Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Role of Ca2+ in the IVM of spermatozoa from the sterlet Acipenser ruthenus

Olga Bondarenko A B , Borys Dzyuba A , Marek Rodina A and Jacky Cosson A
+ Author Affiliations
- Author Affiliations

A Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.

B Corresponding author. Email: obondarenko@frov.jcu.cz

Reproduction, Fertility and Development 29(7) 1319-1328 https://doi.org/10.1071/RD16145
Submitted: 30 June 2015  Accepted: 20 April 2016   Published: 1 June 2016

Abstract

The role of Ca2+ in sturgeon sperm maturation and motility was investigated. Sperm from mature male sterlets (Acipenser ruthenus) were collected from the Wolffian duct and testis 24 h after hormone induction. Testicular spermatozoa (TS) were incubated in Wolffian duct seminal fluid (WDSF) for 5 min at 20°C and were designated ‘TS after IVM’ (TSM). Sperm motility was activated in media with different ion compositions, with motility parameters analysed from standard video microscopy records. To investigate the role of calcium transport in the IVM process, IVM was performed (5 min at 20°C) in the presence of 2 mM EGTA, 100 µM Verapamil or 100 µM Tetracaine. No motility was observed in the case of TS (10 mM Tris, 25 mM NaCl, 50 mM Sucr with or without the addition of 2 mM EGTA). Both incubation of TS in WDSF and supplementation of the activation medium with Ca2+ led to sperm motility. The minimal Ca2+ concentration required for motility activation of Wolffian duct spermatozoa, TS and TSM was determined (1–2 nM for Wolffian duct spermatozoa and TSM; approximately 0.6 mM for TS). Motility was obtained after the addition of verapamil to the incubation medium during IVM, whereas the addition of EGTA completely suppressed motility, implying Ca2+ involvement in sturgeon sperm maturation. Further studies into the roles of Ca2+ transport in sturgeon sperm maturation and motility are required.

Additional keywords: ion transport, Na+, sperm maturation, sperm motility.


References

Abbott, B. J., Fukuda, D. S., Dorman, D. E., Occolowitz, J. L., Debono, M., and Farhner, L. (1979). Microbial transformation of A23187, a divalent-cation ionophore antibiotic. Antimicrob. Agents Chemother. 16, 808–812.
Microbial transformation of A23187, a divalent-cation ionophore antibiotic.CrossRef | 1:CAS:528:DyaL3cXks1ymtbY%3D&md5=fe81ab2b396727f7bb0cc41310e998e8CAS | 119484PubMed | open url image1

Alavi, S. M. H., and Cosson, J. (2006). Sperm motility in fishes. (II) Effects of ions and osmolality: a review. Cell Biol. Int. 30, 1–14.
Sperm motility in fishes. (II) Effects of ions and osmolality: a review.CrossRef | 1:CAS:528:DC%2BD28XhsF2ntr8%3D&md5=a72db912a85ae47d208092432d630211CAS | open url image1

Alavi, S. M., Cosson, J., Karami, M., Amiri, B. M., and Akhoundzadeh, M. A. (2004). Spermatozoa motility in the Persian sturgeon, Acipenser persicus: effects of pH, dilution rate, ions and osmolality. Reproduction 128, 819–828.
Spermatozoa motility in the Persian sturgeon, Acipenser persicus: effects of pH, dilution rate, ions and osmolality.CrossRef | 1:CAS:528:DC%2BD2MXhtFSqsA%3D%3D&md5=08156c45d69f1ec328581904a2a1306aCAS | 15579600PubMed | open url image1

Alavi, S. M. H., Gela, D., Rodina, M., and Linhart, O. (2011). Roles of osmolality, calcium–potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 160, 166–174.
Roles of osmolality, calcium–potassium antagonist and calcium in activation and flagellar beating pattern of sturgeon sperm.CrossRef | 1:CAS:528:DC%2BC3MXpsFaku7o%3D&md5=f16f2f8d4e402dceefdc410cabf6aefbCAS | open url image1

Almog, T., and Naor, Z. (2008). Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Mol. Cell. Endocrinol. 282, 39–44.
Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions.CrossRef | 1:CAS:528:DC%2BD1cXitVegt7c%3D&md5=00a5c0be0f62501f40efa5d5d659a81dCAS | 18177996PubMed | open url image1

