Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Oncostatin M and leukaemia inhibitory factor trigger signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 pathways but result in heterogeneous cellular responses in trophoblast cells

Wittaya Chaiwangyen A , Stephanie Ospina-Prieto A , Diana M. Morales-Prieto A , Francisco Lazaro Pereira de Sousa A , Jana Pastuschek A , Justine S. Fitzgerald A , Ekkehard Schleussner A and Udo R. Markert A B
+ Author Affiliations
- Author Affiliations

A Placenta-Lab, Department of Obstetrics, University Hospital Jena, Bachstrasse 18, 07743 Jena, Germany.

B Corresponding author. Email: markert@med.uni-jena.de

Reproduction, Fertility and Development 28(5) 608-617 https://doi.org/10.1071/RD14121
Submitted: 9 April 2014  Accepted: 28 August 2014   Published: 24 September 2014

Abstract

Leukaemia inhibitory factor (LIF) and oncostatin M (OSM) are pleiotropic cytokines present at the implantation site that are important for the normal development of human pregnancy. These cytokines share the cell membrane receptor subunit gp130, resulting in similar functions. The aim of this study was to compare the response to LIF and OSM in several trophoblast models with particular regard to intracellular mechanisms and invasion. Four trophoblast cell lines with different characteristics were used: HTR-8/SVneo, JEG-3, ACH-3P and AC1-M59 cells. Cells were incubated with LIF, OSM (both at 10 ng mL–1) and the signal transducer and activator of transcription (STAT) 3 inhibitor S3I-201 (200 µM). Expression and phosphorylation of STAT3 (tyr705) and extracellular regulated kinase (ERK) 1/2 (thr202/204) and the STAT3 DNA-binding capacity were analysed by Western blotting and DNA-binding assays, respectively. Cell viability and invasiveness were assessed by the methylthiazole tetrazolium salt (MTS) and Matrigel assays. Enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 was investigated by zymography. OSM and LIF triggered phosphorylation of STAT3 and ERK1/2, followed by a significant increase in STAT3 DNA-binding activity in all tested cell lines. Stimulation with LIF but not OSM significantly enhanced invasion of ACH-3P and JEG-3 cells, but not HTR-8/SVneo or AC1-M59 cells. Similarly, STAT3 inhibition significantly decreased the invasiveness of only ACH-3P and JEG-3 cells concomitant with decreases in secreted MMP-2 and MMP-9. OSM shares with LIF the capacity to activate ERK1/2 and STAT3 pathways in all cell lines tested, but their resulting effects are dependent on cell type. This suggests that LIF and OSM may partially substitute for each other in case of deficiencies or therapeutic interventions.

Additional keywords: invasion, matrix metalloproteinases.


References

Aghajanova, L. (2010). Update on the role of leukemia inhibitory factor in assisted reproduction. Curr. Opin. Obstet. Gynecol. 22, 213–219.
Update on the role of leukemia inhibitory factor in assisted reproduction.Crossref | GoogleScholarGoogle Scholar | 20216416PubMed |

Berridge, M. V., Herst, P. M., and Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11, 127–152.
Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVCjsrY%3D&md5=806bb64f5e6f1c8a9dfbb3901afefba1CAS | 16216776PubMed |

Bilban, M., Tauber, S., Haslinger, P., Pollheimer, J., Saleh, L., Pehamberger, H., Wagner, O., and Knofler, M. (2010). Trophoblast invasion: assessment of cellular models using gene expression signatures. Placenta 31, 989–996.
Trophoblast invasion: assessment of cellular models using gene expression signatures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlCgtrvP&md5=ba1816e3abdc4fca2c23a1c20df1245aCAS | 20850871PubMed |

Bischof, P., Haenggeli, L., and Campana, A. (1995). Effect of leukemia inhibitory factor on human cytotrophoblast differentiation along the invasive pathway. Am. J. Reprod. Immunol. 34, 225–230.
Effect of leukemia inhibitory factor on human cytotrophoblast differentiation along the invasive pathway.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK287ks1yntQ%3D%3D&md5=f675208f4840a8b81bcb47ae49885c49CAS | 8579759PubMed |

Bruce, A. G., Linsley, P. S., and Rose, T. M. (1992). Oncostatin M. Prog. Growth Factor Res. 4, 157–170.
Oncostatin M.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltFCqsrg%3D&md5=1e6969c7aeca6e961ca198a674299b3eCAS | 1338575PubMed |

