Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Identification of motility-associated progesterone-responsive differentially phosphorylated proteins

V. Sagare-Patil A and D. Modi A B

A Molecular and Cellular Biology Laboratory, National Institute for Research in Reproductive Health, Indian Council of Medical Research, JM Street, Parel, Mumbai 400012, India.

B Corresponding author. Email: deepaknmodi@yahoo.com; modid@nirrh.res.in

Reproduction, Fertility and Development 29(6) 1115-1129 https://doi.org/10.1071/RD15492
Submitted: 25 November 2015  Accepted: 9 March 2016   Published: 11 May 2016

Abstract

Progesterone is one of the regulators of sperm motility and hyperactivation. In human spermatozoa, the effects of progesterone are thought to be mediated by protein phosphorylation. In the present study, we identified 22 proteins that are differentially phosphorylated (12 phosphorylated and 10 dephosphorylated) by progesterone in human spermatozoa. Functionally, the differentially phosphorylated proteins are predicted to have cytoskeletal localisation and to be associated with sperm motility. 5 µM of progesterone to capacitated increased the phosphorylation of tyrosine residues in the principal piece and protein tyrosine kinase activity increased by almost 3.5-fold. For the first time, we demonstrate that tyrosine phosphatases are also activated in response to progesterone and that inhibition of tyrosine phosphatases attenuates dephosphorylation of flagellar proteins. We propose that progesterone activates both kinase and phosphatase pathways, leading to changes in the phosphorylation of many proteins in sperm flagella to increase motility.

Additional keywords: phosphatases, proteomics, tyrosine kinase.


References

Alasmari, W., Costello, S., Correia, J., Oxenham, S. K., Morris, J., Fernandes, L., Ramalho-Santos, J., Kirkman-Brown, J., Michelangeli, F., Publicover, S., and Barratt, C. L. (2013). Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. J. Biol. Chem. 288, 6248–6258.
Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm.CrossRef | 1:CAS:528:DC%2BC3sXjtlKntr8%3D&md5=9342a09a67ae179069b0a2d1d6993c22CAS | 23344959PubMed | open url image1

Baker, M. A., Naumovski, N., Hetherington, L., Weinberg, A., Velkov, T., and Aitken, R. J. (2013). Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 13, 61–74.
Head and flagella subcompartmental proteomic analysis of human spermatozoa.CrossRef | 1:CAS:528:DC%2BC3sXmvVShtA%3D%3D&md5=39db8dee280f637abb4a4df32dd831ffCAS | 23161668PubMed | open url image1

Baldi, E., Luconi, M., Bonaccorsi, L., and Forti, G. (1998). Nongenomic effects of progesterone on spermatozoa: mechanisms of signal transduction and clinical implications. Front. Biosci. 3, D1051–D1059.
| 1:CAS:528:DyaK1cXntlKgsr4%3D&md5=e909d19ba0507b2d9697317c6176528aCAS | 9792892PubMed | open url image1

Baldi, E., Luconi, M., and Forti, G. (2009). Nongenomic activation of spermatozoa by steroid hormones: facts and functions. Mol. Cell. Endocrinol. 308, 39–46.
Nongenomic activation of spermatozoa by steroid hormones: facts and functions.CrossRef | 1:CAS:528:DC%2BD1MXnsFant7k%3D&md5=01681337682ec73a3f8cf3b83eb25cacCAS | 19549590PubMed | open url image1

Bhilawadikar, R., Zaveri, K., Mukadam, L., Naik, S., Kamble, K., Modi, D., and Hinduja, I. (2013). Levels of Tektin 2 and CatSper 2 in normozoospermic and oligoasthenozoospermic men and its association with motility, fertilization rate, embryo quality and pregnancy rate. J. Assist. Reprod. Genet. 30, 513–523.
Levels of Tektin 2 and CatSper 2 in normozoospermic and oligoasthenozoospermic men and its association with motility, fertilization rate, embryo quality and pregnancy rate.CrossRef | 23519396PubMed | open url image1

Cooper, T. G., Noonan, E., von Eckardstein, S., Auger, J., Baker, H. W., Behre, H. M., Haugen, T. B., Kruger, T., Wang, C., Mbizvo, M. T., and Vogelsong, K. M. (2010). World Health Organization reference values for human semen characteristics. Hum. Reprod. Update. 16, 231–245.
World Health Organization reference values for human semen characteristics.CrossRef | 19934213PubMed | open url image1

Diniz, M. C., Pacheco, A. C., Farias, K. M., and de Oliveira, D. M. (2012). The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr. Protein Pept. Sci. 13, 524–546.
The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data.CrossRef | 1:CAS:528:DC%2BC3sXhsVelu70%3D&md5=f147f0ef7747ede8d8c669d1a4d329c0CAS | 22708495PubMed | open url image1

