Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Maternal food restriction in rats of the F0 generation increases retroperitoneal fat, the number and size of adipocytes and induces periventricular astrogliosis in female F1 and male F2 generations

A. O. Joaquim A , C. P. Coelho A B , P. Dias Motta A , L. F. Felício C , E. F. Bondan A , E. Teodorov D , M. F. M. Martins A , T. B. Kirsten A , L. V. Bonamin A and M. M. Bernardi A D E

A Environmental and Experimental Pathology, Paulista University, UNIP, Rua Dr Bacelar, 1212, São Paulo, SP, 04026-002, Brazil.

B Graduate Program of Animal Medicine and Welfare, University of Santo Amaro, Rua Enéas de Siqueira Neto, 340, São Paulo, SP, 04829-900, Brazil.

C Department of Pathology, School of Veterinary Medicine, University of São Paulo, Av. Prof. Dr Orlando Marques de Paiva, 87, Sao Paulo, SP, 05508-270, Brazil.

D Mathematics, Computing and Cognition Center, Federal University of ABC, Av. dos Estados, 5001, Santo André, SP, 09210-971, Brazil.

E Corresponding author. Email: marthabernardi@gmail.com

Reproduction, Fertility and Development - https://doi.org/10.1071/RD15309
Submitted: 30 July 2015  Accepted: 25 April 2016   Published online: 31 May 2016

Abstract

The present study investigated whether male offspring (F2 generation) from female rats (F1 generation) whose mothers (F0 generation) were food restricted during gestation inherit a phenotypic transgenerational tendency towards being overweight and obese in the juvenile period, in the absence of food restriction in the F1/F2 generations. Dams of the F0 generation were 40% food restricted during pregnancy. Bodyweight, the number and size of larger and small hypodermal adipocytes (HAs), total retroperitoneal fat (RPF) weight and the expression of glial fibrillary acidic protein (GFAP) in periventricular hypothalamic astrocytes (PHAs), as determined by immunohistochemistry, were evaluated in both generations. In the female F1 generation, there was low bodyweight gain only during the juvenile period (30–65 days of age), a decrease in the size of small adipocytes, an increase in the number of small adipocytes, an increase in RPF weight and an increase in GFAP expression in PHAs at 90–95 days of age. In males of the F2 generation at 50 days of age, there was increased bodyweight and RPF weight, and a small number of adipocytes and GFAP expression in PHAs. These data indicate that the phenotypic transgenerational tendency towards being overweight and obese was observed in females (F1) from mothers (F0) that were prenatally food restricted was transmitted to their male offspring.

Additional keywords: adipose tissue, development, growth, hypothalamus, reprogramming.


References

Argente-Arizón, P., Freire-Regatillo, A., Argente, J., and Chowen, J. A. (2015). Role of non-neuronal cells in body weight and appetite control. Front. Endocrinol. 6, 42.
Role of non-neuronal cells in body weight and appetite control.CrossRef | open url image1

Buckman, L. B., Thompson, M. M., Moreno, H. N., and Ellacott, K. L. J. (2013). Regional astrogliosis in the mouse hypothalamus in response to obesity. J. Comp. Neurol. 521, 1322–1333.
Regional astrogliosis in the mouse hypothalamus in response to obesity.CrossRef | 1:CAS:528:DC%2BC3sXjtFSjsLk%3D&md5=99857a4e1a4556e57ea07ef30166d4a2CAS | 23047490PubMed | open url image1

Calabro, P., and Yeh, E. T. (2007). Obesity, inflammation, and vascular disease: the role of the adipose tissue as an endocrine organ. Subcell. Biochem. 42, 63–91.
Obesity, inflammation, and vascular disease: the role of the adipose tissue as an endocrine organ.CrossRef | 17612046PubMed | open url image1

Chen, H., Simar, D., Lambert, K., Mercier, J., and Morris, M. J. (2008). Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149, 5348–5356.
Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism.CrossRef | 1:CAS:528:DC%2BD1cXhtlWnsr3F&md5=ed432812bbb36b5a9c3ebf3f7147c498CAS | 18635655PubMed | open url image1

Chiavegatto, S., and Bernardi, M. M. (1991). Prenatal versus postnatal effects on offspring weight gain of rats exposed to diphenhydramine: a critical evaluation of fostering procedures in rats. Comp. Biochem. Physiol. A 99, 219–221.
Prenatal versus postnatal effects on offspring weight gain of rats exposed to diphenhydramine: a critical evaluation of fostering procedures in rats.CrossRef | 1:STN:280:DyaK3M3nsFCnsw%3D%3D&md5=07a12fd2b1f79cc1ccbda5595863666aCAS | 1675949PubMed | open url image1