Busch, S., Renaud, S. J., Schleussner, E., Graham, C. H., and Markert, U. R. (2009). mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3. Exp. Cell Res. 315, 1724–1733.
mTOR mediates human trophoblast invasion through regulation of matrix-remodeling enzymes and is associated with serine phosphorylation of STAT3.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWit7Y%3D&md5=dcebc4db7c94b83722a6ab9b8e8bdda8CAS | 19331815PubMed |

Cohen, M., Meisser, A., and Bischof, P. (2006). Metalloproteinases and human placental invasiveness. Placenta 27, 783–793.
Metalloproteinases and human placental invasiveness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvF2mu7w%3D&md5=de712ff5316ca1ef38d85ae359ff7a7fCAS | 16249026PubMed |

Cullinan, E. B., Abbondanzo, S. J., Anderson, P. S., Pollard, J. W., Lessey, B. A., and Stewart, C. L. (1996). Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc. Natl Acad. Sci. USA 93, 3115–3120.
Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVCiu7g%3D&md5=8705f606ade4187f7d85adca9e634978CAS | 8610178PubMed |

Demir-Weusten, A. Y., Seval, Y., Kaufmann, P., Demir, R., Yucel, G., and Huppertz, B. (2007). Matrix metalloproteinases-2, -3 and -9 in human term placenta. Acta Histochem. 109, 403–412.
Matrix metalloproteinases-2, -3 and -9 in human term placenta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSitrbF&md5=6114699512adb5eefc8ca703fe9e0d3dCAS | 17559909PubMed |

Fitzgerald, J. S., Tsareva, S. A., Poehlmann, T. G., Berod, L., Meissner, A., Corvinus, F. M., Wiederanders, B., Pfitzner, E., Markert, U. R., and Friedrich, K. (2005). Leukemia inhibitory factor triggers activation of signal transducer and activator of transcription 3, proliferation, invasiveness, and altered protease expression in choriocarcinoma cells. Int. J. Biochem. Cell Biol. 37, 2284–2296.
Leukemia inhibitory factor triggers activation of signal transducer and activator of transcription 3, proliferation, invasiveness, and altered protease expression in choriocarcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXptVekt70%3D&md5=888c481064dd70c7263d3368291edb2bCAS | 16125646PubMed |

Fitzgerald, J. S., Abad, C., Alvarez, A. M., Mehta, R. B., Chaiwangy, W., Dubinsky, V., Silva, B. G., Gutierrez, G., Hofmann, S., Hölters, S., Joukadar, J., Junovich, G., Kuhn, C., Prieto, D. M. M., Nevers, T., Prieto, S. O., Pastuschek, J., Pereira De Sousa, F. L., Martin, S. S., Suman, P., Weber, M., and Markert, U. R. (2011). Cytokines regulating trophoblast invasion. Adv. Neuroimmune Biol. 2, 61–97.

Fossey, S. L., Bear, M. D., Kisseberth, W. C., Pennell, M., and London, C. A. (2011). Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines. BMC Cancer 11, 125.
Oncostatin M promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2nu7g%3D&md5=1d7eb9e8ecd0a10621b0d6a737ede37aCAS | 21481226PubMed |

Fouladi-Nashta, A. A., Jones, C. J., Nijjar, N., Mohamet, L., Smith, A., Chambers, I., and Kimber, S. J. (2005). Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice. Dev. Biol. 281, 1–21.
Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjsFGqsro%3D&md5=4578c982d79930bb9ba24406c1570417CAS | 15848385PubMed |

García-Tuñón, I., Ricote, M., Ruiz, A., Fraile, B., Paniagua, R., and Royuela, M. (2008). OSM, LIF, its receptors, and its relationship with the malignance in human breast carcinoma (in situ and in infiltrative). Cancer Invest. 26, 222–229.
OSM, LIF, its receptors, and its relationship with the malignance in human breast carcinoma (in situ and in infiltrative).Crossref | GoogleScholarGoogle Scholar | 18317962PubMed |

Gaus, G., Funayama, H., Huppertz, B., Kaufmann, P., and Frank, H. G. (1997). Parent cells for trophoblast hybridization I: isolation of extravillous trophoblast cells from human term chorion laeve. Placenta 18, 181–190.
Parent cells for trophoblast hybridization I: isolation of extravillous trophoblast cells from human term chorion laeve.Crossref | GoogleScholarGoogle Scholar |

Gearing, D. P. (1993). The leukemia inhibitory factor and its receptor. Adv. Immunol. 53, 31–58.
The leukemia inhibitory factor and its receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlKqsL0%3D&md5=d58c9be17d4e99aded50c923cd9f2b20CAS | 8512038PubMed |

