Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Immunolocalisation of aromatase regulators liver kinase B1, phosphorylated AMP-activated protein kinase and cAMP response element-binding protein-regulated transcription co-activators in the human testis

Seungmin Ham A B , Kristy A. Brown A C , Evan R. Simpson A D and Sarah J. Meachem A E F

A Hudson Institute of Medical Research, 27–31 Wright Street, Clayton, Vic. 3168, Australia.

B Department of Obstetrics and Gynaecology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

C Department of Physiology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

D Department of Biochemistry and Molecular Biology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

E Department of Anatomy and Developmental Biology, Monash University, Wellington Road and Blackburn Road, Clayton, Vic. 3800, Australia.

F Corresponding author. Email: sarah.meachem@princehenrys.org

Reproduction, Fertility and Development 29(5) 1029-1038 https://doi.org/10.1071/RD15390
Submitted: 2 October 2015  Accepted: 4 February 2016   Published: 7 March 2016

Abstract

Although oestrogens are essential for spermatogenesis and their biosynthesis is dependent on aromatase expression, the molecular mechanism of aromatase regulation is poorly understood. Our laboratory has demonstrated that liver kinase B1 (LKB1) is a negative regulator of aromatase in the breast by phosphorylating AMP-activated protein kinase (AMPK) and inhibiting the nuclear translocation of the cAMP response element-binding protein-regulated transcription co-activator (CRTC) 2. The aim of this study was to determine the location of testis-associated proteins in the LKB1–CRTC pathway. Aromatase, LKB1, phosphorylated AMPK (pAMPK) and CRTC1–3 were examined by selected immunofluorescent antibodies in testis samples from a prepubertal boy and three fertile men. Aromatase, pAMPK and LKB1 proteins were present in the seminiferous epithelium and interstitium of the testis and were expressed in a differential and developmental manner in particular cell types. The expression pattern of LKB1 was similar to that of pAMPK and inversely related to aromatase expression. CRTC1 and CRTC3 were localised in the seminiferous epithelium, whereas CRTC2 was barely detectable in testis. These results lead to the conclusion that LKB1 is involved in the molecular pathway that underpins aromatase regulation in the testis via CRTC1 and CRTC3 and may be important for the oestrogen-mediated development of germ cells.

Additional keywords: aromatase, spermatogenesis, steroidogenesis.


References

Alessi, D. R., Sakamoto, K., and Bayascas, J. R. (2006). LKB1-dependent signalling pathways. Annu. Rev. Biochem. 75, 137–163.
LKB1-dependent signalling pathways.CrossRef | 1:CAS:528:DC%2BD28XosVKhsrg%3D&md5=0bc35022cf8d386fea0c7796445ee0dbCAS | 16756488PubMed | open url image1

Bois, C., Delalande, C., Nurmio, M., Parvinen, M., Zanatta, L., Toppari, J., and Carreau, S. (2010). Age- and cell-related gene expression of aromatase and oestrogen receptors in the rat testis. J. Mol. Endocrinol. 45, 147–159.
Age- and cell-related gene expression of aromatase and oestrogen receptors in the rat testis.CrossRef | 1:CAS:528:DC%2BC3cXhtlGls7jJ&md5=1bdcabf22e2c48abafab33c463f9e6a8CAS | 20554652PubMed | open url image1

Brodie, A., Inkster, S., and Yue, W. (2001). Aromatase expression in the human male. Mol. Cell. Endocrinol. 178, 23–28.
Aromatase expression in the human male.CrossRef | 1:CAS:528:DC%2BD3MXktlWnt7k%3D&md5=f7fcf6dff04663c7a65d02f9b1410b71CAS | 11403890PubMed | open url image1