Falsetti, C., Baldi, E., Krausz, C., Casono, R., Failli, P., and Forti, G. (1993). Decreased responsiveness to progesterone of spermatozoa in oligozoospermic patients. J. Androl. 14, 17–22.
| 1:STN:280:DyaK3s3jtF2jtg%3D%3D&md5=5d8cdb99b638a71acc10c8f3330bea5eCAS | 8473233PubMed | open url image1

Fujinoki, M., Kawamura, T., Toda, T., Ohtake, H., Shimizu, N., Yamaoka, S., and Okuno, M. (2003). Identification of the 58-kDa phosphoprotein associated with motility initiation of hamster spermatozoa. J. Biochem. 134, 559–565.
Identification of the 58-kDa phosphoprotein associated with motility initiation of hamster spermatozoa.CrossRef | 1:CAS:528:DC%2BD3sXhtVWgtbrL&md5=4364e8e76fdde41e178a8e63337c11c2CAS | 14607983PubMed | open url image1

Gadkar, S., Shah, C. A., Sachdeva, G., Samant, U., and Puri, C. P. (2002). Progesterone receptor as an indicator of sperm function. Biol. Reprod. 67, 1327–1336.
Progesterone receptor as an indicator of sperm function.CrossRef | 1:CAS:528:DC%2BD38XnsV2rtLY%3D&md5=faab7076680bc71d87214f85350aeb23CAS | 12297552PubMed | open url image1

Gagnon, C., White, D., Huitorel, P., and Cosson, J. (1994). A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes. Mol. Biol. Cell 5, 1051–1063.
A monoclonal antibody against the dynein IC1 peptide of sea urchin spermatozoa inhibits the motility of sea urchin, dinoflagellate, and human flagellar axonemes.CrossRef | 1:CAS:528:DyaK2MXhtF2jsb4%3D&md5=912a63a3ee7f01d2cd21caa80c21d814CAS | 7841521PubMed | open url image1

Gingras, D., White, D., Garin, J., Multigner, L., Job, D., Cosson, J., Huitorel, P., Zingg, H., Dumas, F., and Gagnon, C. (1996). Purification, cloning, and sequence analysis of a Mr = 30,000 protein from sea urchin axonemes that is important for sperm motility. Relationship of the protein to a dynein light chain. J. Biol. Chem. 271, 12 807–12 813.
Purification, cloning, and sequence analysis of a Mr = 30,000 protein from sea urchin axonemes that is important for sperm motility. Relationship of the protein to a dynein light chain.CrossRef | 1:CAS:528:DyaK28XjtlGjtLY%3D&md5=61aa3d38cc109b20a017512ef6dbdfa7CAS | open url image1

Harrison, D. A., Carr, D. W., and Meizel, S. (2000). Involvement of protein kinase A and A kinase anchoring proteins in the progesterone initiated human sperm acrosome reaction. Biol. Reprod. 62, 811–820.
Involvement of protein kinase A and A kinase anchoring proteins in the progesterone initiated human sperm acrosome reaction.CrossRef | 1:CAS:528:DC%2BD3cXhsVOrsbo%3D&md5=5255784037b9b5d66c576094a583d2b8CAS | 10684828PubMed | open url image1

Inaba, K. (2011). Sperm flagella: comparative and phylogenetic perspectives of protein components. Mol. Hum. Reprod. 17, 524–538.
Sperm flagella: comparative and phylogenetic perspectives of protein components.CrossRef | 1:CAS:528:DC%2BC3MXptFCnsbo%3D&md5=92dfb8efc884de58c76035d9d1f42c3aCAS | 21586547PubMed | open url image1

Jagan Mohanarao, G., and Atreja, S. K. (2012). Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Res. Vet. Sci. 93, 618–623.
Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa.CrossRef | 1:CAS:528:DC%2BC38XpvFCitbk%3D&md5=682f22629cbf0299658096644b1e467aCAS | 22035659PubMed | open url image1

Khan, S. A., Suryawanshi, A. R., Ranpura, S. A., Jadhav, S. V., and Khole, V. V. (2009). Identification of novel immunodominant epididymal sperm proteins using combinatorial approach. Reproduction 138, 81–93.
Identification of novel immunodominant epididymal sperm proteins using combinatorial approach.CrossRef | 1:CAS:528:DC%2BD1MXovFemsbo%3D&md5=5abd9fa00ce719102a83c5d46fda6654CAS | 19423663PubMed | open url image1

