Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Consumption of a high-fat diet alters the seminal fluid and gut microbiomes in male mice

Angela B. Javurek A B , William G. Spollen A C , Sarah A. Johnson A B D , Nathan J. Bivens E , Karen H. Bromert E , Scott A. Givan A C F and Cheryl S. Rosenfeld A B G H I
+ Author Affiliations
- Author Affiliations

A Department of Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

B Department of Biomedical Sciences, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

C Department of Informatics Research Core Facility, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

D Department of Animal Sciences, University of Missouri, 920 E. Campus Drive, Columbia, MO 65211, USA.

E DNA Core Facility, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

F Department of Molecular Microbiology and Immunology, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

G Genetics Area Program, University of Missouri, Columbia, MO 65211, USA.

H Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, 205 Portland Street, Columbia, MO 65211, USA.

I Corresponding author. Email: rosenfeldc@missouri.edu

Reproduction, Fertility and Development 29(8) 1602-1612 https://doi.org/10.1071/RD16119
Submitted: 15 March 2016  Accepted: 29 July 2016   Published: 29 August 2016

Abstract

Our prior work showed that a novel microbiome resides in the seminal vesicles of wild-type and oestrogen receptor α (Esr1) knock-out mice and is impacted by the presence of functional Esr1 genes. The seminal fluid microbiome (SFM) may influence the health and reproductive status of the male, along with that of his partner and offspring. A high-fat diet (HFD) alters metabolites and other factors within seminal fluid and might affect the SFM. Adult (~15 weeks old) male mice were placed for 4 weeks on a control or high-fat diet and seminal fluid and fecal samples were collected, bacterial DNA isolated and subjected to 16s rRNA sequencing. Corynebacterium spp. were elevated in the seminal fluid of HFD males; however, Acinetobacter johnsonii, Streptophyta, Ammoniphilus spp., Bacillus spp. and Propionibacterium acnes were increased in control males. Rikenellaceae was more abundant in the fecal samples from HFD males. However, Bacteroides ovatus and another Bacteroides species, Bilophila, Sutterella spp., Parabacteroides, Bifidobacterium longum, Akkermansia muciniphila and Desulfovibrio spp. were greater in control males. Thus, short-term consumption of a HFD influences the seminal fluid and fecal microbiomes, which may have important health consequence for males and developmental origins of health and disease effects in resulting offspring.

Additional keywords: bacteria, DOHaD, metabolic pathway, microbiota, prostate cancer, reproductive tract, semen.


References

Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., and Versalovic, J. (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65.
The placenta harbors a unique microbiome.CrossRef | 24848255PubMed |

Ait-Belgnaoui, A., Colom, A., Braniste, V., Ramalho, L., Marrot, A., Cartier, C., Houdeau, E., Theodorou, V., and Tompkins, T. (2014). Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil. 26, 510–520.
Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice.CrossRef | 1:STN:280:DC%2BC2czgsFKrug%3D%3D&md5=b0c584d3bea5d6aa3a452c20c784b47bCAS | 24372793PubMed |

Baka, S. (2014). Microbiota of the seminal fluid. Fertil. Steril. 101, e27.
Microbiota of the seminal fluid.CrossRef | 24589522PubMed |

Bakos, H. W., Mitchell, M., Setchell, B. P., and Lane, M. (2011). The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int. J. Androl. 34, 402–410.
The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model.CrossRef | 1:CAS:528:DC%2BC3MXhtlOlu7fP&md5=07814560ba0e86335682456285678fc1CAS | 20649934PubMed |

Barouki, R., Gluckman, P. D., Grandjean, P., Hanson, M., and Heindel, J. J. (2012). Developmental origins of non-communicable disease: implications for research and public health. Environ. Health 11, 42.
Developmental origins of non-communicable disease: implications for research and public health.CrossRef | 22715989PubMed |

Binder, N. K., Hannan, N. J., and Gardner, D. K. (2012a). Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 7, e52304.
Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health.CrossRef | 1:CAS:528:DC%2BC3sXmvFGhsA%3D%3D&md5=fb51dc52fc7c8c5e756afa35945fb90fCAS | 23300638PubMed |

Binder, N. K., Mitchell, M., and Gardner, D. K. (2012b). Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst. Reprod. Fertil. Dev. 24, 804–812.
Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst.CrossRef | 1:CAS:528:DC%2BC38XpvFKls7c%3D&md5=47a3b7cd35d1d36c45e702e3f5085d59CAS | 22781931PubMed |

