Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Consumption of a high-fat diet alters the seminal fluid and gut microbiomes in male mice

Angela B. Javurek A B , William G. Spollen A C , Sarah A. Johnson A B D , Nathan J. Bivens E , Karen H. Bromert E , Scott A. Givan A C F and Cheryl S. Rosenfeld A B G H I
+ Author Affiliations
- Author Affiliations

A Department of Bond Life Sciences Center, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

B Department of Biomedical Sciences, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

C Department of Informatics Research Core Facility, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

D Department of Animal Sciences, University of Missouri, 920 E. Campus Drive, Columbia, MO 65211, USA.

E DNA Core Facility, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

F Department of Molecular Microbiology and Immunology, University of Missouri, 1201 E. Rollins Road, Columbia, MO 65211, USA.

G Genetics Area Program, University of Missouri, Columbia, MO 65211, USA.

H Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, 205 Portland Street, Columbia, MO 65211, USA.

I Corresponding author. Email: rosenfeldc@missouri.edu

Reproduction, Fertility and Development 29(8) 1602-1612 https://doi.org/10.1071/RD16119
Submitted: 15 March 2016  Accepted: 29 July 2016   Published: 29 August 2016

Abstract

Our prior work showed that a novel microbiome resides in the seminal vesicles of wild-type and oestrogen receptor α (Esr1) knock-out mice and is impacted by the presence of functional Esr1 genes. The seminal fluid microbiome (SFM) may influence the health and reproductive status of the male, along with that of his partner and offspring. A high-fat diet (HFD) alters metabolites and other factors within seminal fluid and might affect the SFM. Adult (~15 weeks old) male mice were placed for 4 weeks on a control or high-fat diet and seminal fluid and fecal samples were collected, bacterial DNA isolated and subjected to 16s rRNA sequencing. Corynebacterium spp. were elevated in the seminal fluid of HFD males; however, Acinetobacter johnsonii, Streptophyta, Ammoniphilus spp., Bacillus spp. and Propionibacterium acnes were increased in control males. Rikenellaceae was more abundant in the fecal samples from HFD males. However, Bacteroides ovatus and another Bacteroides species, Bilophila, Sutterella spp., Parabacteroides, Bifidobacterium longum, Akkermansia muciniphila and Desulfovibrio spp. were greater in control males. Thus, short-term consumption of a HFD influences the seminal fluid and fecal microbiomes, which may have important health consequence for males and developmental origins of health and disease effects in resulting offspring.

Additional keywords: bacteria, DOHaD, metabolic pathway, microbiota, prostate cancer, reproductive tract, semen.


References

Aagaard, K., Ma, J., Antony, K. M., Ganu, R., Petrosino, J., and Versalovic, J. (2014). The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra65.
The placenta harbors a unique microbiome.CrossRef | 24848255PubMed | open url image1

Ait-Belgnaoui, A., Colom, A., Braniste, V., Ramalho, L., Marrot, A., Cartier, C., Houdeau, E., Theodorou, V., and Tompkins, T. (2014). Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice. Neurogastroenterol. Motil. 26, 510–520.
Probiotic gut effect prevents the chronic psychological stress-induced brain activity abnormality in mice.CrossRef | 1:STN:280:DC%2BC2czgsFKrug%3D%3D&md5=b0c584d3bea5d6aa3a452c20c784b47bCAS | 24372793PubMed | open url image1

Baka, S. (2014). Microbiota of the seminal fluid. Fertil. Steril. 101, e27.
Microbiota of the seminal fluid.CrossRef | 24589522PubMed | open url image1

Bakos, H. W., Mitchell, M., Setchell, B. P., and Lane, M. (2011). The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int. J. Androl. 34, 402–410.
The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model.CrossRef | 1:CAS:528:DC%2BC3MXhtlOlu7fP&md5=07814560ba0e86335682456285678fc1CAS | 20649934PubMed | open url image1

Barouki, R., Gluckman, P. D., Grandjean, P., Hanson, M., and Heindel, J. J. (2012). Developmental origins of non-communicable disease: implications for research and public health. Environ. Health 11, 42.
Developmental origins of non-communicable disease: implications for research and public health.CrossRef | 22715989PubMed | open url image1

