Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expression patterns of mitochondrial OXPHOS components, mitofusin 1 and dynamin-related protein 1 are associated with human embryo fragmentation

Vesna Otasevic A D , Lela Surlan B , Milica Vucetic A , Ivan Tulic B , Biljana Buzadzic A , Ana Stancic A , Aleksandra Jankovic A , Ksenija Velickovic C , Igor Golic C , Milica Markelic C , Aleksandra Korac C and Bato Korac A D
+ Author Affiliations
- Author Affiliations

A University of Belgrade, Department of Physiology, Institute for Biological Research ‘Sinisa Stankovic’, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.

B The Clinic of Gynaecology and Obstetrics, Clinical Centre of Serbia, Koste Todorovica 26, 11000 Belgrade, Serbia.

C University of Belgrade, Faculty of Biology and Centre for Electron Microscopy, Studentski trg 16, 11000 Belgrade, Serbia.

D Corresponding authors. Email: vesna@ibiss.bg.ac.rs; koracb@ibiss.bg.ac.rs

Reproduction, Fertility and Development 28(3) 319-327 https://doi.org/10.1071/RD13415
Submitted: 5 December 2013  Accepted: 23 May 2014   Published: 18 July 2014

Abstract

Developmental dysfunction in embryos, such as a lethal level of fragmentation, is assumed to be mitochondrial in origin. This study investigated the molecular basis of mitochondrial impairment in embryo fragmentation. Transcription patterns of factors that determine mitochondrial functionality: (i) components of the oxidative phosphorylation (OXPHOS) – complex I, cytochrome b, complex IV and ATP synthase; (ii) mitochondrial membrane potential (MMP); (iii) mitochondrial DNA (mtDNA) content and (iv) proteins involved in mitochondrial dynamics, mitofusin 1 (Mfn1) and dynamin related protein 1 (Drp1) were examined in six-cells Day 3 non-fragmented (control), low-fragmented (LF) and high-fragmented (HF) human embryos. Gene expression of mitochondria-encoded components of complex I and IV, cytochrome b and mtDNA were increased in HF embryos compared with control and LF embryos. In LF embryos, expression of these molecules was decreased compared with control and HF embryos. Both classes of fragmented embryos had decreased MMP compared with control. LF embryos had increased gene expression of Mfn1 accompanied by decreased expression of Drp1, while HF embryos had decreased Mfn1 expression but increased Drp1 expression. The study revealed that each improper transcriptional (in)activation of mitochondria-encoded components of the OXPHOS during early in vitro embryo development is associated with a decrease in MMP and with embryo fragmentation. The results also showed the importance of mitochondrial dynamics in fragmentation, at least in the extent of this process.

Additional keywords: in vitro fertilisation, mitochondrial DNA, membrane potential.


References

Acton, B. M., Jurisicova, A., Jurisica, I., and Casper, R. F. (2004). Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol. Hum. Reprod. 10, 23–32.
Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVeltro%3D&md5=17d5b724cac70df9fbe1a0c4d1cc73faCAS | 14665703PubMed |

Agarwal, A., Makker, K., and Sharma, R. (2008). Clinical relevance of oxidative stress in male factor infertility: an update. Am. J. Reprod. Immunol. 59, 2–11.
Clinical relevance of oxidative stress in male factor infertility: an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Wjsbc%3D&md5=88b22c162d5aca71669bdeea43bc31ffCAS | 18154591PubMed |

Balaban, B. (2011). The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum. Reprod. 26, 1270–1283.
The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting.Crossref | GoogleScholarGoogle Scholar |

Casañ, E. M., Raga, F., and Polan, M. L. (1999). GnRH mRNA and protein expression in human preimplantation embryos. Mol. Hum. Reprod. 5, 234–239.
GnRH mRNA and protein expression in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 10333357PubMed |

Chan, C. C., Liu, V. W., Lau, E. Y., Yeung, W. S., Ng, E. H., and Ho, P. C. (2005). Mitochondrial DNA content and 4977-bp deletion in unfertilised oocytes. Mol. Hum. Reprod. 11, 843–846.
Mitochondrial DNA content and 4977-bp deletion in unfertilised oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVektrw%3D&md5=4620e2598ba066b4ec70311154802d3bCAS | 16421213PubMed |

Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., and Chan, D. C. (2003). Mitofusins Mfn1 and Mfn2 co-ordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200.
Mitofusins Mfn1 and Mfn2 co-ordinately regulate mitochondrial fusion and are essential for embryonic development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntVamtQ%3D%3D&md5=6870f46c6093317dd13930cdb6cd3152CAS | 12527753PubMed |

Cummins, J. M. (2002). The role of maternal mitochondria during oogenesis, fertilisation and embryogenesis. Reprod. Biomed. Online 4, 176–182.
The role of maternal mitochondria during oogenesis, fertilisation and embryogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtlyktbY%3D&md5=76ae4ec67a6af36f2462e9ce25157d5dCAS | 12470582PubMed |

