Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Evidence of proteinuria, but no other characteristics of pre-eclampsia, in relaxin-deficient mice

Kelly P. O’Sullivan A , Sarah A. Marshall A , Scott Cullen A , Tahnee Saunders A , Natalie J. Hannan B , Sevvandi N. Senadheera A and Laura J. Parry A C
+ Author Affiliations
- Author Affiliations

A School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia.

B The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Vic., 3010, Australia.

C Corresponding author. Email: ljparry@unimelb.edu.au

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16056
Submitted: 2 February 2016  Accepted: 7 June 2016   Published online: 4 August 2016

Abstract

Pre-eclampsia (PE) is a leading cause of maternal and fetal death, characterised by an imbalance of placental growth factors and hypertension at >20 weeks gestation. Impaired maternal systemic vascular adaptations and fetal growth restriction are features of both PE and pregnant relaxin-deficient (Rln–/–) mice. The aim of the present study was to investigate whether these phenotypes in Rln–/– mice are associated with abnormal placental growth factor expression, increased soluble fms-like tyrosine kinase-1 (sFlt-1), proteinuria and/or hypertension during pregnancy. In addition, we examined relaxin and relaxin receptor (relaxin/insulin like family peptide receptor 1 (RXFP1)) mRNA expression in placentas of women with PE. There was no significant difference in placental vascular endothelial growth factor A (VegfA) and placenta growth factor (Plgf) gene expression between Rln–/– and wild-type mice. Circulating plasma sFlt-1 concentrations in pregnant mice of both genotypes and ages were increased compared with non-pregnant mice but were lower in younger pregnant Rln–/– mice compared with aged-matched Rln+/+ mice. Aged pregnant Rln–/– mice had higher urinary albumin : creatinine ratios compared with age-matched Rln+/+ mice, indicative of proteinuria. Systolic and diastolic blood pressures did not differ between genotypes. In addition, PE in women was not associated with altered placental mRNA expression of RLN2 or RXFP1 at term. Overall, the data demonstrate that pregnant Rln–/– mice do not have the typical characteristics of PE. However, these mice show evidence of proteinuria, but we suggest that this results from systemic renal vascular dysfunction before pregnancy.

Additional keywords: placental growth factor, relaxin/insulin like family peptide receptor 1 (RXFP1), vascular endothelial growth factor.


References

Adamson, S. L., Lu, Y., Whiteley, K. J., Holmyard, D., Hemberger, M., Pfarrer, C., and Cross, J. C. (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev. Biol. 250, 358–373.
Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta.CrossRef | 1:CAS:528:DC%2BD38XnsFSnt74%3D&md5=01fbffbcc2c571f89e39612bf217ed76CAS | 12376109PubMed | open url image1

Anumba, D. O., El Gelany, S., Elliott, S. L., and Li, T. C. (2009). Serum relaxin levels are reduced in pregnant women with a history of recurrent miscarriage, and correlate with maternal uterine artery Doppler indices in first trimester. Eur. J. Obstet. Gynecol. Reprod. Biol. 147, 41–45.
Serum relaxin levels are reduced in pregnant women with a history of recurrent miscarriage, and correlate with maternal uterine artery Doppler indices in first trimester.CrossRef | 1:CAS:528:DC%2BD1MXht1OnsL3P&md5=8834e2ed64391908735df79b645ccbb7CAS | 19695764PubMed | open url image1

Bond, C. P., Parry, L. J., Samuel, C. S., Gehring, H. M., Lederman, F. L., Rogers, P. A., and Summers, R. J. (2004). Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle. J. Clin. Endocrinol. Metab. 89, 3477–3485.
Increased expression of the relaxin receptor (LGR7) in human endometrium during the secretory phase of the menstrual cycle.CrossRef | 1:CAS:528:DC%2BD2cXlslegt7s%3D&md5=1fcafb4c3dcf96063b11667f7c8e9b67CAS | 15240635PubMed | open url image1

Bridges, J. P., Gilbert, J. S., Colson, D., Gilbert, S. A., Dukes, M. P., Ryan, M. J., and Granger, J. P. (2009). Oxidative stress contributes to soluble fms-like tyrosine kinase-1 induced vascular dysfunction in pregnant rats. Am. J. Hypertens. 22, 564–568.
Oxidative stress contributes to soluble fms-like tyrosine kinase-1 induced vascular dysfunction in pregnant rats.CrossRef | 1:CAS:528:DC%2BD1MXkvVGqs70%3D&md5=48682058c66d965c315c5435522a4bfbCAS | 19265787PubMed | open url image1