Binder, N. K., Hannan, N. J., and Gardner, D. K. (2012a). Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health. PLoS One 7, e52304.
Paternal diet-induced obesity retards early mouse embryo development, mitochondrial activity and pregnancy health.CrossRef | 1:CAS:528:DC%2BC3sXmvFGhsA%3D%3D&md5=fb51dc52fc7c8c5e756afa35945fb90fCAS | 23300638PubMed | open url image1

Binder, N. K., Mitchell, M., and Gardner, D. K. (2012b). Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst. Reprod. Fertil. Dev. 24, 804–812.
Parental diet-induced obesity leads to retarded early mouse embryo development and altered carbohydrate utilisation by the blastocyst.CrossRef | 1:CAS:528:DC%2BC38XpvFKls7c%3D&md5=47a3b7cd35d1d36c45e702e3f5085d59CAS | 22781931PubMed | open url image1

Binder, N. K., Beard, S. A., Kaitu’u-Lino, T. J., Tong, S., Hannan, N. J., and Gardner, D. (2015a). Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction 149, 435–444.
Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner.CrossRef | 1:CAS:528:DC%2BC2MXhtVCkur7K&md5=28b8612b6166515251842eafdf25a6d0CAS | 25725082PubMed | open url image1

Binder, N. K., Sheedy, J. R., Hannan, N. J., and Gardner, D. K. (2015b). Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model. Mol. Hum. Reprod. 21, 424–434.
Male obesity is associated with changed spermatozoa Cox4i1 mRNA level and altered seminal vesicle fluid composition in a mouse model.CrossRef | 25731709PubMed | open url image1

Borovkova, N., Korrovits, P., Ausmees, K., Turk, S., Joers, K., Punab, M., and Mandar, R. (2011). Influence of sexual intercourse on genital tract microbiota in infertile couples. Anaerobe 17, 414–418.
Influence of sexual intercourse on genital tract microbiota in infertile couples.CrossRef | 21549210PubMed | open url image1

Bromfield, J. J. (2014). Seminal fluid and reproduction: much more than previously thought. J. Assist. Reprod. Genet. 31, 627–636.
Seminal fluid and reproduction: much more than previously thought.CrossRef | 24830788PubMed | open url image1

Bromfield, J. J., Schjenken, J. E., Chin, P. Y., Care, A. S., Jasper, M. J., and Robertson, S. A. (2014). Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc. Natl. Acad. Sci. USA 111, 2200–2205.
Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring.CrossRef | 1:CAS:528:DC%2BC2cXisFOqtLc%3D&md5=69e682c77a9e6512483ccaa5541f94f6CAS | 24469827PubMed | open url image1

Busolo, F., Zanchetta, R., Lanzone, E., and Cusinato, R. (1984). Microbial flora in semen of asymptomatic infertile men. Andrologia 16, 269–275.
Microbial flora in semen of asymptomatic infertile men.CrossRef | 1:STN:280:DyaL2c3nvVersg%3D%3D&md5=f91f76e4e94acc011a731f361b2d4957CAS | 6465553PubMed | open url image1

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.
QIIME allows analysis of high-throughput community sequencing data.CrossRef | 1:CAS:528:DC%2BC3cXksFalurg%3D&md5=301fd189b5ac95faa4885f3dd2db8b10CAS | 20383131PubMed | open url image1

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, P. J., Fierer, N., and Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 108, 4516–4522.
Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.CrossRef | 1:CAS:528:DC%2BC3MXjvVCktL0%3D&md5=a5de46f5894b537e5fb739c731f2f76bCAS | 20534432PubMed | open url image1

Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G. H., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zhou, Q. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400.
Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.CrossRef | 1:CAS:528:DC%2BC28XhtValsb4%3D&md5=129dcb42950d7353d16c214b3ed4a595CAS | 26721680PubMed | open url image1

Daniel, H., Moghaddas Gholami, A., Berry, D., Desmarchelier, C., Hahne, H., Loh, G., Mondot, S., Lepage, P., Rothballer, M., Walker, A., Böhm, C., Wenning, M., Wagner, M., Blaut, M., Schmitt-Kopplin, P., Kuster, B., Haller, D., and Clavel, T. (2014). High-fat diet alters gut microbiota physiology in mice. ISME J. 8, 295–308.
High-fat diet alters gut microbiota physiology in mice.CrossRef | 1:CAS:528:DC%2BC2cXht1Cjsb8%3D&md5=f19bd31b32baace8ab63a291f5b72418CAS | 24030595PubMed | open url image1