De Souza, C. T., Araujo, E. P., Bordin, S., Ashimine, R., Zollner, R. L., Boschero, A. C., Saad, M. J. A., and Velloso, L. A. (2005). Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192–4199.
Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus.CrossRef | 1:CAS:528:DC%2BD2MXhtVGmurjK&md5=7c127606605668eaa7bb9799d765f1e4CAS | 16002529PubMed | open url image1

DeSantis, D. T., and Schmaltz, L. W. (1984). The mother–litter relationship in developmental rat studies: cannibalism vs caring. Dev. Psychobiol. 17, 255–262.
The mother–litter relationship in developmental rat studies: cannibalism vs caring.CrossRef | 1:STN:280:DyaL2c3gvFCiuw%3D%3D&md5=97587fc018868636c291f50b653398f3CAS | 6539261PubMed | open url image1

Gamber, K. M., Huo, L., Ha, S., Hairston, J. E., Greeley, S., and Bjørbæk, C. (2012). Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PLoS One 7, e30485.
Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity.CrossRef | 1:CAS:528:DC%2BC38XitFeis7g%3D&md5=92ac355e28647a8d6b99587950090c7bCAS | 22276206PubMed | open url image1

García-Cáceres, C., Yi, C. X., and Tschöp, M. H. (2013). Hypothalamic astrocytes in obesity. Endocrinol. Metab. Clin. North Am. 42, 57–66.
Hypothalamic astrocytes in obesity.CrossRef | 23391239PubMed | open url image1

Hajer, G. R., Van Haeften, T. W., and Visseren, F. L. J. (2008). Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 29, 2959–2971.
Adipose tissue dysfunction in obesity, diabetes, and vascular diseases.CrossRef | 1:CAS:528:DC%2BD1MXht1enu7s%3D&md5=6e51754d237142ac98419784bb4611c7CAS | 18775919PubMed | open url image1

Hales, C. N., and Barker, D. J. P. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601.
Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis.CrossRef | 1:STN:280:DyaK38zlsVyhuw%3D%3D&md5=6f1236ea94dd3aed02124b0f182db57fCAS | 1644236PubMed | open url image1

Hales, C. N., and Barker, D. J. P. (2013). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Int. J. Epidemiol. 42, 1215–1222.
Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis.CrossRef | 1:STN:280:DC%2BC2c%2FpvVKmtw%3D%3D&md5=2436d6250987f7816712e94239012c35CAS | 24159065PubMed | open url image1

Holemans, K., Aerts, L., and Van Assche, F. A. (2003). Fetal growth restriction and consequences for the offspring in animal models. J. Soc. Gynecol. Investig. 10, 392–399.
Fetal growth restriction and consequences for the offspring in animal models.CrossRef | 1:STN:280:DC%2BD3svlvVGguw%3D%3D&md5=31ac2c5265519312df3f725efd9be886CAS | 14519479PubMed | open url image1

Horvath, T. L., Sarman, B., García-Cáceres, C., Enriori, P. J., Sotonyi, P., Shanabrough, M., Borok, E., Argente, J., Chowen, J. A., Perez-Tilve, D., Pfluger, P. T., Brönneke, H. S., Levin, B. E., Diano, S., Cowley, M. A., and Tschöp, M. H. (2010). Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl Acad. Sci. USA 107, 14 875–14 880.
Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity.CrossRef | 1:CAS:528:DC%2BC3cXhtVKqu7zI&md5=9fb851401d46fde88ee758786bc973d6CAS | open url image1

Hotamisligil, G. S., Arner, P., Caro, J. F., Atkinson, R. L., and Spiegelman, B. M. (1995). Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J. Clin. Invest. 95, 2409–2415.
Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance.CrossRef | 1:CAS:528:DyaK2MXltlWru70%3D&md5=5c5ee821d2b648368302cbd29f68c55aCAS | 7738205PubMed | open url image1

Hsuchou, H., He, Y., Kastin, A. J., Tu, H., Markadakis, E. N., Rogers, R. C., Fossier, P. B., and Pan, W. (2009). Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain 132, 889–902.
Obesity induces functional astrocytic leptin receptors in hypothalamus.CrossRef | 19293246PubMed | open url image1

Joaquim, A. O., Coelho, C. P., Motta, P. D., Bondan, E. F., Teodorov, E., Martins, M. F., Kirsten, T. B., Casarin, R. C., Bonamin, L. V., and Bernardi, M. M. (2015). Transgenerational effects of a hypercaloric diet. Reprod. Fertil. Dev. , .
Transgenerational effects of a hypercaloric diet.CrossRef | 26304066PubMed | open url image1