Krapf, D., Arcelay, E., Wertheimer, E. V., Sanjay, A., Pilder, S. H., Salicioni, A. M., and Visconti, P. E. (2010). Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J. Biol. Chem. 285, 7977–7985.
Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors.CrossRef | 1:CAS:528:DC%2BC3cXislyqtLc%3D&md5=d8ff05e392b07dae7de572368d5b8579CAS | 20068039PubMed | open url image1

Kumar, V., Kota, V., and Shivaji, S. (2008). Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase. Biol. Reprod. 79, 190–199.
Hamster sperm capacitation: role of pyruvate dehydrogenase A and dihydrolipoamide dehydrogenase.CrossRef | 1:CAS:528:DC%2BD1cXovFWms7w%3D&md5=a39ecd9d917b30d6c444db0380f24a99CAS | 18401010PubMed | open url image1

Li, K., Xue, Y., Chen, A., Jiang, Y., Xie, H., Shi, Q., Zhang, S., and Ni, Y. (2014). Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm. PLoS One 9, e115841.
Heat shock protein 90 has roles in intracellular calcium homeostasis, protein tyrosine phosphorylation regulation, and progesterone-responsive sperm function in human sperm.CrossRef | 25541943PubMed | open url image1

Lishko, P. V., Botchkina, I. L., and Kirichok, Y. (2011). Progesterone activates the principal Ca2+ channel of human sperm. Nature 471, 387–391.
Progesterone activates the principal Ca2+ channel of human sperm.CrossRef | 1:CAS:528:DC%2BC3MXjsVKru7o%3D&md5=ce30b4b40fe60ecad8afbcfd9482a992CAS | 21412339PubMed | open url image1

Lobo, V., Rao, P., Gajbhiye, R., Kulkarni, V., and Parte, P. (2015). Glucose regulated protein 78 phosphorylation in sperm undergoes dynamic changes during maturation. PLoS One 10, e0141858.
Glucose regulated protein 78 phosphorylation in sperm undergoes dynamic changes during maturation.CrossRef | 26618558PubMed | open url image1

Luconi, M., Krausz, C., Barni, T., Vannelli, G. B., Forti, G., and Baldi, E. (1998). Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa. Mol. Hum. Reprod. 4, 251–258.
Progesterone stimulates p42 extracellular signal-regulated kinase (p42erk) in human spermatozoa.CrossRef | 1:CAS:528:DyaK1cXivFSktbw%3D&md5=896d533329856923a4cf0d28acb84ecfCAS | 9570271PubMed | open url image1

Martínez-Heredia, J., de Mateo, S., Vidal-Taboada, J. M., Ballescà, J. L., and Oliva, R. (2008). Identification of proteomic differences in asthenozoospermic sperm samples. Hum. Reprod. 23, 783–791.
Identification of proteomic differences in asthenozoospermic sperm samples.CrossRef | 18281682PubMed | open url image1

Mitra, K., Rangaraj, N., and Shivaji, S. (2005). Novelty of the pyruvate metabolic enzyme dihydrolipoamide dehydrogenase in spermatozoa: correlation of its localization, tyrosine phosphorylation, and activity during sperm capacitation. J. Biol. Chem. 280, 25 743–25 753.
Novelty of the pyruvate metabolic enzyme dihydrolipoamide dehydrogenase in spermatozoa: correlation of its localization, tyrosine phosphorylation, and activity during sperm capacitation.CrossRef | 1:CAS:528:DC%2BD2MXlslyks7w%3D&md5=844b1285d3b647175d8929e3c265699dCAS | open url image1

Miyata, H., Satouh, Y., Mashiko, D., Muto, M., Nozawa, K., Shiba, K., Fujihara, Y., Isotani, A., Inaba, K., and Ikawa, M. (2015). Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive. Science 350, 442–445.
Sperm calcineurin inhibition prevents mouse fertility with implications for male contraceptive.CrossRef | 1:CAS:528:DC%2BC2MXhs1Ors7bO&md5=878cb603722c87c53bf400db21713e1fCAS | 26429887PubMed | open url image1

O’Toole, C. M., Roldan, E. R., and Fraser, L. R. Z. (1996). Protein kinase C activation during progesterone-stimulated acrosomal exocytosis in human spermatozoa. Mol. Hum. Reprod. 2, 921–927.
Protein kinase C activation during progesterone-stimulated acrosomal exocytosis in human spermatozoa.CrossRef | 1:CAS:528:DyaK2sXhs1Okt7w%3D&md5=073f9fd38c275a4a94afc9c2a401fb8fCAS | 9237235PubMed | open url image1