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.CrossRef | 1:CAS:528:DC%2BD28XnsVaqtLg%3D&md5=c8e73426d1f572cad2735e4c266a26caCAS | 16820507PubMed | open url image1

Devkota, S., and Chang, E. B. (2015). Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases. Dig. Dis. 33, 351–356.
Interactions between diet, bile acid metabolism, gut microbiota, and inflammatory bowel diseases.CrossRef | 26045269PubMed | open url image1

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.
Search and clustering orders of magnitude faster than BLAST.CrossRef | 1:CAS:528:DC%2BC3cXht1WhtbzM&md5=423df971fc2a177aad8368ea272e7364CAS | 20709691PubMed | open url image1

Faure, C., Dupont, C., Chavatte-Palmer, P., Gautier, B., and Levy, R. (2015). Are semen parameters related to birth weight? Fertil. Steril. 103, 6–10.
Are semen parameters related to birth weight?CrossRef | 25552408PubMed | open url image1

Fullston, T., Palmer, N. O., Owens, J. A., Mitchell, M., Bakos, H. W., and Lane, M. (2012). Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 27, 1391–1400.
Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice.CrossRef | 1:STN:280:DC%2BC38vjvFGhsQ%3D%3D&md5=f16c775543dd06738682e8d22e08599dCAS | 22357767PubMed | open url image1

Fullston, T., Ohlsson Teague, E. M., Palmer, N. O., DeBlasio, M. J., Mitchell, M., Corbett, M., Print, C. G., Owens, J. A., and Lane, M. (2013). Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243.
Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content.CrossRef | 1:CAS:528:DC%2BC3sXhs1SqtLzN&md5=5c943a95c532f2df1f973540ea786836CAS | 23845863PubMed | open url image1

Fullston, T., McPherson, N. O., Owens, J. A., Kang, W. X., Sandeman, L. Y., and Lane, M. (2015a). Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet. Physiol. Rep. 3, e12336.
Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet.CrossRef | 25804263PubMed | open url image1

Fullston, T., Shehadeh, H., Sandeman, L. Y., Kang, W. X., Wu, L. L., Robker, R. L., McPherson, N. O., and Lane, M. (2015b). Female offspring sired by diet-induced obese male mice display impaired blastocyst development with molecular alterations to their ovaries, oocytes and cumulus cells. J. Assist. Reprod. Genet. 32, 725–735.
Female offspring sired by diet-induced obese male mice display impaired blastocyst development with molecular alterations to their ovaries, oocytes and cumulus cells.CrossRef | 25854657PubMed | open url image1

Gapp, K., Jawaid, A., Sarkies, P., Bohacek, J., Pelczar, P., Prados, J., Farinelli, L., Miska, E., and Mansuy, I. M. (2014). Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat. Neurosci. 17, 667–669.
Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.CrossRef | 1:CAS:528:DC%2BC2cXmtlWgsrg%3D&md5=017cba8a74cfabffff2cce80fa70f808CAS | 24728267PubMed | open url image1

Grandjean, V., Fourre, S., De Abreu, D. A., Derieppe, M. A., Remy, J. J., and Rassoulzadegan, M. (2015). RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci. Rep. 5, 18193.
RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders.CrossRef | 1:CAS:528:DC%2BC2MXitVWqsbbI&md5=37442df2412a00a4a936ef9a6b7ac21fCAS | 26658372PubMed | open url image1

Hanson, M. (2015). The birth and future health of DOHaD. J. Dev. Orig. Health Dis. 6, 434–437.
The birth and future health of DOHaD.CrossRef | 1:STN:280:DC%2BC2MfmslyrtQ%3D%3D&md5=63918907e1dde3d3b8d0d973a9cb318bCAS | 26004094PubMed | open url image1

Hanson, M. A., and Gluckman, P. D. (2014). Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol. Rev. 94, 1027–1076.
Early developmental conditioning of later health and disease: physiology or pathophysiology?CrossRef | 1:CAS:528:DC%2BC2cXitFansbnO&md5=aec0e1847aeb682fe1f4c3eafd1fd65fCAS | 25287859PubMed | open url image1

