. Suppl. 41, 51–56.
| 1:STN:280:DyaK3M%2Fht1emtw%3D%3D&md5=01bc971c6615c9935af8f332db50fffbCAS | 2213715PubMed |

Notarianni, E., Galli, C., Laurie, S., Moor, R. M., and Evans, M. J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. J. Reprod. Fertil. Suppl. 43, 255–260.
| 1:STN:280:DyaK3s7ktVSrsg%3D%3D&md5=755a68294ed4a8bc1a729a2b8615791bCAS | 1843344PubMed |

Park, T. S., and Han, J. Y. (2012). piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc. Natl Acad. Sci. USA 109, 9337–9341.
piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xptlaiurw%3D&md5=8d8fa06b1371a08a53ab84f1c1ee0088CAS | 22645326PubMed |

Park, K. S., Lee, D. K., Lee, H., Lee, Y., Jang, Y. S., Kim, Y. H., Yang, H. Y., Lee, S. I., Seol, W., and Kim, J. S. (2003). Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21, 1208–1214.
Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Clsbo%3D&md5=d3c878446bcd7e12cde291fc787fca1dCAS | 12960965PubMed |

Perry, A. C., Wakayama, T., Kishikawa, H., Kasai, T., Okabe, M., Toyoda, Y., and Yanagimachi, R. (1999). Mammalian transgenesis by intracytoplasmic sperm injection. Science 284, 1180–1183.
Mammalian transgenesis by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjtlajsbk%3D&md5=dde2fb89af1b151d18050b19235f8872CAS | 10325231PubMed |

Piedrahita, J. A., Anderson, G. B., and Bondurant, R. H. (1990). On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos. Theriogenology 34, 879–901.
On the isolation of embryonic stem cells: comparative behavior of murine, porcine and ovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD283pvFKmsQ%3D%3D&md5=3c0b030d0ce78a8fd0816783307c53a3CAS | 16726890PubMed |

Plasterk, R. H., Izsvak, Z., and Ivics, Z. (1999). Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332.
Resident aliens: the Tc1/mariner superfamily of transposable elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltVelsLs%3D&md5=d8a348ab9640925433420fe8f26fb124CAS | 10431195PubMed |

Porteus, M. H., and Carroll, D. (2005). Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973.
Gene targeting using zinc finger nucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVSrt74%3D&md5=c5d029a61e0d4b66debf51c7e96b3154CAS | 16082368PubMed |

Prather, E. (2006). Decrease the increase. Tex. Med. 102, 31–34.
| 17115573PubMed |

Prather, R. S., Shen, M., and Dai, Y. (2008). Genetically modified pigs for medicine and agriculture. Biotechnol. Genet. Eng. Rev. 25, 245–265.
| 1:CAS:528:DC%2BD1cXhsFCrs7bN&md5=e26cbf14745e94a7c1a3908ebf95d7a8CAS | 21412358PubMed |

Ren, J., Pak, Y., He, L., Qian, L., Gu, Y., Li, H., Rao, L., Liao, J., Cui, C., Xu, X., Zhou, J., Ri, H., and Xiao, L. (2011). Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res. 21, 849–853.
Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVGjtrY%3D&md5=64369fd6034b939cdb06243c97828212CAS | 21403680PubMed |

Reyon, D., Tsai, S. Q., Khayter, C., Foden, J. A., Sander, J. D., and Joung, J. K. (2012). FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460–465.
FLASH assembly of TALENs for high-throughput genome editing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFOhtbc%3D&md5=a4f9b38748bb570dca9086f3f33a6eabCAS | 22484455PubMed |

Robl, J. M., Wang, Z., Kasinathan, P., and Kuroiwa, Y. (2007). Transgenic animal production and animal biotechnology. Theriogenology 67, 127–133.
Transgenic animal production and animal biotechnology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jisVWhuw%3D%3D&md5=edefa593c244503ba646b758b5f2b74fCAS | 17070901PubMed |