Gearing, D. P., Gough, N. M., King, J. A., Hilton, D. J., Nicola, N. A., Simpson, R. J., Nice, E. C., Kelso, A., and Metcalf, D. (1987). Molecular cloning and expression of cDNA encoding a murine myeloid leukaemia inhibitory factor (LIF). EMBO J. 6, 3995–4002.
| 1:CAS:528:DyaL1cXovV2iug%3D%3D&md5=91fc1411c4ed59986b1f64073145ac23CAS | 3127201PubMed |

Gearing, D. P., Comeau, M. R., Friend, D. J., Gimpel, S. D., Thut, C. J., McGourty, J., Brasher, K. K., King, J. A., Gillis, S., Mosley, B., Ziegler, S. F., and Cosman, D. (1992). The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 255, 1434–1437.
The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvFagsbk%3D&md5=311baee1374d264deb20f0a2cfc26315CAS | 1542794PubMed |

Goldman-Wohl, D., and Yagel, S. (2002). Regulation of trophoblast invasion: from normal implantation to pre-eclampsia. Mol. Cell. Endocrinol. 187, 233–238.
Regulation of trophoblast invasion: from normal implantation to pre-eclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Sqt7o%3D&md5=c098fe1e8e6b5bc06440e2398d35aa67CAS | 11988332PubMed |

Graham, C. H., Hawley, T. S., Hawley, R. G., MacDougall, J. R., Kerbel, R. S., Khoo, N., and Lala, P. K. (1993). Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 206, 204–211.
Establishment and characterization of first trimester human trophoblast cells with extended lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1OisL0%3D&md5=aa6c1e8b3b58d3552323b8e0f1ebaeb7CAS | 7684692PubMed |

Grove, R. I., Eberhardt, C., Abid, S., Mazzucco, C., Liu, J., Kiener, P., Todaro, G., and Shoyab, M. (1993). Oncostatin M is a mitogen for rabbit vascular smooth muscle cells. Proc. Natl Acad. Sci. USA 90, 823–827.
Oncostatin M is a mitogen for rabbit vascular smooth muscle cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXht1aktL0%3D&md5=f9afddcc36df949ccad551a5279229b9CAS | 8430092PubMed |

Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F., and Graeve, L. (1998). Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314.
| 1:CAS:528:DyaK1cXmtFOls7c%3D&md5=566b551ab945477a571b555e6f5004c6CAS | 9716487PubMed |

Hiden, U., Wadsack, C., Prutsch, N., Gauster, M., Weiss, U., Frank, H. G., Schmitz, U., Fast-Hirsch, C., Hengstschlager, M., Potgens, A., Ruben, A., Knofler, M., Haslinger, P., Huppertz, B., Bilban, M., Kaufmann, P., and Desoye, G. (2007). The first trimester human trophoblast cell line ACH-3P: a novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations–TNF-alpha stimulates MMP15 expression. BMC Dev. Biol. 7, 137.
The first trimester human trophoblast cell line ACH-3P: a novel tool to study autocrine/paracrine regulatory loops of human trophoblast subpopulations–TNF-alpha stimulates MMP15 expression.Crossref | GoogleScholarGoogle Scholar | 18093301PubMed |

Hilton, D. J. (1992). LIF: lots of interesting functions. Trends Biochem. Sci. 17, 72–76.
LIF: lots of interesting functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xkt1Cgtr4%3D&md5=4ad780ab256db06e1f1ec4a1f96eb20fCAS | 1566332PubMed |

Horn, D., Fitzpatrick, W. C., Gompper, P. T., Ochs, V., Bolton-Hansen, M., Zarling, J., Malik, N., Todaro, G. J., and Linsley, P. S. (1990). Regulation of cell growth by recombinant oncostatin M. Growth Factors 2, 157–165.
Regulation of cell growth by recombinant oncostatin M.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3c3ltlyjug%3D%3D&md5=4bb5fe650897888106d27aabb2b93241CAS | 2160258PubMed |

Hoskins, C., Wang, L., Cheng, W. P., and Cuschieri, A. (2012). Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: which tests and what protocols? Nanoscale Res. Lett. 7, 77.
Dilemmas in the reliable estimation of the in-vitro cell viability in magnetic nanoparticle engineering: which tests and what protocols?Crossref | GoogleScholarGoogle Scholar | 22247975PubMed |