Hanson, M., Godfrey, K. M., Lillycrop, K. A., Burdge, G. C., and Gluckman, P. D. (2011). Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog. Biophys. Mol. Biol. 106, 272–280.
Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms.CrossRef | 21219925PubMed | open url image1

Heine, P. A., Taylor, J. A., Iwamoto, G. A., Lubahn, D. B., and Cooke, P. S. (2000). Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl. Acad. Sci. USA 97, 12729–12734.
Increased adipose tissue in male and female estrogen receptor-alpha knockout mice.CrossRef | 1:CAS:528:DC%2BD3cXotFyntrk%3D&md5=cca437d8b1b51d8d489c3f15ca3d5d36CAS | 11070086PubMed | open url image1

Hou, D., Zhou, X., Zhong, X., Settles, M. L., Herring, J., Wang, L., Abdo, Z., Forney, L. J., and Xu, C. (2013). Microbiota of the seminal fluid from healthy and infertile men. Fertil. Steril. 100, 1261–1269.e3.
Microbiota of the seminal fluid from healthy and infertile men.CrossRef | 23993888PubMed | open url image1

Howe, A., Ringus, D. L., Williams, R. J., Choo, Z. N., Greenwald, S. M., Owens, S. M., Coleman, M. L., Meyer, F., and Chang, E. B. (2016). Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice. ISME J. 10, 1217–1227.
Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice.CrossRef | 1:CAS:528:DC%2BC28Xmsl2qu7s%3D&md5=a3ef582a2231f3744d3dbbd1f170b7e3CAS | 26473721PubMed | open url image1

Ivanov, I. B., Kuzmin, M. D., and Gritsenko, V. A. (2009). Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome. Int. J. Androl. 32, 462–467.
Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome.CrossRef | 18328042PubMed | open url image1

Javurek, A. B., Spollen, W. G., Ali, A. M., Johnson, S. A., Lubahn, D. B., Bivens, N. J., Bromert, K. H., Ellersieck, M. R., Givan, S. A., and Rosenfeld, C. S. (2016). Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci. Rep. 6, 23027.
Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status.CrossRef | 1:CAS:528:DC%2BC28XktFKis7o%3D&md5=40646f789f0499095bfc76d8f5061769CAS | 26971397PubMed | open url image1

Kwon, S. K., Kwak, M. J., Seo, J. G., Chung, M. J., and Kim, J. F. (2015). Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health. J. Biotechnol. 214, 169–170.
Complete genome sequence of Bifidobacterium longum KCTC 12200BP, a probiotic strain promoting the intestinal health.CrossRef | 1:CAS:528:DC%2BC2MXhs1Chur3P&md5=ebc563789993996ec313554cb0a30e3bCAS | 26439427PubMed | open url image1

Lam, Y. Y., Ha, C. W., Hoffmann, J. M., Oscarsson, J., Dinudom, A., Mather, T. J., Cook, D. I., Hunt, N. H., Caterson, I. D., Holmes, A. J., and Storlien, L. H. (2015). Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring) 23, 1429–1439.
Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice.CrossRef | 1:CAS:528:DC%2BC2MXhtVOms7vF&md5=278f5ea511355de766d8c609a99d2a79CAS | 26053244PubMed | open url image1

Langille, M. G., Zaneveld, J., Caporaso, J. G., McDonald, D., Knights, D., Reyes, J. A., Clemente, J. C., Burkepile, D. E., Vega Thurber, R. L., Knight, R., Beiko, R. G., and Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.
Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.CrossRef | 1:CAS:528:DC%2BC3sXhtlWku7fJ&md5=31889057b6a69f295b594d5dde2e4669CAS | 23975157PubMed | open url image1

Le, T. K., Hosaka, T., Le, T. T., Nguyen, T. G., Tran, Q. B., Le, T. H., and Pham, X. D. (2014). Oral administration of Bifidobacterium spp. improves insulin resistance, induces adiponectin, and prevents inflammatory adipokine expressions. Biomed. Res. 35, 303–310.
Oral administration of Bifidobacterium spp. improves insulin resistance, induces adiponectin, and prevents inflammatory adipokine expressions.CrossRef | 1:CAS:528:DC%2BC2cXhvFWqsLzJ&md5=849ddbebe4a865914888a9f61acb2583CAS | 25355437PubMed | open url image1

