Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Expressions of lipoprotein receptors and cholesterol efflux regulatory proteins during luteolysis in bovine corpus luteum

Kei Horihata A , Shin Yoshioka B , Masahiro Sano B , Yuki Yamamoto B , Koji Kimura B , Dariusz J. Skarzynski C and Kiyoshi Okuda A B D

A Laboratory of Reproductive Physiology, Faculty of Agriculture, Okayama University, Tsushima Naka Kita-ku 1-1-1, Okayama 700-8530, Japan.

B Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Tsushima Naka Kita-ku 1-1-1, Okayama 700-8530, Japan.

C Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.

D Corresponding author. Email: kokuda@okayama-u.ac.jp

Reproduction, Fertility and Development - https://doi.org/10.1071/RD15538
Submitted: 19 December 2015  Accepted: 4 April 2016   Published online: 17 May 2016

Abstract

The corpus luteum (CL) synthesises and secretes progesterone (P4), which is essential for the establishment and maintenance of pregnancy in mammals. P4 is synthesised from cholesterol. Cholesterol is internalised by low-density lipoprotein receptor (LDLR) and/or scavenger receptor B1 (SR-BI), and is effluxed by ATP-binding cassette (ABC) transporter A1 (ABCA1) and G1 (ABCG1). To test the hypothesis that lipoprotein receptors and ABC transporters are involved in functional luteolysis, we examined the expression of LDLR, SR-BI, ABCA1 and ABCG1 in bovine CL during the luteal stages and after injection of prostaglandin (PG) F on Day 10 after ovulation. Expression of LDLR and SR-BI mRNA and protein was lower in the regressed luteal than late luteal stage. Injection of cows with a PGF did not affect LDLR mRNA and protein levels in the CL. Although expression of SR-BI mRNA did not change, SR-BI protein expression decreased 12 and 24 h after PGF injection. The overall findings of the present study suggest that the decreased expression of SR-BI induced by PGF is one of the factors responsible for the continuous decrease in P4 production during functional luteolysis.

Additional keywords: luteal phase, ovary, progesterone, prostaglandin, reproduction.


References

Acosta, T. J., Bah, M. B., Korzekwa, A., Woclawek-Potocka, I., Markiewicz, W., Jaroszewski, J. J., Okuda, K., and Skarzynski, D. J. (2009). Acute changes in circulating concentrations of progesterone and nitric oxide and partial pressure of oxygen during prostaglandin F-induced luteolysis in cattle. J. Reprod. Dev. 55, 149–155.
Acute changes in circulating concentrations of progesterone and nitric oxide and partial pressure of oxygen during prostaglandin F-induced luteolysis in cattle.CrossRef | 1:CAS:528:DC%2BD1MXmtVOls7o%3D&md5=5748712674f4227780e1fa89bc841b89CAS | 19106483PubMed | open url image1

Azhar, S., Menon, M., and Menon, K. M. (1981). Receptor-mediated gonadotropin action in the ovary. Demonstration of acute dependence of rat luteal cells on exogenously supplied steroid precursor (sterols) for gonadotropin-induced steroidogenesis. Biochim. Biophys. Acta 665, 362–375.
Receptor-mediated gonadotropin action in the ovary. Demonstration of acute dependence of rat luteal cells on exogenously supplied steroid precursor (sterols) for gonadotropin-induced steroidogenesis.CrossRef | 1:CAS:528:DyaL3MXls1antrg%3D&md5=ee77f0ec255850fb50d0a739a82544bfCAS | 6271226PubMed | open url image1

Bogan, R. L., and Hennebold, J. D. (2010). The reverse cholesterol transport system as a potential mediator of luteolysis in the primate corpus luteum. Reproduction 139, 163–176.
The reverse cholesterol transport system as a potential mediator of luteolysis in the primate corpus luteum.CrossRef | 1:CAS:528:DC%2BC3cXovVWmtQ%3D%3D&md5=87b92440354d579d521a4d8e33313d13CAS | 19776099PubMed | open url image1

Connelly, M. A., and Williams, D. L. (2003). SR-BI and cholesterol uptake into steroidogenic cells. Trends Endocrinol. Metab. 14, 467–472.
SR-BI and cholesterol uptake into steroidogenic cells.CrossRef | 1:CAS:528:DC%2BD3sXpt1Whs70%3D&md5=d893d84ec8cfcc50c59e625b9c3e602aCAS | 14643062PubMed | open url image1

Ferreri, K., and Menon, K. M. (1992). Characterization and isolation of a high-density-lipoprotein-binding protein from bovine corpus luteum plasma membrane. Biochem. J. 287, 841–848.
Characterization and isolation of a high-density-lipoprotein-binding protein from bovine corpus luteum plasma membrane.CrossRef | 1:CAS:528:DyaK38XmsVOgtLY%3D&md5=1930b221f60a4e3313d7225aeca0ae02CAS | 1332685PubMed | open url image1