Kessenbrock, K., Plaks, V., and Werb, Z. (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141, 52–67.
Matrix metalloproteinases: regulators of the tumor microenvironment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSgtb4%3D&md5=d98f7f6e80f95c7241b0413bbde673e8CAS | 20371345PubMed |

Knöfler, M., and Pollheimer, J. (2012). IFPA Award in Placentology Lecture: molecular regulation of human trophoblast invasion. Placenta 33, S55–S62.
IFPA Award in Placentology Lecture: molecular regulation of human trophoblast invasion.Crossref | GoogleScholarGoogle Scholar | 22019198PubMed |

Ko, H. S., Kang, H. K., Kim, H. S., Choi, S. K., Park, I. Y., and Shin, J. C. (2012). The effects of oncostatin M on trophoblast cells: influence on matrix metalloproteinases-2 and -9, and invasion activity. Placenta 33, 908–913.
The effects of oncostatin M on trophoblast cells: influence on matrix metalloproteinases-2 and -9, and invasion activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFKlu73P&md5=96bff5ce5243ddfc31fca8408e696ad4CAS | 22931588PubMed |

Laird, S. M., Tuckerman, E. M., Dalton, C. F., Dunphy, B. C., Li, T. C., and Zhang, X. (1997). The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture. Hum. Reprod. 12, 569–574.
The production of leukaemia inhibitory factor by human endometrium: presence in uterine flushings and production by cells in culture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtVKhsL4%3D&md5=08181017dbca7d834f7df5baed03715dCAS | 9130761PubMed |

Lass, A., Weiser, W., Munafo, A., and Loumaye, E. (2001). Leukemia inhibitory factor in human reproduction. Fertil. Steril. 76, 1091–1096.
Leukemia inhibitory factor in human reproduction.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnosVynsA%3D%3D&md5=dc9303ea671c9aaa4e327c66d2ab78f7CAS | 11730732PubMed |

Lee, G., Kil, G., Kwon, J., Kim, S., Yoo, J., and Shin, J. (2009). Oncostatin M as a target biological molecule of preeclampsia. J. Obstet. Gynaecol. Res. 35, 869–875.
Oncostatin M as a target biological molecule of preeclampsia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCjs7bO&md5=00a7805479d0a12051678259766303e9CAS | 20149034PubMed |

Liu, J., Hadjokas, N., Mosley, B., Estrov, Z., Spence, M. J., and Vestal, R. E. (1998). Oncostatin M-specific receptor expression and function in regulating cell proliferation of normal and malignant mammary epithelial cells. Cytokine 10, 295–302.
Oncostatin M-specific receptor expression and function in regulating cell proliferation of normal and malignant mammary epithelial cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVGltb8%3D&md5=14356cc2f2c894f95e67f63048f6a10cCAS | 9617575PubMed |

Lunghi, L., Ferretti, M. E., Medici, S., Biondi, C., and Vesce, F. (2007). Control of human trophoblast function. Reprod. Biol. Endocrinol. 5, 6.
Control of human trophoblast function.Crossref | GoogleScholarGoogle Scholar | 17288592PubMed |

Mathieu, M. E., Saucourt, C., Mournetas, V., Gauthereau, X., Theze, N., Praloran, V., Thiebaud, P., and Boeuf, H. (2012). LIF-dependent signaling: new pieces in the Lego. Stem Cell Rev. 8, 1–15.
LIF-dependent signaling: new pieces in the Lego.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtVCrtLs%3D&md5=3484d4f63440d46603544f70d8aa08ccCAS | 21537995PubMed |

Morales-Prieto, D. M., Chaiwangyen, W., Ospina-Prieto, S., Schneider, U., Herrmann, J., Gruhn, B., and Markert, U. R. (2012). MicroRNA expression profiles of trophoblastic cells. Placenta 33, 725–734.
MicroRNA expression profiles of trophoblastic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1egt7nM&md5=dc06f936763346f99b0578583c98ee69CAS | 22721760PubMed |

Morales-Prieto, D. M., Ospina-Prieto, S., Chaiwangyen, W., Weber, M., Holters, S., Schleussner, E., Fitzgerald, J. S., and Markert, U. R. (2013). Intranuclear crosstalk between extracellular regulated kinase1/2 and signal transducer and activator of transcription 3 regulates JEG-3 choriocarcinoma cell invasion and proliferation. ScientificWorldJournal 2013, 259845.
Intranuclear crosstalk between extracellular regulated kinase1/2 and signal transducer and activator of transcription 3 regulates JEG-3 choriocarcinoma cell invasion and proliferation.Crossref | GoogleScholarGoogle Scholar | 24288470PubMed |