Clements, M. E., Chaber, C. J., Ledbetter, S. R., and Zuk, A. (2013). Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury. PLoS One 8, e70464.
Increased cellular senescence and vascular rarefaction exacerbate the progression of kidney fibrosis in aged mice following transient ischemic injury.CrossRef | 1:CAS:528:DC%2BC3sXhtlSmsbnK&md5=c6eee8907a5c79728092cb7db5fe4dfdCAS | 23940580PubMed | open url image1

Conrad, K. P. (2011a). Emerging role of relaxin in the maternal adaptations to normal pregnancy: implications for preeclampsia. Semin. Nephrol. 31, 15–32.
Emerging role of relaxin in the maternal adaptations to normal pregnancy: implications for preeclampsia.CrossRef | 1:CAS:528:DC%2BC3MXhtVWqtLo%3D&md5=11a2bf493298b138661fab05e550b6a2CAS | 21266262PubMed | open url image1

Conrad, K. P. (2011b). Maternal vasodilation in pregnancy: the emerging role of relaxin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R267–R275.
Maternal vasodilation in pregnancy: the emerging role of relaxin.CrossRef | 1:CAS:528:DC%2BC3MXhtFSrtb%2FK&md5=39ebe7324a775b7630f578936cadbe83CAS | 21613576PubMed | open url image1

Danielson, L. A., Sherwood, O. D., and Conrad, K. P. (1999). Relaxin is a potent renal vasodilator in conscious rats. J. Clin. Invest. 103, 525–533.
Relaxin is a potent renal vasodilator in conscious rats.CrossRef | 1:CAS:528:DyaK1MXhslWqsLs%3D&md5=2a8f70a3e2a25944aa256d386636106eCAS | 10021461PubMed | open url image1

Danielson, L. A., Kercher, L. J., and Conrad, K. P. (2000). Impact of gender and endothelin on renal vasodilation and hyperfiltration induced by relaxin in conscious rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1298–R1304.
| 1:CAS:528:DC%2BD3cXns1egt7g%3D&md5=104489d1357c1cd35e1a6c3b8bf9cae6CAS | 11003996PubMed | open url image1

Debrah, D. O., Novak, J., Matthews, J. E., Ramirez, R. J., Shroff, S. G., and Conrad, K. P. (2006). Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats. Endocrinology 147, 5126–5131.
Relaxin is essential for systemic vasodilation and increased global arterial compliance during early pregnancy in conscious rats.CrossRef | 1:CAS:528:DC%2BD28XhtFCgsL3N&md5=451948fe9baf03b381b281874cfffeffCAS | 16873529PubMed | open url image1

Debrah, D. O., Debrah, J. E., Haney, J. L., McGuane, J. T., Sacks, M. S., Conrad, K. P., and Shroff, S. G. (2011). Relaxin regulates vascular wall remodeling and passive mechanical properties in mice. J. Appl. Physiol. 111, 260–271.
Relaxin regulates vascular wall remodeling and passive mechanical properties in mice.CrossRef | 1:CAS:528:DC%2BC3MXpvF2jsL4%3D&md5=d8e9814d47c77a461e5f610695d1f77bCAS | 21551018PubMed | open url image1

George, E. M., and Granger, J. P. (2011). VEGF: a possible therapeutic for the treatment of preeclampsia? Expert Rev. Obstet. Gynecol. 6, 255–257.
VEGF: a possible therapeutic for the treatment of preeclampsia?CrossRef | 1:CAS:528:DC%2BC3MXmslalsL4%3D&md5=20d511ea2ef15456cef1078dd34a0775CAS | open url image1

Ghulmiyyah, L., and Sibai, B. (2012). Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 36, 56–59.
Maternal mortality from preeclampsia/eclampsia.CrossRef | 22280867PubMed | open url image1

Gooi, J. H., Richardson, M. L., Jelinic, M., Girling, J. E., Wlodek, M. E., Tare, M., and Parry, L. J. (2013). Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment. Biol. Reprod. 89, 18.
Enhanced uterine artery stiffness in aged pregnant relaxin mutant mice is reversed with exogenous relaxin treatment.CrossRef | 23718984PubMed | open url image1