Brown, K. A., McInnes, K. J., Hunger, N. I., Oakhiil, J. S., Steinberg, G. R., and Simpson, E. R. (2009a). Subcellular localisation of cyclic AMP-responsive element-binding protein-regulated transcription co-activator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 69, 5392–5399.
Subcellular localisation of cyclic AMP-responsive element-binding protein-regulated transcription co-activator 2 provides a link between obesity and breast cancer in postmenopausal women.CrossRef | 1:CAS:528:DC%2BD1MXnvFajsr4%3D&md5=25206325268d0f5a26f62e0e8ff3e5c0CAS | 19509226PubMed | open url image1

Bulun, S. E., Rosenthal, I. M., Brodie, A. M., Inkster, S. E., Zeller, W. P., DiGeorge, A. M., Frasier, S. D., Kilgore, M. W., and Simpson, E. R. (1993). Use of tissue-specific promoters in the regulation of aromatase cytochrome P450 gene expression in human testicular and ovarian sex-cord tumours, as well as in normal fetal and adult gonads. J. Clin. Endocrinol. Metab. 77, 1616–1621.
| 1:STN:280:DyaK2c%2Fos1Omtw%3D%3D&md5=fb2ebd2f937c98f9f8606467fd4e0505CAS | 8263150PubMed | open url image1

Cacciola, G., Chioccarelli, T., Fasano, S., Pierantoni, R., and Cobellis, G. (2013). Oestrogens and spermiogenesis: new insights from Type 1 cannabinoid receptor knockout mice. Int. J. Endocrinol. 2013, 501350.
Oestrogens and spermiogenesis: new insights from Type 1 cannabinoid receptor knockout mice.CrossRef | 24324492PubMed | open url image1

Carreau, S. (1996). Paracrine control of human Leydig cell and Sertoli cell functions. Folia Histochem. Cytobiol. 34, 111–119.
| 1:STN:280:DyaK2s7it1egtw%3D%3D&md5=aba18285b16696bcc15557e9a90f4d84CAS | 8967955PubMed | open url image1

Carreau, S., Bourguiba, S., Lambard, S., Silandre, D., and Delalande, C. (2004). The promoter(s) of the aromatase gene in male testicular cells. Reprod. Biol. 4, 23–34.
| 15094793PubMed | open url image1

Carreau, S., Silandre, D., Bois, C., Bouraima, H., Galeraud-Denis, I., and Delalande, C. (2007). Oestrogens: a new player in spermatogenesis. Folia Histochem. Cytobiol. 45, S5–S10.
| 18292817PubMed | open url image1

Coen, P., Kulin, H., Ballantine, T., Zaino, R., Frauenhoffer, E., Boal, D., Inkster, S., Brodie, A., and Santen, R. (1991). An aromatase-producing sex-cord tumour resulting in prepubertal gynecomastia. N. Engl. J. Med. 324, 317–322.
An aromatase-producing sex-cord tumour resulting in prepubertal gynecomastia.CrossRef | 1:STN:280:DyaK3M%2FpsV2ksA%3D%3D&md5=4879bfe70c9ea3d8c502b60411bf2594CAS | 1986290PubMed | open url image1

Conkright, M. D., Canettieri, G., Screaton, R., Guzman, E., Miraglia, L., Hogenesch, J. B., and Montminy, M. (2003). TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413–423.
TORCs: transducers of regulated CREB activity.CrossRef | 1:CAS:528:DC%2BD3sXnt12qtLg%3D&md5=ecdf7e907d090a5a38e28d839c2a803dCAS | 1:CAS:528:DC%2BD3sXnt12qtLg%3D&md5=ecdf7e907d090a5a38e28d839c2a803dCAS | 14536081PubMed | open url image1

Correia, S., Cardoso, H. J., Cavaco, J. E., and Socorro, S. (2015). Oestrogens as apoptosis regulators in mammalian testis: angels or devils? Expert Rev. Mol. Med. 17, e2.
Oestrogens as apoptosis regulators in mammalian testis: angels or devils?CrossRef | 26258687PubMed | open url image1