Laforest, S., Labrecque, J., Michaud, A., Cianflone, K., and Tchernof, A. (2015). Adipocyte sizes as a determinant of metabolic disease and adipose tissue dysfunction. Crit. Rev. Clin. Lab. Sci. 52, 301–313.
Adipocyte sizes as a determinant of metabolic disease and adipose tissue dysfunction.CrossRef | 1:CAS:528:DC%2BC2MXhsl2nur%2FN&md5=5ebe4254610ef429a472d9547d7adcd5CAS | 26292076PubMed | open url image1

Lechan, R. M., and Fekete, C. (2006). The TRH neuron: a hypothalamic integrator of energy metabolism. Prog. Brain Res. 153, 209–235.
| 1:CAS:528:DC%2BD28XhtFyru7bN&md5=1832a46070920d58866933c0a5dcf2f7CAS | 16876577PubMed | open url image1

Levine, J. B., Kong, J., Nadler, M., and Xu, Z. (1999). Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS). Glia 28, 215–224.
Astrocytes interact intimately with degenerating motor neurons in mouse amyotrophic lateral sclerosis (ALS).CrossRef | 1:STN:280:DC%2BD3c%2Fis1ajsg%3D%3D&md5=00698b87381d2135d959036be76bd17eCAS | 10559780PubMed | open url image1

Michaud, A., Laforest, S., Pelletier, M., Nadeau, M., Simard, S., Daris, M., Lebœuf, M., Vidal, H., Géloën, A., and Tchernof, A. (2016). Abdominal adipocyte populations in women with visceral obesity. Eur. J. Endocrinol. 174, 227–239.
Abdominal adipocyte populations in women with visceral obesity.CrossRef | 1:CAS:528:DC%2BC28XksFagtbk%3D&md5=fea0cbb3a5447c3b4ec8986f9582de18CAS | 26578637PubMed | open url image1

Middeldorp, J., and Hol, E. M. (2011). GFAP in health and disease. Prog. Neurobiol. 93, 421–443.
GFAP in health and disease.CrossRef | 1:CAS:528:DC%2BC3MXjtFWisrw%3D&md5=206e032293574c47009dbeab963e23ffCAS | 21219963PubMed | open url image1

Morag, M., Popliker, F., and Yagil, R. (1975). Effect of litter size on milk yeld in the rat. Lab. Anim. 9, 43–47.
Effect of litter size on milk yeld in the rat.CrossRef | 1:STN:280:DyaE2M7hslKnsQ%3D%3D&md5=f99c255415c375e0cb3b356b54c07db0CAS | 1117695PubMed | open url image1

Pan, W., Hsuchou, H., He, Y., Sakharkar, A., Cain, C., Yu, C., and Kastin, A. J. (2008). Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology 149, 2798–2806.
Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice.CrossRef | 1:CAS:528:DC%2BD1cXms1entrc%3D&md5=b05f09b54974713577504f069f4dacc6CAS | 18292187PubMed | open url image1

Parlee, S. D., and MacDougald, O. A. (2014). Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochim. Biophys. Acta 1842, 495–506.
Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity.CrossRef | 1:CAS:528:DC%2BC3sXht1Gms7bL&md5=27697c9eb246fc7b2e2900794ebf8609CAS | 23871838PubMed | open url image1

Pennington, K. A., Harper, J. L., Sigafoos, A. N., Beffa, L. M., Carleton, S. M., Phillips, C. L., and Schulz, L. C. (2012). Effect of food restriction and leptin supplementation on fetal programming in mice. Endocrinology 153, 4556–4567.
Effect of food restriction and leptin supplementation on fetal programming in mice.CrossRef | 1:CAS:528:DC%2BC38XhtlagtbzO&md5=03bea6842c44d0e635cc67e0bbe79903CAS | 22778222PubMed | open url image1

Reynolds, C. M., Gray, C., Li, M., Segovia, S. A., and Vickers, M. H. (2015). Early life nutrition and energy balance disorders in offspring in later life. Nutrients 7, 8090–8111.
Early life nutrition and energy balance disorders in offspring in later life.CrossRef | 1:CAS:528:DC%2BC28Xls1WjtLc%3D&md5=45939bdebac5e525a02db007ff1438f6CAS | 26402696PubMed | open url image1

