Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Hyperglycaemia and lipid differentially impair mouse oocyte developmental competence

Siew L. Wong A , Linda L. Wu A , Rebecca L. Robker A , Jeremy G. Thompson A B and Melanie L. Sutton McDowall A B C
+ Author Affiliations
- Author Affiliations

A Robinson Research Institute, School of Paediatrics and Reproductive Health, The University of Adelaide, Medical School, Frome Road, Adelaide, SA 5005, Australia.

B Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics, Institute of Photonics and Advanced Sensing.

C Corresponding author. Email: melanie.mcdowall@adelaide.edu.au

Reproduction, Fertility and Development 27(4) 583-592 https://doi.org/10.1071/RD14328
Submitted: 4 September 2014  Accepted: 6 January 2015   Published: 26 February 2015

Abstract

Maternal diabetes and obesity are characterised by elevated blood glucose, insulin and lipids, resulting in upregulation of specific fuel-sensing and stress signalling pathways. Previously, we demonstrated that, separately, upregulation of the hexosamine biosynthetic pathway (HBP; under hyperglycaemic conditions) and endoplasmic reticulum (ER) stress (due to hyperlipidaemia) pathways reduce blastocyst development and alter oocyte metabolism. In order to begin to understand how both glucose and lipid metabolic disruptions influence oocyte developmental competence, in the present study we exposed mouse cumulus–oocyte complexes to hyperglycaemia (30 mM) and/or lipid (40 μM) and examined the effects on embryo development. The presence of glucosamine (GlcN; a hyperglycaemic mimetic) or increased lipid during in vitro maturation severely perturbed blastocyst development (P < 0.05). Hyperglycaemia, GlcN and hyperglycaemia + lipid treatments significantly increased HBP activity, increasing total O-linked glycosylation (O-GlcNAcylation) of proteins (P < 0.0001). All treatments also induced ER stress pathways, indicated by the expression of specific ER stress genes. The expression of genes encoding the HBP enzymes glutamine:fructose-6-phosphate amidotransferase 2 (Gfpt2) and O-linked β-N-acetylglucosaminyltransferase (Ogt) was repressed following lipid treatment (P < 0.001). These findings partially implicate the mechanism of O-GlcNAcylation and ER stress as likely contributors to compromised fertility of obese women.

Additional keywords: cumulus–oocyte complex, embryo, endoplasmic reticulum stress, hexosamine biosynthesis pathway, hyperlipidemia.


References

Aardema, H., Vos, P. L., Lolicato, F., Roelen, B. A., Knijn, H. M., Vaandrager, A. B., Helms, J. B., and Gadella, B. M. (2011). Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol. Reprod. 85, 62–69.
Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXotFOls74%3D&md5=91c35c1502e6480acc58b76f6a2faff4CAS | 21311036PubMed |

Australian Institute of Health and Welfare (AIHW) (2012). ‘Australia's Health 2012. Australia's Health Series No. 13.’ Catalogue no. AUS 156. (AIHW: Canberra.)

Albertini, D. F., Combelles, C. M., Benecchi, E., and Carabatsos, M. J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653.
Cellular basis for paracrine regulation of ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktVaisbY%3D&md5=deb9f901bb90e46c53ca80b16045c08aCAS | 11427152PubMed |

Alhusaini, S., McGee, K., Schisano, B., Harte, A., McTernan, P., Kumar, S., and Tripathi, G. (2010). Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: salicylate alleviates this stress. Biochem. Biophys. Res. Commun. 397, 472–478.
Lipopolysaccharide, high glucose and saturated fatty acids induce endoplasmic reticulum stress in cultured primary human adipocytes: salicylate alleviates this stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXosV2lsrY%3D&md5=59c60396f7675d91fb74a3c5fa2fa239CAS | 20515657PubMed |

Borradaile, N. M., Han, X., Harp, J. D., Gale, S. E., Ory, D. S., and Schaffer, J. E. (2006). Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J. Lipid Res. 47, 2726–2737.
Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtlSit7fE&md5=49e2c2cbd4e6ef9c872610be85c089d5CAS | 16960261PubMed |

Butkinaree, C., Park, K., and Hart, G. W. (2010). O-Linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800, 96–106.
O-Linked beta-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWitQ%3D%3D&md5=06a6f73a8a58823a340330048d5e36c8CAS | 19647786PubMed |