Fowler, K. A., Gill, K., Kirma, N., Dillehay, D. L., and Tekmal, R. R. (2000). Overexpression of aromatase leads to development of testicular Leydig cell tumours: an in vivo model for hormone-mediated testicular cancer. Am. J. Pathol. 156, 347–353.
Overexpression of aromatase leads to development of testicular Leydig cell tumours: an in vivo model for hormone-mediated testicular cancer.CrossRef | 1:CAS:528:DC%2BD3cXns1yktA%3D%3D&md5=2c7a1aa30fa9989571a0b99a26a50410CAS | 1:CAS:528:DC%2BD3cXns1yktA%3D%3D&md5=2c7a1aa30fa9989571a0b99a26a50410CAS | 10623684PubMed | open url image1

Galardo, M. N., Riera, M. F., Pellizzari, E. H., Cigorraga, S. B., and Meroni, S. B. (2007). The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J. Mol. Endocrinol. 39, 279–288.
The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells.CrossRef | 1:CAS:528:DC%2BD2sXhtlSit7%2FP&md5=0bd6ea863ff7325077fc78212e2b5a4aCAS | 1:CAS:528:DC%2BD2sXhtlSit7%2FP&md5=0bd6ea863ff7325077fc78212e2b5a4aCAS | 17909267PubMed | open url image1

Ham, S., Meachem, S. J., Choong, C. S., Charles, A. K., Baynam, G. S., Jones, T. W., Samarajeewa, N. U., Simpson, E. R., and Brown, K. A. (2013). Overexpression of aromatase associated with loss of heterozygosity of the STK11 gene accounts for prepubertal gynecomastia in boys with Peutz­–Jeghers syndrome. J. Clin. Endocrinol. Metab. 98, E1979–E1987.
Overexpression of aromatase associated with loss of heterozygosity of the STK11 gene accounts for prepubertal gynecomastia in boys with Peutz­–Jeghers syndrome.CrossRef | 1:CAS:528:DC%2BC3sXhvF2ksrnK&md5=5db2971d1c2de41b6e57f6d523c12e92CAS | 24037887PubMed | 24037887PubMed | open url image1

Haverfield, J. T., Ham, S., Brown, K. A., Simpson, E. R., and Meachem, S. J. (2011). Teasing out the role of aromatase in the healthy and diseased testis. Spermatogenesis 1, 240–249.
Teasing out the role of aromatase in the healthy and diseased testis.CrossRef | 22319672PubMed | 22319672PubMed | open url image1

Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., and Hardie, D. G. (2003). Complexes between the LKB1 tumour suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28.
Complexes between the LKB1 tumour suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade.CrossRef | 14511394PubMed | 14511394PubMed | open url image1

Hemminki, A., Tomlinson, I., Markie, D., Jarvinen, H., Sistonen, P., Bjorkqvist, A. M., Knuutila, S., Salovaara, R., Bodmer, W., Shibata, D., de la Chapelle, A., and Aaltonen, L. A. (1997). Localisation of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridisation and targeted linkage analysis. Nat. Genet. 15, 87–90.
Localisation of a susceptibility locus for Peutz–Jeghers syndrome to 19p using comparative genomic hybridisation and targeted linkage analysis.CrossRef | 1:CAS:528:DyaK2sXjsFamuw%3D%3D&md5=057be9d37d6a8c736d4e5a4078382d03CAS | 8988175PubMed | 8988175PubMed | open url image1

Inkster, S., Yue, W., and Brodie, A. (1995). Human testicular aromatase: immunocytochemical and biochemical studies. J. Clin. Endocrinol. Metab. 80, 1941–1947.
| 1:CAS:528:DyaK2MXmtFOmsLY%3D&md5=c418384c23a71d95a22de725e4c5c757CAS | 7539819PubMed | 7539819PubMed | open url image1

Jeghers, H., Mc, K. V., and Katz, K. H. (1949). Generalised intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N. Engl. J. Med. 241, 1031–1036.
Generalised intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance.CrossRef | 1:STN:280:DyaG3c%2FgslyktQ%3D%3D&md5=42c5c2e1e9bccb236a57d6bb01f08c28CAS | 1:STN:280:DyaG3c%2FgslyktQ%3D%3D&md5=42c5c2e1e9bccb236a57d6bb01f08c28CAS | 15398245PubMed | 15398245PubMed | open url image1