Binder, N. K., Beard, S. A., Kaitu’u-Lino, T. J., Tong, S., Hannan, N. J., and Gardner, D. (2015a). Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction 149, 435–444.
Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner.CrossRef | 1:CAS:528:DC%2BC2MXhtVCkur7K&md5=28b8612b6166515251842eafdf25a6d0CAS | 25725082PubMed |

Binder, N. K., Sheedy, J. R., Hannan, N. J., and Gardner, D. K. (2015b). Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model. Mol. Hum. Reprod. 21, 424–434.
Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model.CrossRef | 25731709PubMed |

Borovkova, N., Korrovits, P., Ausmees, K., Turk, S., Joers, K., Punab, M., and Mandar, R. (2011). Influence of sexual intercourse on genital tract microbiota in infertile couples. Anaerobe 17, 414–418.
Influence of sexual intercourse on genital tract microbiota in infertile couples.CrossRef | 21549210PubMed |

Bromfield, J. J. (2014). Seminal fluid and reproduction: much more than previously thought. J. Assist. Reprod. Genet. 31, 627–636.
Seminal fluid and reproduction: much more than previously thought.CrossRef | 24830788PubMed |

Bromfield, J. J., Schjenken, J. E., Chin, P. Y., Care, A. S., Jasper, M. J., and Robertson, S. A. (2014). Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. USA 111, 2200–2205.
Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring.CrossRef | 1:CAS:528:DC%2BC2cXisFOqtLc%3D&md5=69e682c77a9e6512483ccaa5541f94f6CAS | 24469827PubMed |

Busolo, F., Zanchetta, R., Lanzone, E., and Cusinato, R. (1984). Microbial flora in semen of asymptomatic infertile men. Andrologia 16, 269–275.
Microbial flora in semen of asymptomatic infertile men.CrossRef | 1:STN:280:DyaL2c3nvVersg%3D%3D&md5=f91f76e4e94acc011a731f361b2d4957CAS | 6465553PubMed |

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.
QIIME allows analysis of high-throughput community sequencing data.CrossRef | 1:CAS:528:DC%2BC3cXksFalurg%3D&md5=301fd189b5ac95faa4885f3dd2db8b10CAS | 20383131PubMed |

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., and Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108, 4516–4522.
Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.CrossRef | 1:CAS:528:DC%2BC3MXjvVCktL0%3D&md5=a5de46f5894b537e5fb739c731f2f76bCAS | 20534432PubMed |

Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G. H., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zhou, Q. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400.
Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.CrossRef | 1:CAS:528:DC%2BC28XhtValsb4%3D&md5=129dcb42950d7353d16c214b3ed4a595CAS | 26721680PubMed |

Daniel, H., Moghaddas Gholami, A., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P., Rothballer, M., Walker, A., Böhm, C., Wenning, M., Wagner, M., Blaut, M., Schmitt-Kopplin, P., Kuster, B., Haller, D., and Clavel, T. (2014). High-fat diet alters gut microbiota physiology in mice. ISME J. 8, 295–308.
High-fat diet alters gut microbiota physiology in mice.CrossRef | 1:CAS:528:DC%2BC2cXht1Cjsb8%3D&md5=f19bd31b32baace8ab63a291f5b72418CAS | 24030595PubMed |

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.CrossRef | 1:CAS:528:DC%2BD28XnsVaqtLg%3D&md5=c8e73426d1f572cad2735e4c266a26caCAS | 16820507PubMed |

Devkota, S., and Chang, E. B. (2015). Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig. Dis. 33, 351–356.
Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases.CrossRef | 26045269PubMed |

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.
Search and clustering orders of magnitude faster than BLAST.CrossRef | 1:CAS:528:DC%2BC3cXht1WhtbzM&md5=423df971fc2a177aad8368ea272e7364CAS | 20709691PubMed |

Faure, C., Dupont, C., Chavatte-Palmer, P., Gautier, B., and Levy, R. (2015). Are semen parameters related to birth weight? Fertil. Steril. 103, 6–10.
Are semen parameters related to birth weight?CrossRef | 25552408PubMed |

Fullston, T., Palmer, N. O., Owens, J. A., Mitchell, M., Bakos, H. W., and Lane, M. (2012). Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400.
Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice.CrossRef | 1:STN:280:DC%2BC38vjvFGhsQ%3D%3D&md5=f16c775543dd06738682e8d22e08599dCAS | 22357767PubMed |