Chang, A. S., Dale, A. N., and Moley, K. H. (2005). Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis. Endocrinology 146, 2445–2453.
Maternal diabetes adversely affects preovulatory oocyte maturation, development, and granulosa cell apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjslamtbk%3D&md5=97323c6060e6b276acf7d7e0f224b9c3CAS | 15718275PubMed |

Colton, S. A., Pieper, G. M., and Downs, S. M. (2002). Altered meiotic regulation in oocytes from diabetic mice. Biol. Reprod. 67, 220–231.
Altered meiotic regulation in oocytes from diabetic mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XkvV2itb8%3D&md5=14d0e8885a8fabd40da870f4bf97f7f2CAS | 12080021PubMed |

Dabelea, D., and Crume, T. (2011). Maternal environment and the transgenerational cycle of obesity and diabetes. Diabetes 60, 1849–1855.
Maternal environment and the transgenerational cycle of obesity and diabetes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVChtLc%3D&md5=a47355214a76548a4ca2e0ae477ace08CAS | 21709280PubMed |

Eppig, J. J. (1991). Intercommunication between mammalian oocytes and companion somatic cells. BioEssays 13, 569–574.
Intercommunication between mammalian oocytes and companion somatic cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387is1ShsA%3D%3D&md5=94f7607b92d428edb9bccf8dade3a11dCAS | 1772412PubMed |

Frank, L. A., Sutton-McDowall, M. L., Russell, D. L., Wang, X., Feil, D. K., Gilchrist, R. B., and Thompson, J. G. (2013). Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence. Reprod. Fertil. Dev. 25, 1095–1104.
Effect of varying glucose and glucosamine concentration in vitro on mouse oocyte maturation and developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsF2ltLzK&md5=fe1501d6fc79d34eb0e9cbf8e33ee16dCAS | 23131421PubMed |

Frank, L. A., Sutton-McDowall, M. L., Brown, H. M., Russell, D. L., Gilchrist, R. B., and Thompson, J. G. (2014a). Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Hum. Reprod. 29, 1292–1303.
Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotF2ku70%3D&md5=e6e1830938ebaae750f6d079a05ed90fCAS | 24713123PubMed |

Frank, L. A., Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2014b). The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence. Mol. Reprod. Dev. 81, 391–408.
The effect of peri-conception hyperglycaemia and the involvement of the hexosamine biosynthesis pathway in mediating oocyte and embryo developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1ymsrc%3D&md5=c3e74d22e529db22a135164a4bba4881CAS | 24415135PubMed |

Gremlich, S., Bonny, C., Waeber, G., and Thorens, B. (1997). Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels. J. Biol. Chem. 272, 30 261–30 269.
Fatty acids decrease IDX-1 expression in rat pancreatic islets and reduce GLUT2, glucokinase, insulin, and somatostatin levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnslGhurk%3D&md5=849e3696ae1d6470bd63c2d74a5976d1CAS |

Heerwagen, M. J., Miller, M. R., Barbour, L. A., and Friedman, J. E. (2010). Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R711–R722.
Maternal obesity and fetal metabolic programming: a fertile epigenetic soil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WgurvI&md5=fca89c9445a1dab76a3a98b2ce1f4c7cCAS | 20631295PubMed |

Igosheva, N., Abramov, A. Y., Poston, L., Eckert, J. J., Fleming, T. P., Duchen, M. R., and McConnell, J. (2010). Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS ONE 5, e10074.
Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes.Crossref | GoogleScholarGoogle Scholar | 20404917PubMed |

Jungheim, E. S., and Moley, K. H. (2010). Current knowledge of obesity's effects in the pre- and periconceptional periods and avenues for future research. Am. J. Obstet. Gynecol. 203, 525–530.
Current knowledge of obesity's effects in the pre- and periconceptional periods and avenues for future research.Crossref | GoogleScholarGoogle Scholar | 20739012PubMed |

Jungheim, E. S., Schoeller, E. L., Marquard, K. L., Louden, E. D., Schaffer, J. E., and Moley, K. H. (2010). Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151, 4039–4046.
Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Oju7rN&md5=3ae385c2afcbf3ae82f5263f60e39232CAS | 20573727PubMed |