Khan, S. A., Ndjountche, L., Pratchard, L., Spicer, L. J., and Davis, J. S. (2002). Follicle-stimulating hormone amplifies insulin-like growth factor I-mediated activation of AKT/protein kinase B signalling in immature rat sertoli cells. Endocrinology 143, 2259–2267.
Follicle-stimulating hormone amplifies insulin-like growth factor I-mediated activation of AKT/protein kinase B signalling in immature rat sertoli cells.CrossRef | 1:CAS:528:DC%2BD38XjvFKjtbw%3D&md5=ddafcef9080e4ce9c74cb7abd408e338CAS | 1:CAS:528:DC%2BD38XjvFKjtbw%3D&md5=ddafcef9080e4ce9c74cb7abd408e338CAS | 12021190PubMed | 12021190PubMed | open url image1

Lambard, S., Galeraud Denis, I., Bouraïma, H., Bourguiba, S., Chocat, A., and Carreau, S. (2003). Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol. Hum. Reprod. 9, 117–124.
Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility.CrossRef | 1:CAS:528:DC%2BD3sXjslygtLs%3D&md5=8413988d408b94c8af629257e0fcfc48CAS | 1:CAS:528:DC%2BD3sXjslygtLs%3D&md5=8413988d408b94c8af629257e0fcfc48CAS | 12606587PubMed | 12606587PubMed | open url image1

Lardone, M. C., Castillo, P., Valdevenito, R., Ebensperger, M., Ronco, A. M., Pommer, R., Piottante, A., and Castro, A. (2010). P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. Int. J. Androl. 33, 650–660.
| 1:CAS:528:DC%2BC3cXhtVOntbvI&md5=5259c5442430a7e7064e2aefa95931d3CAS |
| 1:CAS:528:DC%2BC3cXhtVOntbvI&md5=5259c5442430a7e7064e2aefa95931d3CAS | 19906189PubMed | 19906189PubMed | open url image1

Levallet, J., Mittre, H., Delarue, B., and Carreau, S. (1998). Alternative splicing events in the coding region of the cytochrome P450 aromatase gene in male rat germ cells. J. Mol. Endocrinol. 20, 305–312.
Alternative splicing events in the coding region of the cytochrome P450 aromatase gene in male rat germ cells.CrossRef | 1:CAS:528:DyaK1cXks1Kksrg%3D&md5=dd0c9ffcbb229097f1ccd7060bb21480CAS | 1:CAS:528:DyaK1cXks1Kksrg%3D&md5=dd0c9ffcbb229097f1ccd7060bb21480CAS | 9687153PubMed | 9687153PubMed | open url image1

McCabe, M. J., Tarulli, G. A., Meachem, S. J., Robertson, D. M., Smooker, P. M., and Stanton, P. G. (2010). Gonadotrophins regulate rat testicular tight junctions in vivo. Endocrinology 151, 2911–2922.
Gonadotrophins regulate rat testicular tight junctions in vivo.CrossRef | 1:CAS:528:DC%2BC3cXnsVyqtbc%3D&md5=7bb7d78bb83027ee65de69e49bb25ee0CAS | 20357222PubMed | 20357222PubMed | open url image1

McLachlan, R. I., O’Donnell, L., Stanton, P. G., Balourdos, G., Frydenberg, M., de Kretser, D. M., and Robertson, D. M. (2002). Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones and germ-cell populations in normal young men. J. Clin. Endocrinol. Metab. 87, 546–556.
Effects of testosterone plus medroxyprogesterone acetate on semen quality, reproductive hormones and germ-cell populations in normal young men.CrossRef | 1:CAS:528:DC%2BD38XhsVSjur8%3D&md5=87f1a4dee5331ce46f3c72dc3fe322aaCAS | 11836283PubMed | 11836283PubMed | open url image1