Goulopoulou, S., and Davidge, S. T. (2015). Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol. Med. 21, 88–97.
Molecular mechanisms of maternal vascular dysfunction in preeclampsia.CrossRef | 1:CAS:528:DC%2BC2MXitF2jsrk%3D&md5=8118ffcc2de4084c13144a236f6c18a8CAS | 25541377PubMed | open url image1

Hewitt, D. P., Mark, P. J., and Waddell, B. P. (2006). Glucocorticoids prevent the normal increase in placental vascular endothelial growth factor expression and placental vascularity during late pregnancy in the rat. Endocrinology 147, 5568–5574.
Glucocorticoids prevent the normal increase in placental vascular endothelial growth factor expression and placental vascularity during late pregnancy in the rat.CrossRef | 1:CAS:528:DC%2BD28Xht1yqtr7M&md5=b907d1a3ff0fdb1c2bf40da0fdae3db8CAS | 16959835PubMed | open url image1

Jeyabalan, A., Stewart, D. R., McGonigal, S. C., Powers, R. W., and Conrad, K. P. (2009). Low relaxin concentrations in the first trimester are associated with increased risk of developing preeclampsia. Reprod. Sci. 16, 101A.. open url image1

Kanasaki, K., Palmsten, K., Sugimoto, H., Ahmad, S., Hamano, Y., Xie, L., Parry, S., Augustin, H. G., Gattone, V. H. G., Folkman, J., Strauss, J. F., and Kalluri, R. (2008). Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature 453, 1117–1121.
Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia.CrossRef | 1:CAS:528:DC%2BD1cXntlGjtLc%3D&md5=72956e89aa7c3773412bd127121c9b6bCAS | 18469803PubMed | open url image1

Knobil, E., and Neill, J. D. (1994). Natural history and mechanisms of reproductive aging in humans, laboratory rodents, and other selected vertebrates. In ‘The Physiology of Reproduction’. (Eds E. Knobil and J. D. Neill.) pp. 1213–1314. (Raven Press: New York.)

Leo, C. H., Jelinic, M., Gooi, J. H., Tare, M., and Parry, L. J. (2014). A vasoactive role for endogenous relaxin in mesenteric arteries of male mice. PLoS One 9, e107382.
A vasoactive role for endogenous relaxin in mesenteric arteries of male mice.CrossRef | 25243460PubMed | open url image1

Levine, R. J., Maynard, S. E., Qian, C., Lim, K. H., England, L. J., Yu, K. F., Schisterman, E. F., Thadhani, R., Sachs, B. P., Epstein, F. H., Sibai, B. M., Sukhatme, V. P., and Karumanchi, S. A. (2004). Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683.
Circulating angiogenic factors and the risk of preeclampsia.CrossRef | 1:CAS:528:DC%2BD2cXhtFCrt7w%3D&md5=bae7898bdf784a799756a544138da78aCAS | 14764923PubMed | open url image1

Lowndes, K., Amano, A., Yamamoto, S. Y., and Bryant-Greenwood, G. D. (2006). The human relaxin receptor (LGR7): expression in the fetal membranes and placenta. Placenta 27, 610–618.
The human relaxin receptor (LGR7): expression in the fetal membranes and placenta.CrossRef | 1:CAS:528:DC%2BD28XjvVagtrg%3D&md5=255a5164e12292427679121abe9cc8a5CAS | 16165207PubMed | open url image1

Lu, F., Longo, M., Tamayo, E., Maner, W., Al-Hendy, A., Anderson, G. D., Hankins, G. D., and Saade, G. R. (2007). The effect of over-expression of sFlt-1 on blood pressure and the occurrence of other manifestations of preeclampsia in unrestrained conscious pregnant mice. Am. J. Obstet. Gynecol. 196, 396.e1–396.e7.
The effect of over-expression of sFlt-1 on blood pressure and the occurrence of other manifestations of preeclampsia in unrestrained conscious pregnant mice.CrossRef | open url image1

Ma, J. -F., Von Kalle, M., Plautz, Q., Xu, F. -M., Singh, L., and Wang, L. (2013). Relaxin promotes in vitro tumour growth, invasion and angiogenesis of human Saos-2 osteosarcoma cells by AKT/VEGF pathway. Eur. Rev. Med. Pharmacol. Sci. 17, 1345–1350.
| 23740448PubMed | open url image1