Fullston, T., Ohlsson Teague, E. M., Palmer, N. O., DeBlasio, M. J., Mitchell, M., Corbett, M., Print, C. G., Owens, J. A., and Lane, M. (2013). Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243.
Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content.CrossRef | 1:CAS:528:DC%2BC3sXhs1SqtLzN&md5=5c943a95c532f2df1f973540ea786836CAS | 23845863PubMed |

Fullston, T., McPherson, N. O., Owens, J. A., Kang, W. X., Sandeman, L. Y., and Lane, M. (2015a). Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet. Physiol. Rep. 3, e12336.
Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet.CrossRef | 25804263PubMed |

Fullston, T., Shehadeh, H., Sandeman, L. Y., Kang, W. X., Wu, L. L., Robker, R. L., McPherson, N. O., and Lane, M. (2015b). Female offspring sired by diet-induced obese male mice display impaired blastocyst development with molecular alterations to their ovaries, oocytes and cumulus cells. J. Assist. Reprod. Genet. 32, 725–735.
Female offspring sired by diet-induced obese male mice display impaired blastocyst development with molecular alterations to their ovaries, oocytes and cumulus cells.CrossRef | 25854657PubMed |

Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., and Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669.
Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.CrossRef | 1:CAS:528:DC%2BC2cXmtlWgsrg%3D&md5=017cba8a74cfabffff2cce80fa70f808CAS | 24728267PubMed |

Grandjean, V., Fourre, S., De Abreu, D. A., Derieppe, M. A., Remy, J. J., and Rassoulzadegan, M. (2015). RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5, 18193.
RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders.CrossRef | 1:CAS:528:DC%2BC2MXitVWqsbbI&md5=37442df2412a00a4a936ef9a6b7ac21fCAS | 26658372PubMed |

Hanson, M. (2015). The birth and future health of DOHaD. J. Dev. Orig. Health Dis. 6, 434–437.
The birth and future health of DOHaD.CrossRef | 1:STN:280:DC%2BC2MfmslyrtQ%3D%3D&md5=63918907e1dde3d3b8d0d973a9cb318bCAS | 26004094PubMed |

Hanson, M. A., and Gluckman, P. D. (2014). Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol. Rev. 94, 1027–1076.
Early developmental conditioning of later health and disease: physiology or pathophysiology?CrossRef | 1:CAS:528:DC%2BC2cXitFansbnO&md5=aec0e1847aeb682fe1f4c3eafd1fd65fCAS | 25287859PubMed |

Hanson, M., Godfrey, K. M., Lillycrop, K. A., Burdge, G. C., and Gluckman, P. D. (2011). Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog. Biophys. Mol. Biol. 106, 272–280.
Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms.CrossRef | 21219925PubMed |

Heine, P. A., Taylor, J. A., Iwamoto, G. A., Lubahn, D. B., and Cooke, P. S. (2000). Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl. Acad. Sci. USA 97, 12729–12734.
Increased adipose tissue in male and female estrogen receptor-alpha knockout mice.CrossRef | 1:CAS:528:DC%2BD3cXotFyntrk%3D&md5=cca437d8b1b51d8d489c3f15ca3d5d36CAS | 11070086PubMed |

Hou, D., Zhou, X., Zhong, X., Settles, M. L., Herring, J., Wang, L., Abdo, Z., Forney, L. J., and Xu, C. (2013). Microbiota of the seminal fluid from healthy and infertile men. Fertil. Steril. 100, 1261–1269.e3.
Microbiota of the seminal fluid from healthy and infertile men.CrossRef | 23993888PubMed |

Howe, A., Ringus, D. L., Williams, R. J., Choo, Z. N., Greenwald, S. M., Owens, S. M., Coleman, M. L., Meyer, F., and Chang, E. B. (2016). Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J. 10, 1217–1227.
Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice.CrossRef | 1:CAS:528:DC%2BC28Xmsl2qu7s%3D&md5=a3ef582a2231f3744d3dbbd1f170b7e3CAS | 26473721PubMed |

Ivanov, I. B., Kuzmin, M. D., and Gritsenko, V. A. (2009). Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome. Int. J. Androl. 32, 462–467.
Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome.CrossRef | 18328042PubMed |