Sander, J. D., Reyon, D., Maeder, M. L., Foley, J. E., Thibodeau-Beganny, S., Li, X., Regan, M. R., Dahlborg, E. J., Goodwin, M. J., Fu, F., Voytas, D. F., Joung, J. K., and Dobbs, D. (2010). Predicting success of oligomerized pool engineering (OPEN) for zinc finger target site sequences. BMC Bioinformatics 11, 543.
Predicting success of oligomerized pool engineering (OPEN) for zinc finger target site sequences.Crossref | GoogleScholarGoogle Scholar | 21044337PubMed |

Sander, J. D., Dahlborg, E. J., Goodwin, M. J., Cade, L., Zhang, F., Cifuentes, D., Curtin, S. J., Blackburn, J. S., Thibodeau-Beganny, S., Qi, Y., Pierick, C. J., Hoffman, E., Maeder, M. L., Khayter, C., Reyon, D., Dobbs, D., Langenau, D. M., Stupar, R. M., Giraldez, A. J., Voytas, D. F., Peterson, R. T., Yeh, J. R., and Joung, J. K. (2011). Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat. Methods 8, 67–69.
Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGgtrzF&md5=82b88f25eb0a80eac4a5d128b1e5525aCAS | 21151135PubMed |

Shimada, H., Nakada, A., Hashimoto, Y., Shigeno, K., Shionoya, Y., and Nakamura, T. (2010). Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol. Reprod. Dev. 77, 2.
Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVGmtbrP&md5=81d8d27795e475a3d1a966c98da75823CAS | 19890968PubMed |

Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., and Kucherlapati, R. S. (1985). Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230–234.
Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXmtVyjtr8%3D&md5=a3ece6a8399fe1ca8d9d477811d7393fCAS | 2995814PubMed |

Solaiman, F., Zink, M. A., Xu, G., Grunkemeyer, J., Cosgrove, D., Saenz, J., and Hodgson, C. P. (2000). Modular retro-vectors for transgenic and therapeutic use. Mol. Reprod. Dev. 56, 309–315.
Modular retro-vectors for transgenic and therapeutic use.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFyrt7c%3D&md5=c9786122fa6c40b060440e4f14ba6bc1CAS | 10824992PubMed |

Szybalska, E. H., and Szybalski, W. (1962). Genetics of human cess line. IV. DNA-mediated heritable transformation of a biochemical trait. Proc. Natl Acad. Sci. USA 48, 2026–2034.
Genetics of human cess line. IV. DNA-mediated heritable transformation of a biochemical trait.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF387ntFylsw%3D%3D&md5=5f81bc0788ed9bbcc9b14a2d49d815f5CAS | 13980043PubMed |

Tan, W. S., Carlson, D. F., Walton, M. W., Fahrenkrug, S. C., and Hackett, P. B. (2012). Precision editing of large animal genomes. Adv. Genet. 80, 37–97.
Precision editing of large animal genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXns1Omsw%3D%3D&md5=c90cbd71c2ec4448ed89ce20e6c6a2a1CAS | 23084873PubMed |

Telugu, B. P., Ezashi, T., and Roberts, R. M. (2010a). Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse. Int. J. Dev. Biol. 54, 1703–1711.
Porcine induced pluripotent stem cells analogous to naive and primed embryonic stem cells of the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptFClsbg%3D&md5=3b579aeaddbf7ba2ff0642eb73c91ecfCAS | 21305472PubMed |

Telugu, B. P., Ezashi, T., and Roberts, R. M. (2010b). The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev. 6, 31–41.
The promise of stem cell research in pigs and other ungulate species.Crossref | GoogleScholarGoogle Scholar | 19949895PubMed |

Tesson, L., Usal, C., Menoret, S., Leung, E., Niles, B. J., Remy, S., Santiago, Y., Vincent, A. I., Meng, X., Zhang, L., Gregory, P. D., Anegon, I., and Cost, G. J. (2011). Knockout rats generated by embryo microinjection of TALENs. Nat. Biotechnol. 29, 695–696.
Knockout rats generated by embryo microinjection of TALENs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVOlurY%3D&md5=b6c3a3ced7960374a6e9230d1f89b3baCAS | 21822240PubMed |