Dumollard, R., Ward, Z., Carroll, J., and Duchen, M. R. (2007). Regulation of redox metabolism in the mouse oocyte and embryo. Development 134, 455–465.
Regulation of redox metabolism in the mouse oocyte and embryo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtlWgs7g%3D&md5=2e2987385f3b22b30a23c43045a702a4CAS | 17185319PubMed |

Frank, S., Gaume, B., Bergmann-Leitner, E. S., Leitner, W. W., Robert, E. G., Catez, F., Smith, C. L., and Youle, R. J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515–525.
The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVSntLk%3D&md5=99c83e19b455d147e5bbcda3533bd859CAS | 11703942PubMed |

Fullston, T., Mitchell, M., Wakefield, S., and Lane, M. (2011). Mitochondrial inhibition during preimplantation embryogenesis shifts the transcriptional profile of fetal mouse brain. Reprod. Fertil. Dev. 23, 691–701.
Mitochondrial inhibition during preimplantation embryogenesis shifts the transcriptional profile of fetal mouse brain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWqurg%3D&md5=9aaebea0e2900763dde2f8ef72a6ccd1CAS | 21635818PubMed |

Ge, H., Tollner, T. L., Hu, Z., Dai, M., Li, X., Guan, H., Shan, D., Zhang, X., Lv, J., Huang, C., and Dong, Q. (2012). The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol. Reprod. Dev. 79, 392–401.
The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlsFygu78%3D&md5=0110d5b970f011b6d5ae0e3eb79d9972CAS | 22467220PubMed |

Jurisicova, A., Antenos, M., Varmuza, S., Tilly, J. L., and Casper, R. F. (2003). Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation. Mol. Hum. Reprod. 9, 133–141.
Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjslygtLk%3D&md5=249abd12874de9330cdd2f3799cdd589CAS | 12606589PubMed |

Koshkin, V., Wang, X., Scherer, P. E., Chan, C. B., and Wheeler, M. B. (2003). Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids. J. Biol. Chem. 278, 19709–19715.
Mitochondrial functional state in clonal pancreatic beta-cells exposed to free fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktVaqtr8%3D&md5=2106d21506efbbfbfe875cf15438cfc5CAS | 12642585PubMed |

Krüssel, J. S., Huang, H. Y., Simón, C., Behr, B., Pape, A. R., Wen, Y., Bielfeld, P., and Polan, M. L. (1998). Single blastomeres within human preimplantation embryos express different amounts of messenger ribonucleic acid for beta-actin and interleukin-1 receptor type I. J. Clin. Endocrinol. Metab. 83, 953–959.
| 9506755PubMed |

Lebedeva, M. A., and Shadel, G. S. (2007). Cell cycle- and ribonucleotide reductase-driven changes in mtDNA copy number influence mtDNA inheritance without compromising mitochondrial gene expression. Cell Cycle 6, 2048–2057.
Cell cycle- and ribonucleotide reductase-driven changes in mtDNA copy number influence mtDNA inheritance without compromising mitochondrial gene expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1Sjt7nO&md5=6b6aa1d7777480e079634c7c1057b6eaCAS | 17721079PubMed |

Leese, H. J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 24, 845–849.
Quiet please, do not disturb: a hypothesis of embryo metabolism and viability.Crossref | GoogleScholarGoogle Scholar | 12210521PubMed |

Liu, L., Trimarchi, J. R., and Keefe, D. L. (2000). Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol. Reprod. 62, 1745–1753.
Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsF2hsbg%3D&md5=4118ee63468a18de81ffa897a0972b5eCAS | 10819779PubMed |

McConnell, J. M., and Petrie, L. (2004). Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod. Biomed. Online 9, 418–424.
Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptlKqsLk%3D&md5=c4cd847eb8a3ed7fe5e55aa7fec39da7CAS | 15511342PubMed |

Motta, P. M., Nottola, S. A., Makabe, S., and Heyn, R. (2000). Mitochondrial morphology in human fetal and adult female germ cells. Hum. Reprod. 15, 129–147.
Mitochondrial morphology in human fetal and adult female germ cells.Crossref | GoogleScholarGoogle Scholar | 11041520PubMed |

Nakada, K., Inoue, K., and Hayashi, J. (2001). Interaction theory of mammalian mitochondria. Biochem. Biophys. Res. Commun. 288, 743–746.
Interaction theory of mammalian mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFGisrw%3D&md5=1a9da4a707846df141b2163598f371a0CAS | 11688969PubMed |

Santos, T. A., El Shourbagy, S., and St John, J. C. (2006). Mitochondrial content reflects oocyte variability and fertilisation outcome. Fertil. Steril. 85, 584–591.
Mitochondrial content reflects oocyte variability and fertilisation outcome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjsVChsr0%3D&md5=4452f90dcd3784588fc955885e08c8d7CAS | 16500323PubMed |

Stankov, M. V., Lücke, T., Das, A. M., Schmidt, R. E., and Behrens, G. M. (2010). Mitochondrial DNA depletion and respiratory chain activity in primary human subcutaneous adipocytes treated with nucleoside analogue reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 54, 280–287.
Mitochondrial DNA depletion and respiratory chain activity in primary human subcutaneous adipocytes treated with nucleoside analogue reverse transcriptase inhibitors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Shsrc%3D&md5=67f496ca53022b8b94888ed23a92b959CAS | 19805555PubMed |