Nachtigall, M. J., Kliman, H. J., Feinberg, R. F., Olive, D. L., Engin, O., and Arici, A. (1996). The effect of leukemia inhibitory factor (LIF) on trophoblast differentiation: a potential role in human implantation. J. Clin. Endocrinol. Metab. 81, 801–806.
| 1:CAS:528:DyaK28XhtVyktb4%3D&md5=ae2fffd138e7e55e271d7a0397f75e15CAS | 8636307PubMed |

Ogata, I., Shimoya, K., Moriyama, A., Shiki, Y., Matsumura, Y., Yamanaka, K., Nobunaga, T., Tokugawa, Y., Kimura, T., Koyama, M., Azuma, C., and Murata, Y. (2000). Oncostatin M is produced during pregnancy by decidual cells and stimulates the release of HCG. Mol. Hum. Reprod. 6, 750–757.
Oncostatin M is produced during pregnancy by decidual cells and stimulates the release of HCG.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtVCitLY%3D&md5=6a61af1be3673a79c7f221a1e2e8cd13CAS | 10908286PubMed |

Plun-Favreau, H., Perret, D., Diveu, C., Froger, J., Chevalier, S., Lelievre, E., Gascan, H., and Chabbert, M. (2003). Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor. J. Biol. Chem. 278, 27 169–27 179.
Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlKqu7o%3D&md5=71afc59bc5461ef1528de4ecbe36b3dbCAS |

Poehlmann, T. G., Fitzgerald, J. S., Meissner, A., Wengenmayer, T., Schleussner, E., Friedrich, K., and Markert, U. R. (2005). Trophoblast invasion: tuning through LIF, signalling via Stat3. Placenta 26, S37–S41.
Trophoblast invasion: tuning through LIF, signalling via Stat3.Crossref | GoogleScholarGoogle Scholar | 15837065PubMed |

Prakash, G. J., Suman, P., Morales Prieto, D. M., Markert, U. R., and Gupta, S. K. (2011). Leukaemia inhibitory factor mediated proliferation of HTR-8/SVneo trophoblast cells is dependent on activation of extracellular signal-regulated kinase 1/2. Reprod. Fertil. Dev. 23, 714–724.
Leukaemia inhibitory factor mediated proliferation of HTR-8/SVneo trophoblast cells is dependent on activation of extracellular signal-regulated kinase 1/2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvVWqurk%3D&md5=c47660191337dbbdbea272f9d2f97821CAS | 21635820PubMed |

Seo, J. M., Park, S., and Kim, J. H. (2012). Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J. Biol. Chem. 287, 13 840–13 849.
Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XlvVGls70%3D&md5=0c19f0162a65471043cf5bdfab473cd8CAS |

Sharkey, A. M., Dellow, K., Blayney, M., Macnamee, M., Charnock-Jones, S., and Smith, S. K. (1995). Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos. Biol. Reprod. 53, 974–981.
Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotFyisrc%3D&md5=191e746a2813c052dbf56abe8561e446CAS | 8547494PubMed |

Shaul, Y. D., and Seger, R. (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim. Biophys. Acta 1773, 1213–1226.
The MEK/ERK cascade: from signaling specificity to diverse functions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFyksbw%3D&md5=6366d25a319d5b4606c6f18f1a4782c1CAS | 17112607PubMed |

Smyth, D. C., Kerr, C., Li, Y., Tang, D., and Richards, C. D. (2008). Oncostatin M induction of eotaxin-1 expression requires the convergence of PI3′K and ERK1/2 MAPK signal transduction pathways. Cell. Signal. 20, 1142–1150.
Oncostatin M induction of eotaxin-1 expression requires the convergence of PI3′K and ERK1/2 MAPK signal transduction pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsF2rtLc%3D&md5=8d9d0d68e9ce38f0b7026ed1c73b488cCAS | 18372159PubMed |

Staun-Ram, E., and Shalev, E. (2005). Human trophoblast function during the implantation process. Reprod. Biol. Endocrinol. 3, 56.
Human trophoblast function during the implantation process.Crossref | GoogleScholarGoogle Scholar | 16236179PubMed |

Stewart, C. L., Kaspar, P., Brunet, L. J., Bhatt, H., Gadi, I., Kontgen, F., and Abbondanzo, S. J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.
Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlvVGmtLc%3D&md5=801ad165c892569a4f38973405e2a8fcCAS | 1522892PubMed |