Gelissen, I. C., Harris, M., Rye, K. A., Quinn, C., Brown, A. J., Kockx, M., Cartland, S., Packianathan, M., Kritharides, L., and Jessup, W. (2006). ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I. Arterioscler. Thromb. Vasc. Biol. 26, 534–540.
ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I.CrossRef | 1:CAS:528:DC%2BD28XisFarsL0%3D&md5=e4961d3125a0d0ff0b8d4d374a099da2CAS | 16357317PubMed | open url image1

Green, R. M., Graham, M., O’Donovan, M. R., Chipman, J. K., and Hodges, N. J. (2006). Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity. Mutagenesis 21, 383–390.
Subcellular compartmentalization of glutathione: correlations with parameters of oxidative stress related to genotoxicity.CrossRef | 1:CAS:528:DC%2BD28XhtFyqtrbP&md5=ab41055b8f073ba2ccb5aa53b4ac0665CAS | 17012304PubMed | open url image1

Gwynne, J. T., and Strauss, J. F. (1982). The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands. Endocr. Rev. 3, 299–329.
The role of lipoproteins in steroidogenesis and cholesterol metabolism in steroidogenic glands.CrossRef | 1:CAS:528:DyaL38Xlt1Smu7o%3D&md5=db52e415393e6c3e98a3720f8e6291eaCAS | 6288367PubMed | open url image1

Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R., and Mangelsdorf, D. J. (1996). An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383, 728–731.
An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha.CrossRef | 1:CAS:528:DyaK28XmsVGns78%3D&md5=ec6bdeff86bb1a5208288549b6beb501CAS | 8878485PubMed | open url image1

Jeon, H., and Blacklow, S. C. (2005). Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562.
Structure and physiologic function of the low-density lipoprotein receptor.CrossRef | 1:CAS:528:DC%2BD2MXpsVensLo%3D&md5=37086cceb16fca4e67204075ef20c773CAS | 15952897PubMed | open url image1

Mahley, R. W., Huang, Y., and Weisgraber, K. H. (2006). Putting cholesterol in its place: apoE and reverse cholesterol transport. J. Clin. Invest. 116, 1226–1229.
Putting cholesterol in its place: apoE and reverse cholesterol transport.CrossRef | 1:CAS:528:DC%2BD28XksVWnsrw%3D&md5=fee0573c24f948f53e53c0ca80183e4fCAS | 16670767PubMed | open url image1

McCracken, J. A., Glew, M. E., and Scaramuzzi, R. J. (1970). Corpus luteum regression induced by prostaglandin F. J. Clin. Endocrinol. Metab. 30, 544–546.
Corpus luteum regression induced by prostaglandin F.CrossRef | 1:CAS:528:DyaE3cXhtFyitro%3D&md5=62b8672783d5327db4f8005616a81b9eCAS | 5435294PubMed | open url image1

McCracken, J. A., Carlson, J. C., Glew, M. E., Goding, J. R., Baird, D. T., Green, K., and Samuelsson, B. (1972). Prostaglandin F identified as the luteolytic hormone in sheep. Nat. New Biol. 238, 129–134.
Prostaglandin F identified as the luteolytic hormone in sheep.CrossRef | 1:CAS:528:DyaE38XkvF2iurk%3D&md5=82f93bcef25d8d71ca8eca8235bfc809CAS | 4506189PubMed | open url image1

McCracken, J. A., Custer, E. E., and Lamsa, J. C. (1999). Luteolysis: a neuroendocrine-mediated event. Physiol. Rev. 79, 263–323.
| 1:CAS:528:DyaK1MXivFektLg%3D&md5=8cdd014958790bd79e4fe05b2d98abb0CAS | 10221982PubMed | open url image1

Miranda-Jiménez, L., and Murphy, B. D. (2007). Lipoprotein receptor expression during luteinization of the ovarian follicle. Am. J. Physiol. Endocrinol. Metab. 293, E1053–E1061.
Lipoprotein receptor expression during luteinization of the ovarian follicle.CrossRef | 17698983PubMed | open url image1

Miyamoto, Y., Skarzynski, D. J., and Okuda, K. (2000). Is tumor necrosis factor α a trigger for the initiation of endometrial prostaglandin F release at luteolysis in cattle? Biol. Reprod. 62, 1109–1115.
Is tumor necrosis factor α a trigger for the initiation of endometrial prostaglandin F release at luteolysis in cattle?CrossRef | 1:CAS:528:DC%2BD3cXisl2htr8%3D&md5=408fd4fd49a7fe8e42996658b2b0658cCAS | 10775155PubMed | open url image1

Motta, A. B., Estevez, A., Franchi, A., Perez-Martinez, S., Farina, M., Ribeiro, M. L., Lasserre, A., and Gimeno, M. F. (2001). Regulation of lipid peroxidation by nitric oxide and PGF during luteal regression in rats. Reproduction 121, 631–637.
Regulation of lipid peroxidation by nitric oxide and PGF during luteal regression in rats.CrossRef | 1:CAS:528:DC%2BD3MXivFKgsbw%3D&md5=2d623c76b3bf02d472f53bce8b96c0d4CAS | 11277883PubMed | open url image1