Marshall, S. A., Leo, C. H., Senadheera, S. N., Girling, J. E., Tare, M., and Parry, L. J. (2016). Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R847–R857.
Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice.CrossRef | 26936785PubMed | open url image1

Matsumoto, K., and Ema, M. (2014). Roles of VEGF-A signalling in development, regeneration, and tumours. J. Biochem. 156, 1–10.
Roles of VEGF-A signalling in development, regeneration, and tumours.CrossRef | 1:CAS:528:DC%2BC2cXhtFShsrfE&md5=2922989ebab7bb87d665ca3d5f38d51aCAS | 24839295PubMed | open url image1

Maynard, S. E., Min, J. -Y., Merchan, J., Lim, K. H., Li, J., Mondal, S., Libermann, T. A., Morgan, J. P., Sellke, F. W., Stillman, I. E., Epstein, F. H., Sukhatme, V. P., and Karumanchi, S. A. (2003). Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658.
Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia.CrossRef | 1:CAS:528:DC%2BD3sXhvFentbc%3D&md5=eddd7f8c3636359b1950f4060b23381aCAS | 12618519PubMed | open url image1

Millar, L. K., Reiny, R., Yamamoto, S. Y., Okazaki, K., Webster, L., and Bryant-Greenwood, G. D. (2003). Relaxin causes proliferation of human amniotic epithelium by stimulation of insulin-like growth factor-II. Am. J. Obstet. Gynecol. 188, 234–241.
Relaxin causes proliferation of human amniotic epithelium by stimulation of insulin-like growth factor-II.CrossRef | 1:CAS:528:DC%2BD3sXhsV2nsL0%3D&md5=aa76f9119e420136139a8ff4140f0141CAS | 12548223PubMed | open url image1

Mirabito, K. M., Hilliard, L. M., Wei, Z., Tikellis, C., Widdop, R. E., Vinh, A., and Denton, K. M. (2014). Role of inflammation and the angiotensin type 2 receptor in the regulation of arterial pressure during pregnancy in mice. Hypertension 64, 626–631.
Role of inflammation and the angiotensin type 2 receptor in the regulation of arterial pressure during pregnancy in mice.CrossRef | 1:CAS:528:DC%2BC2cXhsV2lsbfJ&md5=8d7f7ab2945eafc853b0c63806b2eb34CAS | 24935937PubMed | open url image1

Novak, J., Danielson, L. A., Kerchner, L. J., Sherwood, O. D., Ramirez, R. J., Moalli, P. A., and Conrad, K. P. (2001). Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J. Clin. Invest. 107, 1469–1475.
Relaxin is essential for renal vasodilation during pregnancy in conscious rats.CrossRef | 1:CAS:528:DC%2BD3MXktFyntLw%3D&md5=d592d2d955eeed4b2f322fd972d1e6b0CAS | 11390429PubMed | open url image1

Novak, J., Ramirez, R. J., Gandley, R. E., Sherwood, O. D., and Conrad, K. P. (2002). Myogenic reactivity is reduced in small renal arteries isolated from relaxin-treated rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R349–R355.
| 1:CAS:528:DC%2BD38XmslShsbs%3D&md5=12935200518329d4ae65fc809ff77268CAS | 12121847PubMed | open url image1

Novak, J., Parry, L. J., Matthews, J. E., Kerchner, L. J., Indoniva, K., Hanley-Yanez, K., Doty, K. D., Debrah, D. O., Shroff, S. G., and Conrad, K. P. (2006). Evidence for local relaxin ligand–receptor expression and function in arteries. FASEB J. 20, 2352–2362.
Evidence for local relaxin ligand–receptor expression and function in arteries.CrossRef | 1:CAS:528:DC%2BD28XhtFylsrbK&md5=fe63f4a060645928113fa6c7481479a8CAS | 17077312PubMed | open url image1

Ogueh, O., Clough, A., Hancock, M., and Johnson, M. R. (2011). A longitudinal study of the control of renal and uterine hemodynamic changes of pregnancy. Hypertens. Pregnancy 30, 243–259.
A longitudinal study of the control of renal and uterine hemodynamic changes of pregnancy.CrossRef | 1:CAS:528:DC%2BC3MXoslOhtr4%3D&md5=344829444d22e18832ad21e67a60fcd3CAS | 21740248PubMed | open url image1