Ridet, J. L., Alonso, G., Chauvet, N., Chapron, J., Koenig, J., and Privat, A. (1995). Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes. Cell Tissue Res. 283, 39–49.
Immunocytochemical characterization of a new marker of fibrous and reactive astrocytes.CrossRef | open url image1

Schäffler, A., Binart, N., Schölmerich, J., and Büchler, C. (2005). Brain talks with fat: evidence for a hypothalamic–pituitary–adipose axis? Neuropeptides 39, 363–367.
Brain talks with fat: evidence for a hypothalamic–pituitary–adipose axis?CrossRef | 16040119PubMed | open url image1

Sébert, S. P., Hyatt, M. A., Chan, L. L. Y., Patel, N., Bell, R. C., Keisler, D., Stephenson, T., Budge, H., Symonds, M. E., and Gardner, D. S. (2009). Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity. Endocrinology 150, 634–641.
Maternal nutrient restriction between early and midgestation and its impact upon appetite regulation after juvenile obesity.CrossRef | 18818297PubMed | open url image1

Sofroniew, M. V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647.
Molecular dissection of reactive astrogliosis and glial scar formation.CrossRef | 1:CAS:528:DC%2BD1MXhsVKgs7bP&md5=162aea3b3b611f14730823d6bbcd4947CAS | 19782411PubMed | open url image1

Sofroniew, M. V., and Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35.
Astrocytes: biology and pathology.CrossRef | 20012068PubMed | open url image1

Tchernof, A. (2006). Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution. Diabetes 55, 1353–1360.
Regional differences in adipose tissue metabolism in women: minor effect of obesity and body fat distribution.CrossRef | 1:CAS:528:DC%2BD28XksFahtLo%3D&md5=9137508b94d435d321f8eb24a10caf07CAS | 16644692PubMed | open url image1

Tchernof, A., and Després, J.-P. (2013). Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404.
Pathophysiology of human visceral obesity: an update.CrossRef | 1:CAS:528:DC%2BC3sXhvFKns7c%3D&md5=489393687d0e0bb5c8d8ce5d5813426dCAS | 23303913PubMed | open url image1

Thaler, J. P., Yi, C. X., Schur, E. A., Guyenet, S. J., Hwang, B. H., Dietrich, M. O., et al. (2012). Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162.
Obesity is associated with hypothalamic injury in rodents and humans.CrossRef | 1:CAS:528:DC%2BC38XkvFCltw%3D%3D&md5=df5414be2343e2a08242c2672af5d1edCAS | 22201683PubMed | open url image1

Velloso, L. A., Araújo, E. P., and De Souza, C. T. (2008). Diet-induced inflammation of the hypothalamus in obesity. Neuroimmunomodulation 15, 189–193.
Diet-induced inflammation of the hypothalamus in obesity.CrossRef | 1:CAS:528:DC%2BD1cXhtFyqtrbK&md5=7f4ac76c7892f45f068d1b8f04933eb3CAS | 18781083PubMed | open url image1

Vrang, N., Larsen, P. J., Clausen, J. T., and Kristensen, P. (1999). Neurochemical characterization of hypothalamic cocaine- amphetamine-regulated transcript neurons. J. Neurosci. 19, RC5.
| 1:STN:280:DC%2BD3c3ns1ehsQ%3D%3D&md5=3e0cd007f1b98bd4288beaf0d4b3a9baCAS | 10234051PubMed | open url image1

Williams, L., Seki, Y., Vuguin, P. M., and Charron, M. J. (2014). Animal models of in utero exposure to a high fat diet: a review. Biochim. Biophys. Acta 1842, 507–519.
Animal models of in utero exposure to a high fat diet: a review.CrossRef | 1:CAS:528:DC%2BC3sXht1emtr7N&md5=6740f06431aa5fd5ebbb692fa60a3d42CAS | 23872578PubMed | open url image1

Yang, Z., and Huffman, S. L. (2013). Nutrition in pregnancy and early childhood and associations with obesity in developing countries. Matern. Child Nutr. 9, 105–119.
Nutrition in pregnancy and early childhood and associations with obesity in developing countries.CrossRef | 23167588PubMed | open url image1

Yi, C.-X., and Tschop, M. H. (2012). Brain–gut–adipose-tissue communication pathways at a glance. Dis. Model. Mech. 5, 583–587.
Brain–gut–adipose-tissue communication pathways at a glance.CrossRef | 1:CAS:528:DC%2BC38XhvVGqsrnL&md5=8e7f882296a4edd9d9f4e52fe241acf8CAS | 22915019PubMed | open url image1



Export Citation Cited By (1)