Meachem, S. J., Stanton, P. G., and Schlatt, S. (2005). Follicle-stimulating hormone regulates both Sertoli cell and spermatogonial populations in the adult photoinhibited Djungarian hamster testis. Biol. Reprod. 72, 1187–1193.
Follicle-stimulating hormone regulates both Sertoli cell and spermatogonial populations in the adult photoinhibited Djungarian hamster testis.CrossRef | 1:CAS:528:DC%2BD2MXjslSntrg%3D&md5=e7e7daca5b515e1ea4cddffbd520f35eCAS | 1:CAS:528:DC%2BD2MXjslSntrg%3D&md5=e7e7daca5b515e1ea4cddffbd520f35eCAS | 15659702PubMed | 15659702PubMed | open url image1

Mehenni, H., Gehrig, C., Nezu, J., Oku, A., Shimane, M., Rossier, C., Guex, N., Blouin, J. L., Scott, H. S., and Antonarakis, S. E. (1998). Loss of LKB1 kinase activity in Peutz–Jeghers syndrome and evidence for allelic and locus heterogeneity. Am. J. Hum. Genet. 63, 1641–1650.
Loss of LKB1 kinase activity in Peutz–Jeghers syndrome and evidence for allelic and locus heterogeneity.CrossRef | 1:CAS:528:DyaK1MXltF2qtg%3D%3D&md5=af0a17f04dec37b7ef0386c27cb0584aCAS | 9837816PubMed | 9837816PubMed | open url image1

Bhasin, S., and Basson, R. (2011). Sexual dysfunction in men and women. In ‘Williams Textbook of Endocrinology. 12th edn’. (Eds S. Melmed, K. S. Polonsky, P. R. Larsen and H. M. Kronenberg.) pp. 785–786. (Elsevier/Saunders: Philadelphia.)

Nakada, Y., Stewart, T. G., Pena, C. G., Zhang, S., Zhao, N., Bardeesy, N., Sharpless, N. E., Wong, K. K., Hayes, D. N., and Castrillon, D. H. (2013). The LKB1 tumour suppressor as a biomarker in mouse and human tissues. PLoS One 8, e73449.
The LKB1 tumour suppressor as a biomarker in mouse and human tissues.CrossRef | 1:CAS:528:DC%2BC3sXhsFKitL%2FF&md5=b8135518424aa0eede04c6b0b2ca6145CAS | 24086281PubMed | 24086281PubMed | open url image1

Rommerts, F. F. G. (2004). Testosterone: an overview of biosynthesis, transport, metabolism and non-genomic actions. In ‘Testosterone: Action, Deficiency, Substitution’. (Eds E. Nieschlag and H. M. Behre) pp. 1–19. (Cambridge University Press: Cambridge.)

Papadopoulos, V., Carreau, S., Szerman-Joly, E., Drosdowsky, M. A., Dehennin, L., and Scholler, R. (1986). Rat testis 17 beta-oestradiol: identification by gas chromatography–mass spectrometry and age related cellular distribution. J. Steroid Biochem. 24, 1211–1216.
Rat testis 17 beta-oestradiol: identification by gas chromatography–mass spectrometry and age related cellular distribution.CrossRef | 1:CAS:528:DyaL28XkvFWlsLY%3D&md5=8169f28b820341be4c973958fc7c9e06CAS | 3736047PubMed | 3736047PubMed | open url image1

Parvinen, M. (1982). Regulation of the seminiferous epithelium. Endocr. Rev. 3, 404–417.
Regulation of the seminiferous epithelium.CrossRef | 1:CAS:528:DyaL3sXivVSguw%3D%3D&md5=e9ab8e08cdb9fb4fc3aa080772c0cd14CAS | 6295753PubMed | 6295753PubMed | open url image1