Suissa, S., Wang, Z., Poole, J., Wittkopp, S., Feder, J., Shutt, T. E., Wallace, D. C., Shadel, G. S., and Mishmar, D. (2009). Ancient mtDNA genetic variants modulate mtDNA transcription and replication. PLoS Genet. 5, e1000474.
Ancient mtDNA genetic variants modulate mtDNA transcription and replication.Crossref | GoogleScholarGoogle Scholar | 19424428PubMed |

Thouas, G. A., Trounson, A. O., Wolvetang, E. J., and Jones, G. M. (2004). Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro. Biol. Reprod. 71, 1936–1942.
Mitochondrial dysfunction in mouse oocytes results in preimplantation embryo arrest in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWgsr3O&md5=000b57c7c615c5b0515263393018b839CAS | 15286028PubMed |

Van Blerkom, J. (2009). Mitochondria in early mammalian development. Semin. Cell Dev. Biol. 20, 354–364.
Mitochondria in early mammalian development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVCmsLs%3D&md5=de77495b8e71488ea676f3d940b6a2a1CAS | 19136067PubMed |

Van Blerkom, J. (2013). Mitochondrial activity as a biomarker of gamete and embryo health. In ‘Human Gametes and Preimplantation Embryos: Assessment and Diagnosis’. (Eds D. K. Gardner, D. Sakkas, E. Seli and D. Wells.) pp. 239–257. (Springer Science+Business Media: New York.)

Van Blerkom, J., and Davis, P. (2007). Mitochondrial signalling and fertilisation. Mol. Hum. Reprod. 13, 759–770.
Mitochondrial signalling and fertilisation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqtr3O&md5=d6390b4761031607981c812044f532fcCAS | 17893093PubMed |

Van Blerkom, J., Davis, P. W., and Lee, J. (1995). ATP content of human oocytes and developmental potential and outcome after in vitro fertilisation and embryo transfer. Hum. Reprod. 10, 415–424.
| 1:STN:280:DyaK2M3os1OrtQ%3D%3D&md5=6f576716de000bfff8a2b444665f7ecdCAS | 7769073PubMed |

Van Blerkom, J., Davis, P., and Alexander, S. (2001). A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos. Hum. Reprod. 16, 719–729.
A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFSisrw%3D&md5=1909dbb2879faed10f0438a6a183054eCAS | 11278225PubMed |

Van Blerkom, J., Davis, P., Mathwig, V., and Alexander, S. (2002). Domains of high-polarised and low-polarised mitochondria may occur in mouse and human oocytes and early embryos. Hum. Reprod. 17, 393–406.
Domains of high-polarised and low-polarised mitochondria may occur in mouse and human oocytes and early embryos.Crossref | GoogleScholarGoogle Scholar | 11821285PubMed |

Vucetic, M., Otasevic, V., Korac, A., Stancic, A., Jankovic, A., Markelic, M., Golic, I., Velickovic, K., Buzadzic, B., and Korac, B. (2011). Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: interplay of HIF-1α and AMPKα. Biochim. Biophys. Acta 1810, 1252–1261.
Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: interplay of HIF-1α and AMPKα.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVKmtbbF&md5=dd7ae543aab3b4b256d0f5de2d4f0c79CAS | 21945600PubMed |

Wakefield, S. L., Lane, M., and Mitchell, M. (2011). Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse. Biol. Reprod. 84, 572–580.
Impaired mitochondrial function in the preimplantation embryo perturbs fetal and placental development in the mouse.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXis1OmtL4%3D&md5=1ab689868b092c1927297cb961f72c89CAS | 21076083PubMed |

Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M. L., Lombardi, L., and De Placido, G. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–917.
Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitlCktw%3D%3D&md5=28a2f1933a57fc514ea61945cd77e83eCAS | 11331637PubMed |

Xu, J., Nie, H. G., Zhang, X. D., Tian, Y., and Yu, B. (2011). Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty-acid metabolism in viral cardiomyopathy mouse heart. Mol. Biol. Rep. 38, 4007–4013.
Down-regulated energy metabolism genes associated with mitochondria oxidative phosphorylation and fatty-acid metabolism in viral cardiomyopathy mouse heart.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsVChu7Y%3D&md5=e05461311f7c1520b5a62edff48c468dCAS | 21127995PubMed |

Yechoor, V. K., Patti, M. E., Saccone, R., and Kahn, C. R. (2002). Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. Proc. Natl. Acad. Sci. USA 99, 10 587–10 592.
Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xmt1ChsLg%3D&md5=c27e67c331a2468c29dc799500213a27CAS |

Zeng, H. T., Ren, Z., Yeung, W. S., Shu, Y. M., Xu, Y. W., Zhuang, G. L., and Liang, X. Y. (2007). Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro-matured human oocytes. Hum. Reprod. 22, 1681–1686.
Low mitochondrial DNA and ATP contents contribute to the absence of birefringent spindle imaged with PolScope in in vitro-matured human oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXot1ejtL0%3D&md5=6ce6e465347f40947ac47c9481cd1fd6CAS | 17449512PubMed |