Almog, T., and Naor, Z. (2010). The role of mitogen activated protein kinase (MAPK) in sperm functions. Mol. Cell. Endocrinol. 314, 239–243.
The role of mitogen activated protein kinase (MAPK) in sperm functions.CrossRef | 1:CAS:528:DC%2BD1MXhsFynurbJ&md5=afe2f7c256949eb21c0eca3e8fc3df1eCAS | 19467295PubMed | open url image1

Ardón, F., Rodríguez-Miranda, E., Beltrán, C., Hernández-Cruz, A., and Darszon, A. (2009). Mitochondrial inhibitors activate influx of external Ca2+ in sea urchin sperm. Biochim. Biophys. Acta 1787, 15–24.
Mitochondrial inhibitors activate influx of external Ca2+ in sea urchin sperm.CrossRef | 19000650PubMed | open url image1

Bading, H., and Greenberg, M. E. (1991). Stimulation of protein tyrosine phosphorylation by NMDA receptor activation. Science 253, 912–914.
Stimulation of protein tyrosine phosphorylation by NMDA receptor activation.CrossRef | 1:CAS:528:DyaK3MXlsFWmt7Y%3D&md5=82d6231c1ee28f7ffa64112dcc8826f2CAS | 1715095PubMed | open url image1

Baynes, S. M., Scott, A. P., and Dawson, A. P. (1981). Rainbow-trout, Salmo-Gairdnerii Richardson, spermatozoa: effects of cations and pH on motility. J. Fish Biol. 19, 259–267.
Rainbow-trout, Salmo-Gairdnerii Richardson, spermatozoa: effects of cations and pH on motility.CrossRef | 1:CAS:528:DyaL3MXls1Gqu7Y%3D&md5=30ccc6cece0e48f3941d8a906dd905e6CAS | open url image1

Boitano, S., and Omoto, C. K. (1992). Trout sperm swimming patterns and role of intracellular Ca2+. Cell Motil. Cytoskeleton 21, 74–82.
Trout sperm swimming patterns and role of intracellular Ca2+.CrossRef | open url image1

Bondarenko, O., Dzyuba, B., Cosson, J., Rodina, M., and Linhart, O. (2014). The role of Ca2+ and Na+ membrane transport in brook trout (Salvelinus fontinalis) spermatozoa motility. Fish Physiol. Biochem. 40, 1417–1421.
The role of Ca2+ and Na+ membrane transport in brook trout (Salvelinus fontinalis) spermatozoa motility.CrossRef | 1:CAS:528:DC%2BC2cXmt1WksLc%3D&md5=46c133fc5b59baa0b6de47c46748fef3CAS | 24718964PubMed | open url image1

Bordin, S., Carneiro, E. M., Bosqueiro, J. R., and Boschero, A. C. (1997). Tetracaine stimulates extracellular Ca2+-independent insulin release. Eur. J. Pharmacol. 327, 257–262.
Tetracaine stimulates extracellular Ca2+-independent insulin release.CrossRef | 1:CAS:528:DyaK2sXjtlWnt78%3D&md5=8c064bc0aff5e34211fb456e4b06e926CAS | 9200568PubMed | open url image1

Breitbart, H. (2002). Intracellular calcium regulation in sperm capacitation and acrosomal reaction. Mol. Cell. Endocrinol. 187, 139–144.
Intracellular calcium regulation in sperm capacitation and acrosomal reaction.CrossRef | 1:CAS:528:DC%2BD38Xjt1Sqtr8%3D&md5=427344ca3a97691742760aff7ff30b02CAS | 11988321PubMed | open url image1

Butler, D. M., Allen, K. M., Garrett, F. E., Lauzon, L. L., Lotfizadeh, A., and Koch, R. A. (1999). Release of Ca2+ from intracellular stores and entry of extracellular Ca2+ are involved in sea squirt sperm activation. Dev. Biol. 215, 453–464.
Release of Ca2+ from intracellular stores and entry of extracellular Ca2+ are involved in sea squirt sperm activation.CrossRef | 1:CAS:528:DyaK1MXmvFyrtLc%3D&md5=10db00045f291f25020532d86ee12f58CAS | 10545251PubMed | open url image1