Javurek, A. B., Spollen, W. G., Ali, A. M., Johnson, S. A., Lubahn, D. B., Bivens, N. J., Bromert, K. H., Ellersieck, M. R., Givan, S. A., and Rosenfeld, C. S. (2016). Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci. Rep. 6, 23027.
Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status.CrossRef | 1:CAS:528:DC%2BC28XktFKis7o%3D&md5=40646f789f0499095bfc76d8f5061769CAS | 26971397PubMed |

Kwon, S. K., Kwak, M. J., Seo, J. G., Chung, M. J., and Kim, J. F. (2015). Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health. J. Biotechnol. 214, 169–170.
Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health.CrossRef | 1:CAS:528:DC%2BC2MXhs1Chur3P&md5=ebc563789993996ec313554cb0a30e3bCAS | 26439427PubMed |

Lam, Y. Y., Ha, C. W., Hoffmann, J. M., Oscarsson, J., Dinudom, A., Mather, T. J., Cook, D. I., Hunt, N. H., Caterson, I. D., Holmes, A. J., and Storlien, L. H. (2015). Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring) 23, 1429–1439.
Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice.CrossRef | 1:CAS:528:DC%2BC2MXhtVOms7vF&md5=278f5ea511355de766d8c609a99d2a79CAS | 26053244PubMed |

Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., and Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.CrossRef | 1:CAS:528:DC%2BC3sXhtlWku7fJ&md5=31889057b6a69f295b594d5dde2e4669CAS | 23975157PubMed |

Le, T. K., Hosaka, T., Le, T. T., Nguyen, T. G., Tran, Q. B., Le, T. H., and Pham, X. D. (2014). Oral administration of Bifidobacterium spp. improves insulin resistance, induces adiponectin, and prevents inflammatory adipokine expressions. Biomed. Res. 35, 303–310.
Oral administration of Bifidobacterium spp. improves insulin resistance, induces adiponectin, and prevents inflammatory adipokine expressions.CrossRef | 1:CAS:528:DC%2BC2cXhvFWqsLzJ&md5=849ddbebe4a865914888a9f61acb2583CAS | 25355437PubMed |

Liu, C. M., Hungate, B. A., Tobian, A. A., Ravel, J., Prodger, J. L., Serwadda, D., Kigozi, G., Galiwango, R. M., Nalugoda, F., Keim, P., Wawer, M. J., Price, L. B., and Gray, R. H. (2015). Penile microbiota and female partner bacterial vaginosis in Rakai, Uganda. MBio 6, e00589-15.
Penile microbiota and female partner bacterial vaginosis in Rakai, Uganda.CrossRef | 26081632PubMed |

Loy, A., Maixner, F., Wagner, M., and Horn, M. (2007). probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 35, D800–D804.
probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007.CrossRef | 1:CAS:528:DC%2BD2sXivFGruw%3D%3D&md5=34165fafd458ee1d1f87bd650ad4e7b7CAS | 17099228PubMed |

Ma, J., Prince, A. L., Bader, D., Hu, M., Ganu, R., Baquero, K., Blundell, P., Alan Harris, R., Frias, A. E., Grove, K. L., and Aagaard, K. M. (2014). High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889.
High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model.CrossRef | 1:CAS:528:DC%2BC2MXksVektro%3D&md5=87f5b68bc409c51e4a58d479eafea1a0CAS | 24846660PubMed |

Magnusson, K. R., Hauck, L., Jeffrey, B. M., Elias, V., Humphrey, A., Nath, R., Perrone, A., and Bermudez, L. E. (2015). Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140.
Relationships between diet-related changes in the gut microbiome and cognitive flexibility.CrossRef | 1:CAS:528:DC%2BC2MXos1egtrs%3D&md5=ecc46ebf8908308ccdf560011df7bab7CAS | 25982560PubMed |

Magoč, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.
FLASH: fast length adjustment of short reads to improve genome assemblies.CrossRef | 21903629PubMed |

Mändar, R., Punab, M., Borovkova, N., Lapp, E., Kiiker, R., Korrovits, P., Metspalu, A., Krjutškov, K., Nõlvak, H., Preem, J. K., Oopkaup, K., Salumets, A., and Truu, J. (2015). Complementary seminovaginal microbiome in couples. Res. Microbiol. 166, 440–447.
Complementary seminovaginal microbiome in couples.CrossRef | 25869222PubMed |

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217.
phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.CrossRef | 1:CAS:528:DC%2BC3sXntVWht7w%3D&md5=8ed709284f63569a90b6fd8ae273f883CAS | 23630581PubMed |