The International Sheep Genomics Consortium (2010). The sheep genome reference sequence: a work in progress. Anim. Genet. 41, 449–453.
The sheep genome reference sequence: a work in progress.Crossref | GoogleScholarGoogle Scholar | 20809919PubMed |

Thomson, A. J., and McWhir, J. (2004). Biomedical and agricultural applications of animal transgenesis. Mol. Biotechnol. 27, 231–244.
Biomedical and agricultural applications of animal transgenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXms1elsL0%3D&md5=425ecccef632a716cb00a0d0ad8e68ccCAS | 15247496PubMed |

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147.
Embryonic stem cell lines derived from human blastocysts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntleisLg%3D&md5=10226bdf182a21e8fa65b20486124fe9CAS | 9804556PubMed |

van der Putten, H., Botteri, F. M., Miller, A. D., Rosenfeld, M. G., Fan, H., Evans, R. M., and Verma, I. M. (1985). Efficient insertion of genes into the mouse germ line via retroviral vectors. Proc. Natl Acad. Sci. USA 82, 6148–6152.
Efficient insertion of genes into the mouse germ line via retroviral vectors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlslegtLc%3D&md5=830ec0c051acedbffef3e5c62d96818eCAS | 3862122PubMed |

Walsh, A. M., Kortschak, R. D., Gardner, M. G., Bertozzi, T., and Adelson, D. L. (2013). Widespread horizontal transfer of retrotransposons. Proc. Natl Acad. Sci. USA 110, 1012–1016.
Widespread horizontal transfer of retrotransposons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2gsr0%3D&md5=1b185d133bafb9e48460380b8480f6fbCAS | 23277587PubMed |

Wang, H., Yang, H., Shivalila, C. S., Dawlaty, M. M., Cheng, A. W., Zhang, F., and Jaenisch, R. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918.
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmvF2nt7w%3D&md5=b06bd53f8d20d0d7fdead6bbfc2bf0beCAS | 23643243PubMed |

West, F. D., Terlouw, S. L., Kwon, D. J., Mumaw, J. L., Dhara, S. K., Hasneen, K., Dobrinsky, J. R., and Stice, S. L. (2010). Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 19, 1211–1220.
Porcine induced pluripotent stem cells produce chimeric offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVejs77O&md5=639b68ce31808c2713cc8a5a3f4a5993CAS | 20380514PubMed |

Whyte, J. J., and Prather, R. S. (2011). Genetic modifications of pigs for medicine and agriculture. Mol. Reprod. Dev. 78, 879–891.
Genetic modifications of pigs for medicine and agriculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7rK&md5=13da43075cafc8c5df6b657abe905278CAS | 21671302PubMed |

Wiedenheft, B., Sternberg, S. H., and Doudna, J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338.
RNA-guided genetic silencing systems in bacteria and archaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit12jur4%3D&md5=05bbe2d8ce14cec5ddda4c9ca16aa16aCAS | 22337052PubMed |

Wilber, A., Frandsen, J. L., Geurts, J. L., Largaespada, D. A., Hackett, P. B., and McIvor, R. S. (2006). RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Mol. Ther. 13, 625–630.
RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslyktLw%3D&md5=4c1595b8daceee20d0fe302a368d55cbCAS | 16368272PubMed |

Wu, Z., Chen, J., Ren, J., Bao, L., Liao, J., Cui, C., Rao, L., Li, H., Gu, Y., Dai, H., Zhu, H., Teng, X., Cheng, L., and Xiao, L. (2009). Generation of pig induced pluripotent stem cells with a drug-inducible system. J. Mol. Cell. Biol. 1, 46–54.
Generation of pig induced pluripotent stem cells with a drug-inducible system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSisbo%3D&md5=bb617d7a1f5250efdabbf42c2c155d1fCAS | 19502222PubMed |

Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., and Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153.
Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription.Crossref | GoogleScholarGoogle Scholar | 21248753PubMed |