Liu, C. M., Hungate, B. A., Tobian, A. A., Ravel, J., Prodger, J. L., Serwadda, D., Kigozi, G., Galiwango, R. M., Nalugoda, F., Keim, P., Wawer, M. J., Price, L. B., and Gray, R. H. (2015). Penile microbiota and female partner bacterial vaginosis in Rakai, Uganda. MBio 6, e00589-15.
Penile microbiota and female partner bacterial vaginosis in Rakai, Uganda.CrossRef | 26081632PubMed | open url image1

Loy, A., Maixner, F., Wagner, M., and Horn, M. (2007). probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Res. 35, D800–D804.
probeBase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007.CrossRef | 1:CAS:528:DC%2BD2sXivFGruw%3D%3D&md5=34165fafd458ee1d1f87bd650ad4e7b7CAS | 17099228PubMed | open url image1

Ma, J., Prince, A. L., Bader, D., Hu, M., Ganu, R., Baquero, K., Blundell, P., Alan Harris, R., Frias, A. E., Grove, K. L., and Aagaard, K. M. (2014). High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889.
High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model.CrossRef | 1:CAS:528:DC%2BC2MXksVektro%3D&md5=87f5b68bc409c51e4a58d479eafea1a0CAS | 24846660PubMed | open url image1

Magnusson, K. R., Hauck, L., Jeffrey, B. M., Elias, V., Humphrey, A., Nath, R., Perrone, A., and Bermudez, L. E. (2015). Relationships between diet-related changes in the gut microbiome and cognitive flexibility. Neuroscience 300, 128–140.
Relationships between diet-related changes in the gut microbiome and cognitive flexibility.CrossRef | 1:CAS:528:DC%2BC2MXos1egtrs%3D&md5=ecc46ebf8908308ccdf560011df7bab7CAS | 25982560PubMed | open url image1

Magoč, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.
FLASH: fast length adjustment of short reads to improve genome assemblies.CrossRef | 21903629PubMed | open url image1

Mändar, R., Punab, M., Borovkova, N., Lapp, E., Kiiker, R., Korrovits, P., Metspalu, A., Krjutškov, K., Nõlvak, H., Preem, J. K., Oopkaup, K., Salumets, A., and Truu, J. (2015). Complementary seminovaginal microbiome in couples. Res. Microbiol. 166, 440–447.
Complementary seminovaginal microbiome in couples.CrossRef | 25869222PubMed | open url image1

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217.
phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data.CrossRef | 1:CAS:528:DC%2BC3sXntVWht7w%3D&md5=8ed709284f63569a90b6fd8ae273f883CAS | 23630581PubMed | open url image1

Messaoudi, M., Violle, N., Bisson, J. F., Desor, D., Javelot, H., and Rougeot, C. (2011). Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2, 256–261.
Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers.CrossRef | 21983070PubMed | open url image1

Mitchell, M., Bakos, H. W., and Lane, M. (2011). Paternal diet-induced obesity impairs embryo development and implantation in the mouse. Fertil. Steril. 95, 1349–1353.
Paternal diet-induced obesity impairs embryo development and implantation in the mouse.CrossRef | 21047633PubMed | open url image1

Murphy, E. A., Velazquez, K. T., and Herbert, K. M. (2015). Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr. Opin. Clin. Nutr. Metab. Care 18, 515–520.
Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk.CrossRef | 1:CAS:528:DC%2BC2MXhtlWiu7rN&md5=e5f599bb3bcc9eb5872527e6438f27edCAS | 26154278PubMed | open url image1

Ng, S. F., Lin, R. C., Laybutt, D. R., Barres, R., Owens, J. A., and Morris, M. J. (2010). Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467, 963–966.
Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring.CrossRef | 1:CAS:528:DC%2BC3cXhtlWlsr%2FF&md5=8940bfed5c3b7960c11c11b53a458c97CAS | 20962845PubMed | open url image1