Messaoudi, M., Violle, N., Bisson, J. F., Desor, D., Javelot, H., and Rougeot, C. (2011). Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2, 256–261.
Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers.CrossRef | 21983070PubMed |

Mitchell, M., Bakos, H. W., and Lane, M. (2011). Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil. Steril. 95, 1349–1353.
Paternal diet-induced obesity impairs embryo development and implantation in the mouse.CrossRef | 21047633PubMed |

Murphy, E. A., Velazquez, K. T., and Herbert, K. M. (2015). Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care 18, 515–520.
Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk.CrossRef | 1:CAS:528:DC%2BC2MXhtlWiu7rN&md5=e5f599bb3bcc9eb5872527e6438f27edCAS | 26154278PubMed |

Ng, S. F., Lin, R. C., Laybutt, D. R., Barres, R., Owens, J. A., and Morris, M. J. (2010). Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467, 963–966.
Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring.CrossRef | 1:CAS:528:DC%2BC3cXhtlWlsr%2FF&md5=8940bfed5c3b7960c11c11b53a458c97CAS | 20962845PubMed |

Ng, S. F., Lin, R. C., Maloney, C. A., Youngson, N. A., Owens, J. A., and Morris, M. J. (2014). Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J. 28, 1830–1841.
Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring.CrossRef | 1:CAS:528:DC%2BC2cXmtVGrsb4%3D&md5=666a88cbb9e5c825b10f9f34a9fc51fcCAS | 24421403PubMed |

Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202.
Differential abundance analysis for microbial marker-gene surveys.CrossRef | 1:CAS:528:DC%2BC3sXhsFaksbvP&md5=c67dbba7e6a4e6c61e8e46cdd4345717CAS | 24076764PubMed |

Rando, O. J. (2012). Daddy issues: paternal effects on phenotype. Cell 151, 702–708.
Daddy issues: paternal effects on phenotype.CrossRef | 1:CAS:528:DC%2BC38Xhs1Kjsr%2FJ&md5=f63e64b32dcad884c6dce71768a78fbaCAS | 23141533PubMed |

Rando, O. J., and Simmons, R. A. (2015). I’m eating for two: parental dietary effects on offspring metabolism. Cell 161, 93–105.
I’m eating for two: parental dietary effects on offspring metabolism.CrossRef | 1:CAS:528:DC%2BC2MXls1agsro%3D&md5=0a3d87fe7d3cdd0ba11fc148465cd1a5CAS | 25815988PubMed |

Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S., and Bale, T. L. (2013). Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012.
Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation.CrossRef | 1:CAS:528:DC%2BC3sXoslyktbY%3D&md5=e34aad2cee0aad1c2db476e1477e2126CAS | 23699511PubMed |

Rodgers, A. B., Morgan, C. P., Leu, N. A., and Bale, T. L. (2015). Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. USA 112, 13699–13704.
Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress.CrossRef | 1:CAS:528:DC%2BC2MXhs1yksbfM&md5=e7518914b36b20dc1e162e497e2820faCAS | 26483456PubMed |

Rodin, D. M., Larone, D., and Goldstein, M. (2003). Relationship between semen cultures, leukospermia, and semen analysis in men undergoing fertility evaluation. Fertil. Steril. 79, 1555–1558.
Relationship between semen cultures, leukospermia, and semen analysis in men undergoing fertility evaluation.CrossRef | 12801559PubMed |

Schneeberger, M., Everard, A., Gomez-Valades, A. G., Matamoros, S., Ramirez, S., Delzenne, N. M., Gomis, R., Claret, M., and Cani, P. D. (2015). Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643.
Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice.CrossRef | 1:CAS:528:DC%2BC2MXhvVOru7vM&md5=36c56b0f651b721b37426360d2b44c99CAS | 26563823PubMed |

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., and Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
Metagenomic biomarker discovery and explanation.CrossRef | 21702898PubMed |

Shannon, B. A., Garrett, K. L., and Cohen, R. J. (2006). Links between Propionibacterium acnes and prostate cancer. Future Oncol. 2, 225–232.
Links between Propionibacterium acnes and prostate cancer.CrossRef | 16563091PubMed |

Sharma, U., and Rando, O. J. (2014). Father–son chats: inheriting stress through sperm RNA. Cell Metab. 19, 894–895.
Father–son chats: inheriting stress through sperm RNA.CrossRef | 1:CAS:528:DC%2BC2cXpslCrsro%3D&md5=cc99f52fb83ace33f3f517a20aad5c11CAS | 24896534PubMed |