Kimura, K., Iwata, H., and Thompson, J. G. (2008). The effect of glucosamine concentration on the development and sex ratio of bovine embryos. Anim. Reprod. Sci. 103, 228–238.
The effect of glucosamine concentration on the development and sex ratio of bovine embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSmtLfL&md5=116dbfa7b9a43f0b2576e5f5791e2de3CAS | 17198747PubMed |

Kornfeld, R. (1967). Studies on l-glutamine d-fructose 6-phosphate amidotransferase. I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J. Biol. Chem. 242, 3135–3141.
| 1:CAS:528:DyaF2sXktFyjtbw%3D&md5=8d9581eafb23607b64f49ab1bf70a8ffCAS | 4961641PubMed |

Leroy, J. L., Vanholder, T., Mateusen, B., Christophe, A., Opsomer, G., de Kruif, A., Genicot, G., and Van Soom, A. (2005). Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction 130, 485–495.
Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFent7rJ&md5=16ddfb8af1de3a55f051d7e88b361557CAS | 16183866PubMed |

Lombardi, A., Ulianich, L., Treglia, A. S., Nigro, C., Parrillo, L., Lofrumento, D. D., Nicolardi, G., Garbi, C., Beguinot, F., Miele, C., and Di Jeso, B. (2012). Increased hexosamine biosynthetic pathway flux dedifferentiates INS-1E cells and murine islets by an extracellular signal-regulated kinase (ERK)1/2-mediated signal transmission pathway. Diabetologia 55, 141–153.
Increased hexosamine biosynthetic pathway flux dedifferentiates INS-1E cells and murine islets by an extracellular signal-regulated kinase (ERK)1/2-mediated signal transmission pathway.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFOqu73J&md5=22cab6313e5eea24bb3f85bad0dbdff8CAS | 22006246PubMed |

Luzzo, K. M., Wang, Q., Purcell, S. H., Chi, M., Jimenez, P. T., Grindler, N., Schedl, T., and Moley, K. H. (2012). High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS ONE 7, e49217.
High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKjtrvN&md5=9bc77d7bb0f30a2e41cdb8f2da55d9a2CAS | 23152876PubMed |

Malhi, H., and Gores, G. J. (2008). Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin. Liver Dis. 28, 360–369.
Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVKju7fF&md5=02e20718fb244faeb888a9ea2823b35dCAS | 18956292PubMed |

Malhotra, J. D., and Kaufman, R. J. (2007). Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid. Redox Signal. 9, 2277–2294.
Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1GrsLzL&md5=78f168cd01d100829dd049d688d3c7f2CAS | 17979528PubMed |

Marshall, S., Bacote, V., and Traxinger, R. R. (1991). Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J. Biol. Chem. 266, 4706–4712.
| 1:CAS:528:DyaK3MXhs1WltL0%3D&md5=2b41f197d868161b85ac85f21827718dCAS | 2002019PubMed |

Nelson, B. A., Robinson, K. A., and Buse, M. G. (2000). High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes 49, 981–991.
High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjvFylu74%3D&md5=fae39c6bdb2ebfc4d23eb7fe95d3ca80CAS | 10866051PubMed |

Nĕmcová-Fürstová, V., James, R. F., and Kovář, J. (2011). Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic beta-cells: activation of caspases and ER stress induction. Cell. Physiol. Biochem. 27, 525–538.
Inhibitory effect of unsaturated fatty acids on saturated fatty acid-induced apoptosis in human pancreatic beta-cells: activation of caspases and ER stress induction.Crossref | GoogleScholarGoogle Scholar | 21691070PubMed |

O’Reilly, J. R., and Reynolds, R. M. (2013). The risk of maternal obesity to the long-term health of the offspring. Clin. Endocrinol. (Oxf) 78, 9–16.
The risk of maternal obesity to the long-term health of the offspring.Crossref | GoogleScholarGoogle Scholar | 23009645PubMed |

Ozcan, L., Ergin, A. S., Lu, A., Chung, J., Sarkar, S., Nie, D., Myers, M. G., and Ozcan, U. (2009). Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51.
Endoplasmic reticulum stress plays a central role in development of leptin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptFWquw%3D%3D&md5=4337533202542028650ead559962b940CAS | 19117545PubMed |