Ng, S. F., Lin, R. C., Maloney, C. A., Youngson, N. A., Owens, J. A., and Morris, M. J. (2014). Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring. FASEB J. 28, 1830–1841.
Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring.CrossRef | 1:CAS:528:DC%2BC2cXmtVGrsb4%3D&md5=666a88cbb9e5c825b10f9f34a9fc51fcCAS | 24421403PubMed | open url image1

Paulson, J. N., Stine, O. C., Bravo, H. C., and Pop, M. (2013). Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10, 1200–1202.
Differential abundance analysis for microbial marker-gene surveys.CrossRef | 1:CAS:528:DC%2BC3sXhsFaksbvP&md5=c67dbba7e6a4e6c61e8e46cdd4345717CAS | 24076764PubMed | open url image1

Rando, O. J. (2012). Daddy issues: paternal effects on phenotype. Cell 151, 702–708.
Daddy issues: paternal effects on phenotype.CrossRef | 1:CAS:528:DC%2BC38Xhs1Kjsr%2FJ&md5=f63e64b32dcad884c6dce71768a78fbaCAS | 23141533PubMed | open url image1

Rando, O. J., and Simmons, R. A. (2015). I’m eating for two: parental dietary effects on offspring metabolism. Cell 161, 93–105.
I’m eating for two: parental dietary effects on offspring metabolism.CrossRef | 1:CAS:528:DC%2BC2MXls1agsro%3D&md5=0a3d87fe7d3cdd0ba11fc148465cd1a5CAS | 25815988PubMed | open url image1

Rodgers, A. B., Morgan, C. P., Bronson, S. L., Revello, S., and Bale, T. L. (2013). Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J. Neurosci. 33, 9003–9012.
Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation.CrossRef | 1:CAS:528:DC%2BC3sXoslyktbY%3D&md5=e34aad2cee0aad1c2db476e1477e2126CAS | 23699511PubMed | open url image1

Rodgers, A. B., Morgan, C. P., Leu, N. A., and Bale, T. L. (2015). Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. USA 112, 13699–13704.
Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress.CrossRef | 1:CAS:528:DC%2BC2MXhs1yksbfM&md5=e7518914b36b20dc1e162e497e2820faCAS | 26483456PubMed | open url image1

Rodin, D. M., Larone, D., and Goldstein, M. (2003). Relationship between semen cultures, leukospermia, and semen analysis in men undergoing fertility evaluation. Fertil. Steril. 79, 1555–1558.
Relationship between semen cultures, leukospermia, and semen analysis in men undergoing fertility evaluation.CrossRef | 12801559PubMed | open url image1

Schneeberger, M., Everard, A., Gomez-Valades, A. G., Matamoros, S., Ramirez, S., Delzenne, N. M., Gomis, R., Claret, M., and Cani, P. D. (2015). Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643.
Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice.CrossRef | 1:CAS:528:DC%2BC2MXhvVOru7vM&md5=36c56b0f651b721b37426360d2b44c99CAS | 26563823PubMed | open url image1

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., and Huttenhower, C. (2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.
Metagenomic biomarker discovery and explanation.CrossRef | 21702898PubMed | open url image1

Shannon, B. A., Garrett, K. L., and Cohen, R. J. (2006). Links between Propionibacterium acnes and prostate cancer. Future Oncol. 2, 225–232.
Links between Propionibacterium acnes and prostate cancer.CrossRef | 16563091PubMed | open url image1

Sharma, U., and Rando, O. J. (2014). Father–son chats: inheriting stress through sperm RNA. Cell Metab. 19, 894–895.
Father–son chats: inheriting stress through sperm RNA.CrossRef | 1:CAS:528:DC%2BC2cXpslCrsro%3D&md5=cc99f52fb83ace33f3f517a20aad5c11CAS | 24896534PubMed | open url image1

Sharma, U., Conine, C. C., Shea, J. M., Boskovic, A., Derr, A. G., Bing, X. Y., Belleannee, C., Kucukural, A., Serra, R. W., Sun, F., Song, L., Carone, B. R., Ricci, E. P., Li, X. Z., Fauquier, L., Moore, M. J., Sullivan, R., Mello, C. C., Garber, M., and Rando, O. J. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396.
Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.CrossRef | 1:CAS:528:DC%2BC28XhtValsLk%3D&md5=f717e3acc40c6340251337c74f4c2bd2CAS | 26721685PubMed | open url image1