Sharma, U., Conine, C. C., Shea, J. M., Boskovic, A., Derr, A. G., Bing, X. Y., Belleannee, C., Kucukural, A., Serra, R. W., Sun, F., Song, L., Carone, B. R., Ricci, E. P., Li, X. Z., Fauquier, L., Moore, M. J., Sullivan, R., Mello, C. C., Garber, M., and Rando, O. J. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396.
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.CrossRef | 1:CAS:528:DC%2BC28XhtValsLk%3D&md5=f717e3acc40c6340251337c74f4c2bd2CAS | 26721685PubMed |

Shinohara, D. B., Vaghasia, A. M., Yu, S. H., Mak, T. N., Bruggemann, H., Nelson, W. G., De Marzo, A. M., Yegnasubramanian, S., and Sfanos, K. S. (2013). A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 73, 1007–1015.
A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes.CrossRef | 1:CAS:528:DC%2BC3sXosFehtbk%3D&md5=8e0967a442a7d794848aaccf0807ee33CAS | 23389852PubMed |

Swenson, C. E., Toth, A., Toth, C., Wolfgruber, L., and O’Leary, W. M. (1980). Asymptomatic bacteriospermia in infertile men. Andrologia 12, 7–11.
Asymptomatic bacteriospermia in infertile men.CrossRef | 1:STN:280:DyaL3c7ps1ersQ%3D%3D&md5=6c0de7e5e35bb3c373acb3acf3f4f43bCAS | 6990832PubMed |

Terashima, M., Barbour, S., Ren, J., Yu, W., Han, Y., and Muegge, K. (2015). Effect of high-fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics 10, 861–871.
Effect of high-fat diet on paternal sperm histone distribution and male offspring liver gene expression.CrossRef | 26252449PubMed |

Thorburn, A. N., McKenzie, C. I., and Shen, S. (2015). Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320.
Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites.CrossRef | 1:CAS:528:DC%2BC2MXhtF2ktrjK&md5=4fccfc21b212f77b3fbdb68f853b7ebcCAS | 26102221PubMed |

Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., and Gordon, J. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14.
The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.CrossRef | 20368178PubMed |

Virecoulon, F., Wallet, F., Fruchart-Flamenbaum, A., Rigot, J. M., Peers, M. C., Mitchell, V., and Courcol, R. J. (2005). Bacterial flora of the low male genital tract in patients consulting for infertility. Andrologia 37, 160–165.
Bacterial flora of the low male genital tract in patients consulting for infertility.CrossRef | 1:STN:280:DC%2BD2MroslGnug%3D%3D&md5=409c48a25e6dedf5fa01486e4ce830e0CAS | 16266393PubMed |

Walker, A., Pfitzner, B., Neschen, S., Kahle, M., Harir, M., Lucio, M., Moritz, F., Tziotis, D., Witting, M., Rothballer, M., Engel, M., Schmid, M., Endesfelder, D., Klingenspor, M., Rattei, T., Castell, W. Z., de Angelis, M. H., Hartmann, A., and Schmitt-Kopplin, P. (2014). Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. 8, 2380–2396.
Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet.CrossRef | 1:CAS:528:DC%2BC2cXitFKntbfJ&md5=b9f538899d6e86c4988755dfbad8e2a8CAS | 24906017PubMed |

Walters, W. A., Caporaso, J. G., Lauber, C. L., Berg-Lyons, D., Fierer, N., and Knight, R. (2011). PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics 27, 1159–1161.
PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers.CrossRef | 1:CAS:528:DC%2BC3MXksFKltLk%3D&md5=47e4d3974d9f382f8134677218b75cc3CAS | 21349862PubMed |

Youngson, N. A., Lecomte, V., Maloney, C. A., Leung, P., Liu, J., Hesson, L. B., Luciani, F., Krause, L., and Morris, M. J. (2015). Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring. Asian J. Androl. , .
Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring.CrossRef | 26608942PubMed |

Zozaya, M., Ferris, M. J., Siren, J. D., Lillis, R., Myers, L., Nsuami, M. J., Eren, A. M., Brown, J., Taylor, C. M., and Martin, D. H. (2016). Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis. Microbiome 4, 16.
Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis.CrossRef | 27090518PubMed |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (64 KB) Export Citation Cited By (2)

View Altmetrics