Palejwala, S., Tseng, L., Wojtczuk, A., Weiss, G., and Goldsmith, L. T. (2002). Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol. Reprod. 66, 1743–1748.
Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells.CrossRef | 1:CAS:528:DC%2BD38XjvFegurc%3D&md5=7aeb1e888fbe83b4a27c4681032b3f50CAS | 12021056PubMed | open url image1

Palmer, K. R., Kaitu’u-Lino, T. J., Hastie, R., Hannan, N. J., Ye, L., Binder, N., Cannon, P., Tuohey, L., Johns, T. G., Shub, A., and Tong, S. (2015). Placental-specific sFLT-1 e15a protein is increased in preeclampsia, antagonizes vascular endothelial growth factor signaling, and has antiangiogenic activity. Hypertension 66, 1251–1259.
| 1:CAS:528:DC%2BC2MXhvFCls7jF&md5=a0ad8a9ad85ea20a396b4aa3619f1be9CAS | 26416849PubMed | open url image1

Parry, L. J., and Vodstrcil, L. A. (2007). Relaxin physiology in the female reproductive tract during pregnancy. Adv. Exp. Med. Biol. 612, 34–48.
Relaxin physiology in the female reproductive tract during pregnancy.CrossRef | 18161480PubMed | open url image1

Pijnenborg, R., Vercruysse, L., and Hanssens, M. (2006). The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27, 939–958.
The uterine spiral arteries in human pregnancy: facts and controversies.CrossRef | 1:STN:280:DC%2BD28vptlSjuw%3D%3D&md5=07dd8efa80e3da51f5a91c4ee6f1de96CAS | 16490251PubMed | open url image1

Poppas, A., Shroff, S. G., Korcarz, C. E., Hibbard, J. U., Berger, D. S., Lindheimer, M. D., and Lang, R. M. (1997). Serial assessment of the cardiovascular system in normal pregnancy: role of arterial compliance and pulsatile arterial load. Circulation 95, 2407–2415.
Serial assessment of the cardiovascular system in normal pregnancy: role of arterial compliance and pulsatile arterial load.CrossRef | 1:STN:280:DyaK2szhsVSlsA%3D%3D&md5=e0f4ab0ba8bf41bd13efe1393c88413eCAS | 9170404PubMed | open url image1

Powe, C. E., Levine, R. J., and Karumanchi, S. A. (2011). Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease. Circulation 123, 2856–2869.
Preeclampsia, a disease of the maternal endothelium: the role of antiangiogenic factors and implications for later cardiovascular disease.CrossRef | 21690502PubMed | open url image1

Schaarschmidt, W., Rana, S., and Stepan, H. (2013). The course of angiogenic factors in early- vs. late-onset preeclampsia and HELLP syndrome. J. Perinat. Med. 41, 511–516.
The course of angiogenic factors in early- vs. late-onset preeclampsia and HELLP syndrome.CrossRef | 1:CAS:528:DC%2BC2cXms1Chtb0%3D&md5=84a30719501bc98acca5ba0e8ffa704fCAS | 23612628PubMed | open url image1

Smith, M. C., Murdoch, A. P., Danielson, L. A., Conrad, K. P., and Davison, J. M. (2006). Relaxin has a role in establishing a renal response in pregnancy. Fertil. Steril. 86, 253–255.
Relaxin has a role in establishing a renal response in pregnancy.CrossRef | 1:CAS:528:DC%2BD28XotV2jtrw%3D&md5=0afca7cff4f5ac86cc0e43ae12df1b0bCAS | 16730722PubMed | open url image1

Stewart, D. R., Celniker, A. C., Taylor, C. A., Cragun, J. R., Overstreet, J. W., and Lasley, B. L. (1990). Relaxin in the peri-implantation period. J. Clin. Endocrinol. Metab. 70, 1771–1773.
Relaxin in the peri-implantation period.CrossRef | 1:STN:280:DyaK3c3ntVeqtg%3D%3D&md5=f0e6e2c8edf05ea250cbdaa0b243ae37CAS | 2347909PubMed | open url image1