Shinohara, D. B., Vaghasia, A. M., Yu, S. H., Mak, T. N., Bruggemann, H., Nelson, W. G., De Marzo, A. M., Yegnasubramanian, S., and Sfanos, K. S. (2013). A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 73, 1007–1015.
A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes.CrossRef | 1:CAS:528:DC%2BC3sXosFehtbk%3D&md5=8e0967a442a7d794848aaccf0807ee33CAS | 23389852PubMed | open url image1

Swenson, C. E., Toth, A., Toth, C., Wolfgruber, L., and O’Leary, W. M. (1980). Asymptomatic bacteriospermia in infertile men. Andrologia 12, 7–11.
Asymptomatic bacteriospermia in infertile men.CrossRef | 1:STN:280:DyaL3c7ps1ersQ%3D%3D&md5=6c0de7e5e35bb3c373acb3acf3f4f43bCAS | 6990832PubMed | open url image1

Terashima, M., Barbour, S., Ren, J., Yu, W., Han, Y., and Muegge, K. (2015). Effect of high-fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics 10, 861–871.
Effect of high-fat diet on paternal sperm histone distribution and male offspring liver gene expression.CrossRef | 26252449PubMed | open url image1

Thorburn, A. N., McKenzie, C. I., and Shen, S. (2015). Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320.
Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites.CrossRef | 1:CAS:528:DC%2BC2MXhtF2ktrjK&md5=4fccfc21b212f77b3fbdb68f853b7ebcCAS | 26102221PubMed | open url image1

Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., and Gordon, J. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14.
The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice.CrossRef | 20368178PubMed | open url image1

Virecoulon, F., Wallet, F., Fruchart-Flamenbaum, A., Rigot, J. M., Peers, M. C., Mitchell, V., and Courcol, R. J. (2005). Bacterial flora of the low male genital tract in patients consulting for infertility. Andrologia 37, 160–165.
Bacterial flora of the low male genital tract in patients consulting for infertility.CrossRef | 1:STN:280:DC%2BD2MroslGnug%3D%3D&md5=409c48a25e6dedf5fa01486e4ce830e0CAS | 16266393PubMed | open url image1

Walker, A., Pfitzner, B., Neschen, S., Kahle, M., Harir, M., Lucio, M., Moritz, F., Tziotis, D., Witting, M., Rothballer, M., Engel, M., Schmid, M., Endesfelder, D., Klingenspor, M., Rattei, T., Castell, W. Z., de Angelis, M. H., Hartmann, A., and Schmitt-Kopplin, P. (2014). Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet. ISME J. 8, 2380–2396.
Distinct signatures of host-microbial meta-metabolome and gut microbiome in two C57BL/6 strains under high-fat diet.CrossRef | 1:CAS:528:DC%2BC2cXitFKntbfJ&md5=b9f538899d6e86c4988755dfbad8e2a8CAS | 24906017PubMed | open url image1

Walters, W. A., Caporaso, J. G., Lauber, C. L., Berg-Lyons, D., Fierer, N., and Knight, R. (2011). PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics 27, 1159–1161.
PrimerProspector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers.CrossRef | 1:CAS:528:DC%2BC3MXksFKltLk%3D&md5=47e4d3974d9f382f8134677218b75cc3CAS | 21349862PubMed | open url image1

Youngson, N. A., Lecomte, V., Maloney, C. A., Leung, P., Liu, J., Hesson, L. B., Luciani, F., Krause, L., and Morris, M. J. (2015). Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring. Asian J. Androl. , .
Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring.CrossRef | 26608942PubMed | open url image1

Zozaya, M., Ferris, M. J., Siren, J. D., Lillis, R., Myers, L., Nsuami, M. J., Eren, A. M., Brown, J., Taylor, C. M., and Martin, D. H. (2016). Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis. Microbiome 4, 16.
Bacterial communities in penile skin, male urethra, and vaginas of heterosexual couples with and without bacterial vaginosis.CrossRef | 27090518PubMed | open url image1



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (64 KB) Export Citation Cited By (2)

View Altmetrics