Obenauer, J. C., Cantley, L. C., and Yaffe, M. B. (2003). ScanSite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res. 31, 3635–3641.
ScanSite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs.CrossRef | 1:CAS:528:DC%2BD3sXltVWju74%3D&md5=427416c4d5837f675af6c8aeb775002fCAS | 12824383PubMed | open url image1

Parte, P. P., Rao, P., Redij, S., Lobo, V., D’Souza, S. J., Gajbhiye, R., and Kulkarni, V. (2012). Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia. J. Proteomics 75, 5861–5871.
Sperm phosphoproteome profiling by ultra performance liquid chromatography followed by data independent analysis (LC-MS(E)) reveals altered proteomic signatures in asthenozoospermia.CrossRef | 1:CAS:528:DC%2BC38XhsVOgs7fK&md5=7c30aaed9afb3f5e2f09d01355f5185cCAS | 22796355PubMed | open url image1

Rashid, S., Breckle, R., Hupe, M., Geisler, S., Doerwald, N., and Neesen, J. (2006). The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1. Mol. Reprod. Dev. 73, 784–794.
The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1.CrossRef | 1:CAS:528:DC%2BD28XksVWqsLs%3D&md5=8373aea5073bd5767d98db8b636bca88CAS | 16496424PubMed | open url image1

Rashid, S., Grzmil, P., Drenckhahn, J. D., Meinhardt, A., Adham, I., Engel, W., and Neesen, J. (2010). Disruption of the murine dynein light chain gene Tcte3-3 results in asthenozoospermia. Reproduction 139, 99–111.
Disruption of the murine dynein light chain gene Tcte3-3 results in asthenozoospermia.CrossRef | 1:CAS:528:DC%2BC3cXovVWmsw%3D%3D&md5=cf16e56d11313bbce4094dc24f52da3dCAS | 19778998PubMed | open url image1

Sagare-Patil, V., and Modi, D. (2013). Progesterone activates Janus kinase 1/2 and activators of transcription 1 (JAK1-2/STAT1) pathway in human spermatozoa. Andrologia 45, 178–186.
Progesterone activates Janus kinase 1/2 and activators of transcription 1 (JAK1-2/STAT1) pathway in human spermatozoa.CrossRef | 1:CAS:528:DC%2BC3sXnt1arsb0%3D&md5=9038771ccd5e0c36cd7464c76612297eCAS | 22748021PubMed | open url image1

Sagare-Patil, V., Galvankar, M., Satiya, M., Bhandari, B., Gupta, S. K., and Modi, D. (2012). Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa. Int. J. Androl. 35, 633–644.
Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa.CrossRef | 1:CAS:528:DC%2BC38Xhtlehsb7P&md5=e5b6bbd5c2989e00e8641babeac44457CAS | 22775762PubMed | open url image1

Sagare-Patil, V., Vernekar, M., Galvankar, M., and Modi, D. (2013). Progesterone utilizes the PI3K-AKT pathway in human spermatozoa to regulate motility and hyperactivation but not acrosome reaction. Mol. Cell. Endocrinol. 374, 82–91.
Progesterone utilizes the PI3K-AKT pathway in human spermatozoa to regulate motility and hyperactivation but not acrosome reaction.CrossRef | 1:CAS:528:DC%2BC3sXptV2jt7c%3D&md5=e3758c0fca26987856a545e2061e3215CAS | 23623968PubMed | open url image1

Shah, C. A., Modi, D., Gadkar, S., Sachdeva, G., D’ Souza, S., and Puri, C. P. (2005). N-Terminal region of progesterone receptor B isoform in human spermatozoa. Int. J. Androl. 28, 360–371.
N-Terminal region of progesterone receptor B isoform in human spermatozoa.CrossRef | 1:CAS:528:DC%2BD2MXhtlGitL7F&md5=99142e83fd879a1a192b069c522b1ea2CAS | open url image1

Signorelli, J., Diaz, E. S., and Morales, P. (2012). Kinases, phosphatases and proteases during sperm capacitation. Cell Tissue Res. 349, 765–782.
Kinases, phosphatases and proteases during sperm capacitation.CrossRef | 1:CAS:528:DC%2BC38Xht1yltbrJ&md5=eb89d682b018642a01cfbde89a969127CAS | 22427115PubMed | open url image1

Siva, A. B., Kameshwari, D. B., Singh, V., Pavani, K., Sundaram, C. S., Rangaraj, N., Deenadayal, M., and Shivaji, S. (2010). Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex. Mol. Hum. Reprod. 16, 452–462.
Proteomics-based study on asthenozoospermia: differential expression of proteasome alpha complex.CrossRef | 1:CAS:528:DC%2BC3cXnsVyjsbg%3D&md5=38613d79015a879bbb0e6406bb09111dCAS | 20304782PubMed | open url image1