Ohtani, M., Kobayashi, S., Miyamoto, A., Hayashi, K., and Fukui, Y. (1998). Real-time relationships between intraluteal and plasma concentrations of endothelin, oxytocin, and progesterone during prostaglandin F-induced luteolysis in the cow. Biol. Reprod. 58, 103–108.
Real-time relationships between intraluteal and plasma concentrations of endothelin, oxytocin, and progesterone during prostaglandin F-induced luteolysis in the cow.CrossRef | 1:CAS:528:DyaK1cXhvVSjsg%3D%3D&md5=15b0045f58ee2aa537d20c81ac96e390CAS | 9472929PubMed | open url image1

Sakumoto, R., Vermehren, M., Kenngott, R. A., Okuda, K., and Sinowatz, F. (2011). Localization of gene and protein expressions of tumor necrosis factor-α and tumor necrosis factor receptor types I and II in the bovine corpus luteum during the estrous cycle. J. Anim. Sci. 89, 3040–3047.
Localization of gene and protein expressions of tumor necrosis factor-α and tumor necrosis factor receptor types I and II in the bovine corpus luteum during the estrous cycle.CrossRef | 1:STN:280:DC%2BC3MfkvFKmtg%3D%3D&md5=358827b67d8a0ada2bd816de3eeee8bbCAS | 21551345PubMed | open url image1

Silvia, W. J., Lewis, G. S., McCracken, J. A., Thatcher, W. W., and Wilson, L. (1991). Hormonal regulation of uterine secretion of prostaglandin F during luteolysis in ruminants. Biol. Reprod. 45, 655–663.
Hormonal regulation of uterine secretion of prostaglandin F during luteolysis in ruminants.CrossRef | 1:CAS:528:DyaK3MXmslSktbw%3D&md5=69a9778a764d9f4162a7b70e73270c7bCAS | 1756203PubMed | open url image1

Sticozzi, C., Belmonte, G., Pecorelli, A., Cervellati, F., Leoncini, S., Signorini, C., Ciccoli, L., De Felice, C., Hayek, J., and Valacchi, G. (2013). Scavenger receptor B1 post-translational modifications in Rett syndrome. FEBS Lett. 587, 2199–2204.
Scavenger receptor B1 post-translational modifications in Rett syndrome.CrossRef | 1:CAS:528:DC%2BC3sXovVChsbY%3D&md5=85c3b764c5bab65de3fa9ec4d1e9376fCAS | 23711372PubMed | open url image1

Sugino, N., and Okuda, K. (2007). Species-related differences in the mechanism of apoptosis during structural luteolysis. J. Reprod. Dev. 53, 977–986.
Species-related differences in the mechanism of apoptosis during structural luteolysis.CrossRef | 1:CAS:528:DC%2BD2sXhtlOls7nJ&md5=e479e3613022531db8089cdb7182346cCAS | 17984567PubMed | open url image1

Tontonoz, P., and Mangelsdorf, D. J. (2003). Liver X receptor signaling pathways in cardiovascular disease. Mol. Endocrinol. 17, 985–993.
Liver X receptor signaling pathways in cardiovascular disease.CrossRef | 1:CAS:528:DC%2BD3sXktlymsb8%3D&md5=739ca3b0a267f26badb947096e4cc01eCAS | 12690094PubMed | open url image1

Vandenabeele, P., Declercq, W., Beyaert, R., and Fiers, W. (1995). Two tumour necrosis factor receptors: structure and function. Trends Cell Biol. 5, 392–399.
Two tumour necrosis factor receptors: structure and function.CrossRef | 1:CAS:528:DyaK2MXovValsrY%3D&md5=7f7cc2c656f9b3e86c0b9382e1f0ee91CAS | 14732063PubMed | open url image1

Wang, N., Lan, D., Chen, W., Matsuura, F., and Tall, A. R. (2004). ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101, 9774–9779.
ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins.CrossRef | 1:CAS:528:DC%2BD2cXlvVaht7g%3D&md5=31be9d6e6219fea32aa602a5dce1b5cbCAS | 15210959PubMed | open url image1

Zhuang, J., Zhang, H., Zhou, R., Chen, L., Chen, J., and Shen, X. (2013). Regulation of prostaglandin F against β amyloid clearance and its inflammation induction through LXR/RXR heterodimer antagonism in microglia. Prostaglandins Other Lipid Mediat. 106, 45–52.
Regulation of prostaglandin F against β amyloid clearance and its inflammation induction through LXR/RXR heterodimer antagonism in microglia.CrossRef | 1:CAS:528:DC%2BC3sXhvV2qtr%2FO&md5=761ec1ce0a3ca7922b39a7b235935760CAS | 24076168PubMed | open url image1



Supplementary MaterialSupplementary Material (237 KB) Export Citation