Cosson, J. (2004). The ionic and osmotic factors controlling motility of fish spermatozoa. Aquacult. Int. 12, 69–85.
The ionic and osmotic factors controlling motility of fish spermatozoa.CrossRef | 1:CAS:528:DC%2BD2cXhsFSjsro%3D&md5=c0d2394fb792398e51b5bacc74118fe8CAS | open url image1

Cosson, M. P., Billard, R., and Letellier, L. (1989). Rise of internal Ca2+ accompanies the initiation of trout sperm motility. Cell Motil. Cytoskeleton 14, 424–434.
Rise of internal Ca2+ accompanies the initiation of trout sperm motility.CrossRef | 1:CAS:528:DyaK3cXhvFWgug%3D%3D&md5=24739ad9ef8bfb7d11524343555b57e8CAS | open url image1

Cosson, M. P., Cosson, J., and Billard, R. (1991). Synchronous triggering of trout sperm is followed by an invariable set sequence of movement parameters whatever the incubation medium. Cell Motil. Cytoskeleton 20, 55–68.
Synchronous triggering of trout sperm is followed by an invariable set sequence of movement parameters whatever the incubation medium.CrossRef | 1:STN:280:DyaK38%2Fpslajuw%3D%3D&md5=aaeb43b3181363799f496d7e87930597CAS | 1756578PubMed | open url image1

Costello, S., Michelangeli, F., Nash, K., Lefievre, L., Morris, J., Machado-Oliveira, G., Barratt, C., Kirkman-Brown, J., and Publicover, S. (2009). Ca2+-stores in sperm: their identities and functions. Reproduction 138, 425–437.
Ca2+-stores in sperm: their identities and functions.CrossRef | 1:CAS:528:DC%2BD1MXhtFOgtrvM&md5=ddd9092d16372731abaf66e0074a19a8CAS | 19542252PubMed | open url image1

Darszon, A., Beltran, C., Felix, R., Nishigaki, T., and Trevino, C. L. (2001). Ion transport in sperm signaling. Dev. Biol. 240, 1–14.
Ion transport in sperm signaling.CrossRef | 1:CAS:528:DC%2BD3MXptFegtr4%3D&md5=515fd15fac4ee0598c1a9a9d12fd1653CAS | 11784043PubMed | open url image1

Darszon, A., Nishigaki, T., Beltran, C., and Trevino, C. L. (2011). Calcium channels in the development, maturation, and function of spermatozoa. Physiol. Rev. 91, 1305–1355.
Calcium channels in the development, maturation, and function of spermatozoa.CrossRef | 1:CAS:528:DC%2BC3MXhsVOjsbrK&md5=45a970587eb7e74c15f7d2999c383801CAS | 22013213PubMed | open url image1

Dragileva, E., Rubinstein, S., and Breitbart, H. (1999). Intracellular Ca2+–Mg2+-ATPase regulates calcium influx and acrosomal exocytosis in bull and ram spermatozoa. Biol. Reprod. 61, 1226–1234.
Intracellular Ca2+–Mg2+-ATPase regulates calcium influx and acrosomal exocytosis in bull and ram spermatozoa.CrossRef | 1:CAS:528:DyaK1MXmvFertrs%3D&md5=090a84560a73195ec77d4c01c1202c93CAS | 10529268PubMed | open url image1

Dzyuba, B., Boryshpolets, S., Cosson, J., Dzyuba, V., Fedorov, P., Saito, T., Psenicka, M., Linhart, O., and Rodina, M. (2014a). Motility and fertilization ability of sterlet Acipenser ruthenus testicular sperm after cryopreservation. Cryobiology 69, 339–341.
Motility and fertilization ability of sterlet Acipenser ruthenus testicular sperm after cryopreservation.CrossRef | 1:STN:280:DC%2BC2cbltl2huw%3D%3D&md5=2d9252d4a33dc150d1135e006946d612CAS | 25058859PubMed | open url image1

Dzyuba, B., Cosson, J., Boryshpolets, S., Bondarenko, O., Dzyuba, V., Prokopchuk, G., Gazo, I., Rodina, M., and Linhart, O. (2014b). In vitro sperm maturation in sterlet, Acipenser ruthenus. Reprod. Biol. 14, 160–163.
In vitro sperm maturation in sterlet, Acipenser ruthenus.CrossRef | 24856476PubMed | open url image1