Tranquilli, A. L., Dekker, G., Magee, L., Roberts, J., Sibai, B. M., Steyn, W., Zeeman, G. G., and Brown, M. A. (2014). The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP. Pregnancy Hypertens. 4, 97–104.
The classification, diagnosis and management of the hypertensive disorders of pregnancy: a revised statement from the ISSHP.CrossRef | 1:STN:280:DC%2BC2Mbms1WhsQ%3D%3D&md5=f5a981b8c6d42942c8cb5efbd9179c42CAS | 26104417PubMed | open url image1

Uiterweer, E. D. P., Koster, M. P., Jeyabalan, A., Kuc, S., Siljee, J., Conrad, K. P., and Franx, A. (2014). First trimester serum relaxin concentration and prediction of early and late onset preeclampsia. Reprod. Sci. 21, 394A. open url image1

Unemori, E. N., Erikson, M. E., Rocco, S. E., Sutherland, K. M., Parsell, D. A., Mak, J., and Grove, B. H. (1999). Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Hum. Reprod. 14, 800–806.
Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women.CrossRef | 1:CAS:528:DyaK1MXisV2qtrw%3D&md5=dd85a414bb2a43062f7a93f51b4a2e91CAS | 10221717PubMed | open url image1

Vodstrcil, L. A., Shynlova, O., Westcott, K., Laker, R., Simpson, E., Wlodek, M. E., and Parry, L. J. (2010). Progesterone withdrawal, and not increased circulating relaxin, mediates the decrease in myometrial relaxin receptor (RXFP1) expression in late gestation in rats. Biol. Reprod. 83, 825–832.
Progesterone withdrawal, and not increased circulating relaxin, mediates the decrease in myometrial relaxin receptor (RXFP1) expression in late gestation in rats.CrossRef | 1:CAS:528:DC%2BC3cXhtlGls7%2FP&md5=d5c6f429d8e31b21b3c6a2ade2dab5eaCAS | 20686183PubMed | open url image1

Vodstrcil, L. A., Tare, M., Novak, J., Dragomir, N., Ramirez, R. J., Wlodek, M. E., Conrad, K. P., and Parry, L. J. (2012). Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow. FASEB J. 26, 4035–4044.
Relaxin mediates uterine artery compliance during pregnancy and increases uterine blood flow.CrossRef | 1:CAS:528:DC%2BC38XhsFSmtbrE&md5=c1cc5d2619f80295b5985267872022b2CAS | 22744867PubMed | open url image1

Vrachnis, N., Kalampokas, E., Sifakis, S., Vitoratos, N., Kalampokas, T., Botsis, D., and Iliodromiti, Z. (2013). Placental growth factor (PlGF): a key to optimizing fetal growth. J. Matern. Fetal Neonatal Med. 26, 995–1002.
Placental growth factor (PlGF): a key to optimizing fetal growth.CrossRef | 1:CAS:528:DC%2BC3sXptFCgtrc%3D&md5=af1451abcb1a1a705e9bac369f620e0fCAS | 23330778PubMed | open url image1

Walter, L. M., Rogers, P. A. W., and Girling, J. E. (2005). The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice. Reproduction 129, 765–777.
The role of progesterone in endometrial angiogenesis in pregnant and ovariectomised mice.CrossRef | 1:CAS:528:DC%2BD2MXlvFGit70%3D&md5=626f39741f8cf976574d00d0aed2a94dCAS | 15923392PubMed | open url image1

Woods, A. K., Hoffman, D. S., Weydert, C. J., Butler, S. D., Zhou, R. V., and Davisson, R. L. (2011). Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice. Hypertension 57, 94–102.
Adenoviral delivery of VEGF121 early in pregnancy prevents spontaneous development of preeclampsia in BPH/5 mice.CrossRef | 1:CAS:528:DC%2BC3cXhsFGku7zO&md5=c5e754dfd0407c60976def2df850084cCAS | 21079047PubMed | open url image1

Zhao, L., Roche, P., Gunnersen, J. M., Hammond, V. E., Tregear, G. W., Wintour, E. M., and Beck, F. (1999). Mice without a functional relaxin gene are unable to deliver milk to their pups. Endocrinology 140, 445–453.
| 1:CAS:528:DyaK1MXhtFWrtg%3D%3D&md5=45ccde8e2bac76c96e432839ba80f526CAS | 9886856PubMed | open url image1



Supplementary MaterialSupplementary Material (47 KB) Export Citation Cited By (1)

View Altmetrics