Strünker, T., Goodwin, N., Brenker, C., Kashikar, N. D., Weyand, I., Seifert, R., and Kaupp, U. B. (2011). The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 471, 382–386.
The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm.CrossRef | 21412338PubMed | open url image1

Suzuki, T., Fujinoki, M., Shibahara, H., and Suzuki, M. (2010). Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 139, 847–856.
Regulation of hyperactivation by PPP2 in hamster spermatozoa.CrossRef | 1:CAS:528:DC%2BC3cXmvVCgsLs%3D&md5=dd6a4e7cd7c65d6cf7e724546a84793cCAS | 20185533PubMed | open url image1

Tamburrino, L., Marchiani, S., Minetti, F., Forti, G., Muratori, M., and Baldi, E. (2014). The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction. Hum. Reprod. 29, 418–428.
The CatSper calcium channel in human sperm: relation with motility and involvement in progesterone-induced acrosome reaction.CrossRef | 1:CAS:528:DC%2BC2cXis1Chtrw%3D&md5=82b552362cffbb8d34785c7e70fc8adfCAS | 24430778PubMed | open url image1

Tamburrino, L., Marchiani, S., Vicini, E., Muciaccia, B., Cambi, M., Pellegrini, S., Forti, G., Muratori, M., and Baldi, E. (2015). Quantification of CatSper1 expression in human spermatozoa and relation to functional parameters. Hum. Reprod. 30, 1532–1544.
Quantification of CatSper1 expression in human spermatozoa and relation to functional parameters.CrossRef | 1:STN:280:DC%2BC2MfkvFCltw%3D%3D&md5=ea54494cd6371cd5e89d18ea9e499e06CAS | 25983333PubMed | open url image1

Tanaka, H., Kohroki, J., Iguchi, N., Onishi, M., and Nishimune, Y. (2002). Cloning and characterization of a human orthologue of testis-specific succinyl CoA:3-oxo acid CoA transferase (Scot-t) cDNA. Mol. Hum. Reprod. 8, 16–23.
Cloning and characterization of a human orthologue of testis-specific succinyl CoA:3-oxo acid CoA transferase (Scot-t) cDNA.CrossRef | 1:CAS:528:DC%2BD38XhsVWmsbg%3D&md5=6ce9ec035463e8a7deeda6d65d4b5fcaCAS | 11756565PubMed | open url image1

Teves, M. E., Barbano, F., Guidobaldi, H. A., Sanchez, R., Miska, W., and Giojalas, L. C. (2006). Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil. Steril. 86, 745–749.
Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa.CrossRef | 1:CAS:528:DC%2BD28XhtFCqsLzJ&md5=c84ce8b27b327ec29eb16ea3a1c2776fCAS | 16784744PubMed | open url image1

Visconti, P. E., Krapf, D., de la Vega-Beltrán, J. L., Acevedo, J. J., and Darszon, A. (2011). Ion channels, phosphorylation and mammalian sperm capacitation. Asian J. Androl. 13, 395–405.
Ion channels, phosphorylation and mammalian sperm capacitation.CrossRef | 1:CAS:528:DC%2BC3MXlsFGrtrc%3D&md5=34ac67bba98c554927da3bd993bfe442CAS | 21540868PubMed | open url image1

Xiao, J. H., Yin, L. L., Li, J. M., Zhu, H., Zhou, Z. M., Zhao, B. G., and Sha, J. H. (2002). Molecular cloning, identification and characteristics of NYD-SP9: gene coding protein kinase presumably involved in spermatogenesis. Chin. Sci. Bull. 47, 896–901.
Molecular cloning, identification and characteristics of NYD-SP9: gene coding protein kinase presumably involved in spermatogenesis.CrossRef | 1:CAS:528:DC%2BD38XktlGlu7w%3D&md5=d2097a8d44cab968b109b652615caf31CAS | open url image1

Zhang, Q., Nishimura, D., Seo, S., Vogel, T., Morgan, D. A., Searby, C., Bugge, K., Stone, E. M., Rahmouni, K., and Sheffield, V. C. (2011). Bardet–Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes. Proc. Natl Acad. Sci. USA 108, 20 678–20 683.
Bardet–Biedl syndrome 3 (Bbs3) knockout mouse model reveals common BBS-associated phenotypes and Bbs3 unique phenotypes.CrossRef | 1:CAS:528:DC%2BC38Xkt1Kruw%3D%3D&md5=b72068f9714dce244788df251f719619CAS | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (47 KB) Export Citation Cited By (1)