Fiore, R. S., Murphy, T. H., Sanghera, J. S., Pelech, S. L., and Baraban, J. M. (1993). Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures. J. Neurochem. 61, 1626–1633.
Activation of p42 mitogen-activated protein kinase by glutamate receptor stimulation in rat primary cortical cultures.CrossRef | 1:CAS:528:DyaK2cXhtFGl&md5=9eb678c09fc47039ba776ee24873b160CAS | 7693864PubMed | open url image1

Fox, A. P., Nowycky, M. C., and Tsien, R. W. (1987). Single-channel recordings of three types of calcium channels in chick sensory neurones. J. Physiol. 394, 173–200.
Single-channel recordings of three types of calcium channels in chick sensory neurones.CrossRef | 1:STN:280:DyaL1c7nt1Wqug%3D%3D&md5=6e8429fb18955dbd78ec821a57b7fb77CAS | 2451017PubMed | open url image1

Fraser, L. R. (1998). Sperm capacitation and the acrosome reaction. Hum. Reprod. 13, 9–19.
Sperm capacitation and the acrosome reaction.CrossRef | 9663766PubMed | open url image1

Hatef, A., Alavi, S. M. H., Rodina, M., and Linhart, O. (2012). Morphology and fine structure of the Russian sturgeon, Acipenser gueldenstaedtii (Acipenseridae, Chondrostei) spermatozoa. J. Appl. Ichthyol. 28, 978–983.
Morphology and fine structure of the Russian sturgeon, Acipenser gueldenstaedtii (Acipenseridae, Chondrostei) spermatozoa.CrossRef | open url image1

Hayashi, H., Yamamoto, K., Yonekawa, H., and Morisawa, M. (1987). Involvement of tyrosine protein kinase in the initiation of flagellar movement in rainbow trout spermatozoa. J. Biol. Chem. 262, 16 692–16 698.
| 1:CAS:528:DyaL2sXlvFensrw%3D&md5=86998806cadf30cfe8267ca1577d3b3eCAS | open url image1

Herrick, S. B., Schweissinger, D. L., Kim, S. W., Bayan, K. R., Mann, S., and Cardullo, R. A. (2005). The acrosomal vesicle of mouse sperm is a calcium store. J. Cell. Physiol. 202, 663–671.
The acrosomal vesicle of mouse sperm is a calcium store.CrossRef | 1:CAS:528:DC%2BD2MXhtFOntb4%3D&md5=11fb8d64bfa1843fa1500ea3decb9df6CAS | 15389568PubMed | open url image1

Hille, B. (1991). ‘Ionic channels of excitable membranes. Second edition.’ (Sinauer: Sunderland, MA.)

Ho, H. C., and Suarez, S. S. (2001). An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca2+ store is involved in regulating sperm hyperactivated motility. Biol. Reprod. 65, 1606–1615.
An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca2+ store is involved in regulating sperm hyperactivated motility.CrossRef | 1:CAS:528:DC%2BD3MXnvVersb0%3D&md5=8766b0703c2c071d3f65bead454213b0CAS | 11673282PubMed | open url image1

Ho, H. C., and Suarez, S. S. (2003). Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol. Reprod. 68, 1590–1596.
Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility.CrossRef | 1:CAS:528:DC%2BD3sXjt12lsbY%3D&md5=94cd6d625c56149a4b3b8bc0765846a0CAS | 12606347PubMed | open url image1

Huang, J. Y., Wang, G. L., and Kong, L. J. (2009). Effects of Ca2+ and HCO3– on capacitation, hyperactivation and protein tyrosine phosphorylation in guinea pig spermatozoa. Asian-Australas. J. Anim. Sci. 22, 181–186.
Effects of Ca2+ and HCO3– on capacitation, hyperactivation and protein tyrosine phosphorylation in guinea pig spermatozoa.CrossRef | 1:CAS:528:DC%2BD1MXjsF2hsbc%3D&md5=4a9f1f17e5f3307e2a6860ff18e32ac5CAS | open url image1

Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997). A human intermediate conductance calcium-activated potassium channel. Proc. Natl Acad. Sci. USA 94, 11 651–11 656.
A human intermediate conductance calcium-activated potassium channel.CrossRef | 1:CAS:528:DyaK2sXmslejt78%3D&md5=9c5052c2aa57738380d14577c088ef11CAS | open url image1

Ishikawa, M., Tsutsui, H., Cosson, J., Oka, Y., and Morisawa, M. (2004). Strategies for sperm chemotaxis in the siphonophores and ascidians: a numerical simulation study. Biol. Bull. 206, 95–102.
Strategies for sperm chemotaxis in the siphonophores and ascidians: a numerical simulation study.CrossRef | 15111364PubMed | open url image1

Kansha, M., Nagata, T., Irita, K., and Takahashi, S. (1999). Dibucaine and tetracaine inhibit the activation of mitogen-activated protein kinase mediated by L-type calcium channels in PC12 cells. Anesthesiology 91, 1798–1806.
| 1:CAS:528:DC%2BD3cXivFKntw%3D%3D&md5=f95a1a10a1904189b9dbdfab1c89afeeCAS | 10598624PubMed | open url image1

Kharatmal, S. B., Singh, J. N., and Sharma, S. S. (2015). Voltage-gated sodium channels as therapeutic targets for treatment of painful diabetic neuropathy. Mini Rev. Med. Chem. 15, 1134–1147.
Voltage-gated sodium channels as therapeutic targets for treatment of painful diabetic neuropathy.CrossRef | 1:CAS:528:DC%2BC2MXhs1Ont7nO&md5=ad0ffcb0d493b3423b02c39cff0c9c2eCAS | 26202189PubMed | open url image1

Kho, K. H., Tanimoto, S., Inaba, K., Oka, Y., and Morisawa, M. (2001). Transmembrane cell signaling for the initiation of trout sperm motility: roles of ion channels and membrane hyperpolarization for cyclic AMP synthesis. Zoolog. Sci. 18, 919–928.
Transmembrane cell signaling for the initiation of trout sperm motility: roles of ion channels and membrane hyperpolarization for cyclic AMP synthesis.CrossRef | 1:CAS:528:DC%2BD3MXptVegs7c%3D&md5=b5ab34957d9c86711bf42480dc130d49CAS | open url image1

Krasznai, Z., Marian, T., Izumi, H., Damjanovich, S., Balkay, L., Tron, L., and Morisawa, M. (2000). Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp. Proc. Natl Acad. Sci. USA 97, 2052–2057.
Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp.CrossRef | 1:CAS:528:DC%2BD3cXhslKhsLc%3D&md5=06deeefde585ae77e935f68bb86ffd3fCAS | 10688893PubMed | open url image1

Krasznai, Z., Morisawa, M., Krasznai, Z. T., Morisawa, S., Inaba, K., Bazsane, Z. K., Rubovszky, B., Bodnar, B., Borsos, A., and Marian, T. (2003a). Gadolinium, a mechano-sensitive channel blocker, inhibits osmosis-initiated motility of sea- and freshwater fish sperm, but does not affect human or ascidian sperm motility. Cell Motil. Cytoskeleton 55, 232–243.
Gadolinium, a mechano-sensitive channel blocker, inhibits osmosis-initiated motility of sea- and freshwater fish sperm, but does not affect human or ascidian sperm motility.CrossRef | 1:CAS:528:DC%2BD3sXmsl2ktb4%3D&md5=56c27d7f86d8f46b90eea18d580572b2CAS | 12845597PubMed | open url image1

Krasznai, Z., Morisawa, M., Morisawa, S., Krasznai, Z. T., Tron, L., Gaspar, R., and Marian, T. (2003b). Role of ion channels and membrane potential in the initiation of carp sperm motility. Aquat. Living Resour. 16, 445–449.
Role of ion channels and membrane potential in the initiation of carp sperm motility.CrossRef | open url image1

Kumar, S., and Hall, R. J. C. (2003). Drug treatment of stable angina pectoris in the elderly: defining the place of calcium channel antagonists. Drugs Aging 20, 805–815.
Drug treatment of stable angina pectoris in the elderly: defining the place of calcium channel antagonists.CrossRef | 1:CAS:528:DC%2BD3sXotlSms7w%3D&md5=1ed525955773ded17196220c4ee80013CAS | 12964887PubMed | open url image1