Robertson, K. M., Simpson, E. R., Lacham-Kaplan, O., and Jones, M. E. (2001). Characterisation of the fertility of male aromatase knockout mice. J. Androl. 22, 825–830.
| 1:CAS:528:DC%2BD3MXnt1Sqtr4%3D&md5=a24a119f9e05bec49bdc4d19ea75cc66CAS | 11545296PubMed | 11545296PubMed | open url image1

Sasano, H., Edwards, D. P., Anderson, T. J., Silverberg, S. G., Evans, D. B., Santen, R. J., Ramage, P., Simpson, E. R., Bhatnagar, A. S., and Miller, W. R. (2003). Validation of new aromatase monoclonal antibodies for immunohistochemistry: progress report. J. Steroid Biochem. Mol. Biol. 86, 239–244.
Validation of new aromatase monoclonal antibodies for immunohistochemistry: progress report.CrossRef | 1:CAS:528:DC%2BD3sXptVemsrw%3D&md5=d0308ddb414c96698bc0328c609d9a7cCAS | 14623517PubMed | 14623517PubMed | open url image1

Schulze, W., and Rehder, U. (1984). Organisation and morphogenesis of the human seminiferous epithelium. Cell Tissue Res. 237, 395–407.
Organisation and morphogenesis of the human seminiferous epithelium.CrossRef | 1:STN:280:DyaL2M%2FisVOrsA%3D%3D&md5=ca034455b989cc258b3ecdebfb7334dcCAS | 6488283PubMed | 6488283PubMed | open url image1

Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646.
The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin.CrossRef | 1:CAS:528:DC%2BD2MXhtlSntb7E&md5=5f917c9ee267bdf0ea3accfc989ae7acCAS | 16308421PubMed | 16308421PubMed | open url image1

Simpson, E. R. (1998). Genetic mutations resulting in oestrogen insufficiency in the male. Mol. Cell. Endocrinol. 145, 55–59.
Genetic mutations resulting in oestrogen insufficiency in the male.CrossRef | 1:CAS:528:DyaK1cXnt1eit7k%3D&md5=9c424901629deb95aef2b46574c3c54aCAS | 9922099PubMed | 9922099PubMed | open url image1

Tarulli, G. A., Stanton, P. G., Lerchl, A., and Meachem, S. J. (2006). Adult Sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organisation. Biol. Reprod. 74, 798–806.
Adult Sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organisation.CrossRef | 1:CAS:528:DC%2BD28Xjsl2jtb8%3D&md5=40f4b4a1172adabcd6f362bd21a4fab3CAS | 16407497PubMed | 16407497PubMed | open url image1

Tiainen, M., Vaahtomeri, K., Ylikorkala, A., and Makela, T. P. (2002). Growth arrest by the LKB1 tumour suppressor: induction of p21(WAF1/CIP1). Hum. Mol. Genet. 11, 1497–1504.
Growth arrest by the LKB1 tumour suppressor: induction of p21(WAF1/CIP1).CrossRef | 1:CAS:528:DC%2BD38XltVyrs7Y%3D&md5=e186ef3a54224af41b6ed6046ffc482aCAS | 12045203PubMed | 12045203PubMed | open url image1

Towler, M. C., Fogarty, S., Hawley, S. A., Pan, D. A., Martin, D. M., Morrice, N. A., McCarthy, A., Galardo, M. N., Meroni, S. B., Cigorraga, S. B., Ashworth, A., Sakamoto, K., and Hardie, D. G. (2008). A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochem. J. 416, 1–14.
A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis.CrossRef | 1:CAS:528:DC%2BD1cXht12gt7zF&md5=d7c0c6cc4aa20ac2bc13479fd07b3f08CAS | 18774945PubMed | 18774945PubMed | open url image1

Udd, L., and Makela, T. P. (2011). LKB1 signalling in advancing cell differentiation. Fam. Cancer 10, 425–435.
LKB1 signalling in advancing cell differentiation.CrossRef | 1:CAS:528:DC%2BC3MXhtF2rs7%2FN&md5=d7c26319b3575b110fb6c40be2e35ca2CAS | 21519908PubMed | 21519908PubMed | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (1)