Strober, W. (2001). Trypan blue exclusion test of cell viability. Curr. Protoc. Immunol. 3, 3B.
Trypan blue exclusion test of cell viability.Crossref | GoogleScholarGoogle Scholar |

Suman, P., and Gupta, S. K. (2012). Comparative analysis of the invasion-associated genes expression pattern in first trimester trophoblastic (HTR-8/SVneo) and JEG-3 choriocarcinoma cells. Placenta 33, 874–877.
Comparative analysis of the invasion-associated genes expression pattern in first trimester trophoblastic (HTR-8/SVneo) and JEG-3 choriocarcinoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlamtrjI&md5=f8d6c52df7f984d1795f6d63c7fc4164CAS | 22800585PubMed |

Suman, P., Shembekar, N., and Gupta, S. K. (2013). Leukemia inhibitory factor increases the invasiveness of trophoblastic cells through integrated increase in the expression of adhesion molecules and pappalysin 1 with a concomitant decrease in the expression of tissue inhibitor of matrix metalloproteinases. Fertil. Steril. 99, 533–542.
Leukemia inhibitory factor increases the invasiveness of trophoblastic cells through integrated increase in the expression of adhesion molecules and pappalysin 1 with a concomitant decrease in the expression of tissue inhibitor of matrix metalloproteinases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ajtb7K&md5=007ea5008df3572f2021ddf5974742d8CAS | 23122949PubMed |

Tapia, A., Salamonsen, L. A., Manuelpillai, U., and Dimitriadis, E. (2008). Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2. Hum. Reprod. 23, 1724–1732.
Leukemia inhibitory factor promotes human first trimester extravillous trophoblast adhesion to extracellular matrix and secretion of tissue inhibitor of metalloproteinases-1 and -2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslGqu78%3D&md5=6e42c4ddf04c7c14263f64a4ffb354a5CAS | 18492704PubMed |

Thoma, B., Bird, T. A., Friend, D. J., Gearing, D. P., and Dower, S. K. (1994). Oncostatin M and leukemia inhibitory factor trigger overlapping and different signals through partially shared receptor complexes. J. Biol. Chem. 269, 6215–6222.
| 1:CAS:528:DyaK2cXhvVeqtbo%3D&md5=faa4a1295b918c8284d9d2804f598652CAS | 8119965PubMed |

Wang, L., Luo, J., and He, S. (2007). Induction of MMP-9 release from human dermal fibroblasts by thrombin: involvement of JAK/STAT3 signaling pathway in MMP-9 release. BMC Cell Biol. 8, 14.
Induction of MMP-9 release from human dermal fibroblasts by thrombin: involvement of JAK/STAT3 signaling pathway in MMP-9 release.Crossref | GoogleScholarGoogle Scholar | 17480240PubMed |

Wang, P., Henning, S. M., and Heber, D. (2010). Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE 5, e10202.
Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols.Crossref | GoogleScholarGoogle Scholar | 20419137PubMed |

Ware, C. B., Horowitz, M. C., Renshaw, B. R., Hunt, J. S., Liggitt, D., Koblar, S. A., Gliniak, B. C., McKenna, H. J., Papayannopoulou, T., Thoma, B., Cheng, L., Donovan, P. J., Peschon, J. J., Bartlett, P. F., Willis, C. R., Wright, B. D., Carpenter, M. K., Davison, B. L., and Gearing, D. P. (1995). Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299.
| 1:CAS:528:DyaK2MXls1ajsro%3D&md5=d73f2e58c3365ef77f9bdd4fd575d556CAS | 7789261PubMed |

Wortzel, I., and Seger, R. (2011). The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer 2, 195–209.
The ERK cascade: distinct functions within various subcellular organelles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFWls7w%3D&md5=35a6a5efe6c797facc7927272c3bb6a2CAS | 21779493PubMed |

Xie, T. X., Wei, D., Liu, M., Gao, A. C., Ali-Osman, F., Sawaya, R., and Huang, S. (2004). Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 23, 3550–3560.
Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsV2ntLs%3D&md5=704758c7ffeb055470d8c53f1aad7d34CAS | 15116091PubMed |

Zarling, J. M., Shoyab, M., Marquardt, H., Hanson, M. B., Lioubin, M. N., and Todaro, G. J. (1986). Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells. Proc. Natl Acad. Sci. USA 83, 9739–9743.
Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtVSlsLY%3D&md5=2500543d456967de844afbdfdfd2897aCAS | 3540948PubMed |