Pantaleon, M., Tan, H. Y., Kafer, G. R., and Kaye, P. L. (2010). Toxic effects of hyperglycemia are mediated by the hexosamine signaling pathway and O-linked glycosylation in early mouse embryos. Biol. Reprod. 82, 751–758.
Toxic effects of hyperglycemia are mediated by the hexosamine signaling pathway and O-linked glycosylation in early mouse embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjslelt7g%3D&md5=ce8d63049509a4bb361a109f3d00c0e6CAS | 20032283PubMed |

Robker, R. L., Akison, L. K., Bennett, B. D., Thrupp, P. N., Chura, L. R., Russell, D. L., Lane, M., and Norman, R. J. (2009). Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J. Clin. Endocrinol. Metab. 94, 1533–1540.
Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlvVCqtrw%3D&md5=ad9fc9f21f34fed2964925dd65571412CAS | 19223519PubMed |

Sage, A. T., Walter, L. A., Shi, Y., Khan, M. I., Kaneto, H., Capretta, A., and Werstuck, G. H. (2010). Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells. Am. J. Physiol. Endocrinol. Metab. 298, E499–E511.
Hexosamine biosynthesis pathway flux promotes endoplasmic reticulum stress, lipid accumulation, and inflammatory gene expression in hepatic cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsFGgsL0%3D&md5=0ce3310bfcde4aaef8afd28ef9e6f20aCAS | 19952345PubMed |

Sako, Y., and Grill, V. E. (1990). A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation. Endocrinology 127, 1580–1589.
A 48-hour lipid infusion in the rat time-dependently inhibits glucose-induced insulin secretion and B cell oxidation through a process likely coupled to fatty acid oxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVGisrs%3D&md5=01fb4e23b61feedc856b72691820c928CAS | 1698143PubMed |

Schelbach, C. J., Kind, K. L., Lane, M., and Thompson, J. G. (2010). Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes. Reprod. Fertil. Dev. 22, 771–779.
Mechanisms contributing to the reduced developmental competence of glucosamine-exposed mouse oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVCqt7k%3D&md5=a158e2ff505ba5c1ffa41b002fe845ebCAS | 20450829PubMed |

Schelbach, C. J., Robker, R. L., Bennett, B. D., Gauld, A. D., Thompson, J. G., and Kind, K. L. (2013). Altered pregnancy outcomes in mice following treatment with the hyperglycaemia mimetic, glucosamine, during the periconception period. Reprod. Fertil. Dev. 25, 405–416.
Altered pregnancy outcomes in mice following treatment with the hyperglycaemia mimetic, glucosamine, during the periconception period.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhslart7k%3D&md5=c349f9a24deb00fb777d5260bb475cd7CAS | 23445817PubMed |

Shen, J., Snapp, E. L., Lippincott-Schwartz, J., and Prywes, R. (2005). Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol. Cell. Biol. 25, 921–932.
Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response.Crossref | GoogleScholarGoogle Scholar | 15657421PubMed |

Sirimi, N., and Goulis, D. G. (2010). Obesity in pregnancy. Hormones 9, 299–306.
Obesity in pregnancy.Crossref | GoogleScholarGoogle Scholar | 21112860PubMed |

Srinivasan, V., Tatu, U., Mohan, V., and Balasubramanyam, M. (2009). Molecular convergence of hexosamine biosynthetic pathway and ER stress leading to insulin resistance in L6 skeletal muscle cells. Mol. Cell. Biochem. 328, 217–224.
Molecular convergence of hexosamine biosynthetic pathway and ER stress leading to insulin resistance in L6 skeletal muscle cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnvFKgtro%3D&md5=870201fed9f6a8d64e60e31c05f9aef2CAS | 19370316PubMed |

Sutton-McDowall, M. L., Mitchell, M., Cetica, P., Dalvit, G., Pantaleon, M., Lane, M., Gilchrist, R. B., and Thompson, J. G. (2006). Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence. Biol. Reprod. 74, 881–888.
Glucosamine supplementation during in vitro maturation inhibits subsequent embryo development: possible role of the hexosamine pathway as a regulator of developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjsl2jur8%3D&md5=380109c0be67107cef1de50ca8963396CAS | 16436527PubMed |

Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2010). The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 139, 685–695.
The pivotal role of glucose metabolism in determining oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltFajtr0%3D&md5=72e1531d06ee8b60f71467945f41f3c0CAS | 20089664PubMed |

Uldry, M., Ibberson, M., Hosokawa, M., and Thorens, B. (2002). GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 524, 199–203.
GLUT2 is a high affinity glucosamine transporter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1WksrY%3D&md5=6ac69b3e5f7ea1f3eae72b29deab02ceCAS | 12135767PubMed |

Valckx, S. D., De Pauw, I., De Neubourg, D., Inion, I., Berth, M., Fransen, E., Bols, P. E., and Leroy, J. L. (2012). BMI-related metabolic composition of the follicular fluid of women undergoing assisted reproductive treatment and the consequences for oocyte and embryo quality. Hum. Reprod. 27, 3531–3539.
BMI-related metabolic composition of the follicular fluid of women undergoing assisted reproductive treatment and the consequences for oocyte and embryo quality.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslKrsLrL&md5=36e8e2c48e7445163a84e1ab94e8a470CAS | 23019302PubMed |

Van Hoeck, V., Sturmey, R. G., Bermejo-Alvarez, P., Rizos, D., Gutierrez-Adan, A., Leese, H. J., Bols, P. E., and Leroy, J. L. (2011). Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS ONE 6, e23183.
Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFKmsLjM&md5=b6eb69e3072d782b967fdaef51eb2625CAS | 21858021PubMed |

Vanderhyden, B. C., Caron, P. J., Buccione, R., and Eppig, J. J. (1990). Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev. Biol. 140, 307–317.
Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czitlersw%3D%3D&md5=d254635a3cf3e261bb5b149a24fd28baCAS | 2115479PubMed |

Wu, L. L., Dunning, K. R., Yang, X., Russell, D. L., Lane, M., Norman, R. J., and Robker, R. L. (2010). High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and decreased fertilization rates. Endocrinology 151, 5438–5445.
High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and decreased fertilization rates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVKks7bL&md5=eefe18c6b932287de00f82f7d18fd452CAS | 20861227PubMed |

Wu, L. L., Norman, R. J., and Robker, R. L. (2012a). The impact of obesity on oocytes: evidence for lipotoxicity mechanisms. Reprod. Fertil. Dev. 24, 29–34.
The impact of obesity on oocytes: evidence for lipotoxicity mechanisms.Crossref | GoogleScholarGoogle Scholar |

Wu, L. L., Russell, D. L., Norman, R.J., and Robker, R. L. (2012b). Endoplasmic reticulum (ER) stress in cumulus–oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (ΔΨm), and embryo development. Mol. Endocrinol. 26, 562–573.
Endoplasmic reticulum (ER) stress in cumulus–oocyte complexes impairs pentraxin-3 secretion, mitochondrial membrane potential (ΔΨm), and embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xlt1ensrs%3D&md5=6b717d7aea88f13eb2febbd3718bd7c1CAS | 22383462PubMed |

Wyman, A., Pinto, A. B., Sheridan, R., and Moley, K. H. (2008). One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology 149, 466–469.
One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1yqsLc%3D&md5=37be794dcb93716892545e6ec3867ec8CAS | 18039778PubMed |

Yang, X., Ongusaha, P. P., Miles, P. D., Havstad, J. C., Zhang, F., So, W. V., Kudlow, J. E., Michell, R. H., Olefsky, J. M., Field, S. J., and Evans, R. M. (2008). Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969.
Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1yns74%3D&md5=566b4edad3367006d5069c51d6a298f8CAS | 18288188PubMed |

Yang, X., Wu, L. L., Chura, L. R., Liang, X., Lane, M., Norman, R. J., and Robker, R. L. (2012). Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus–oocyte complexes. Fertil. Steril. 97, 1438–1443.
Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus–oocyte complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktlChsbs%3D&md5=86e359977edd7ce09a76e8239914f8f8CAS | 22440252PubMed |

Zhou, Y. P., and Grill, V. E. (1994). Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle. J. Clin. Invest. 93, 870–876.
Long-term exposure of rat pancreatic islets to fatty acids inhibits glucose-induced insulin secretion and biosynthesis through a glucose fatty acid cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXktVWntb4%3D&md5=2b7a69f0cb5de7d55238665e67a14235CAS | 8113418PubMed |