Kuroda, Y., Kaneko, S., Yoshimura, Y., Nozawa, S., and Mikoshiba, K. (1999). Are there inositol 1,4,5-triphosphate (IP3) receptors in human sperm? Life Sci. 65, 135–143.
Are there inositol 1,4,5-triphosphate (IP3) receptors in human sperm?CrossRef | 1:CAS:528:DyaK1MXktFais74%3D&md5=2dc3493288013a4dbfb94fb20a95076fCAS | 10416819PubMed | open url image1

Lasko, J., Schlingmann, K., Klocke, A., Mengel, G. A., and Turner, R. (2012). Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion. Anim. Reprod. Sci. 132, 169–177.
Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion.CrossRef | 1:CAS:528:DC%2BC38XosFWks7w%3D&md5=81565b59bbe081c2d9f575a5c8b13699CAS | 22687341PubMed | open url image1

Laver, D. R., and van Heiden, D. F. (2011). Three independent mechanisms contribute to tetracaine inhibition of cardiac calcium release channels. J. Mol. Cell. Cardiol. 51, 357–369.
Three independent mechanisms contribute to tetracaine inhibition of cardiac calcium release channels.CrossRef | 1:CAS:528:DC%2BC3MXpvFWqs7k%3D&md5=dec71d9cc1acda08e00055e322e246b5CAS | 21624373PubMed | open url image1

Li, P., Li, Z. H., Hulak, M., Rodina, M., and Linhart, O. (2012). Regulation of spermatozoa motility in response to cations in Russian sturgeon Acipenser gueldenstaedtii. Theriogenology 78, 102–109.
Regulation of spermatozoa motility in response to cations in Russian sturgeon Acipenser gueldenstaedtii.CrossRef | 1:CAS:528:DC%2BC38XksFeisbc%3D&md5=26157a6ce13953fdd3e8b44a68504a18CAS | 22444559PubMed | open url image1

Linhart, O., Cosson, J., Mims, S. D., Shelton, W. L., and Rodina, M. (2002). Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa. Reproduction 124, 713–719.
Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa.CrossRef | 1:CAS:528:DC%2BD3sXht1KktA%3D%3D&md5=d47a94e20ed33f53ffa73294c29a28c3CAS | 12417010PubMed | open url image1

Liu, Z., Wang, B., Ruijun, H., Zhao, Y., and Miao, L. (2014). Calcium signalling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans. Biochim. Biophys. Acta 1843, 299–308.
Calcium signalling and the MAPK cascade are required for sperm activation in Caenorhabditis elegans.CrossRef | 1:CAS:528:DC%2BC2cXltlOi&md5=6696f09bb39df531c9e6dbfeb436dc86CAS | 24239721PubMed | open url image1

Marquez, B., Ignotz, G., and Suarez, S. (2007). Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm. Dev. Biol. 303, 214–221.
Contributions of extracellular and intracellular Ca2+ to regulation of sperm motility: release of intracellular stores can hyperactivate CatSper1 and CatSper2 null sperm.CrossRef | 1:CAS:528:DC%2BD2sXhvVGgsbw%3D&md5=202cdd907b70d08405f9bdfe57c53849CAS | 17174296PubMed | open url image1

McCormack, J. G., and Denton, R. M. (1993). Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy-metabolism. Dev. Neurosci. 15, 165–173.
Mitochondrial Ca2+ transport and the role of intramitochondrial Ca2+ in the regulation of energy-metabolism.CrossRef | 1:CAS:528:DyaK2MXmtlCqsA%3D%3D&md5=eba7a303e2521c17a5043bcad2b0b626CAS | 7805568PubMed | open url image1

Michaut, M., Tomes, C. N., De Blas, G., Yunes, R., and Mayorga, L. S. (2000). Calcium-triggered acrosomal exocytosis in human spermatozoa requires the coordinated activation of Rab3A and N-ethylmaleimide-sensitive factor. Proc. Natl Acad. Sci. USA 97, 9996–10 001.
Calcium-triggered acrosomal exocytosis in human spermatozoa requires the coordinated activation of Rab3A and N-ethylmaleimide-sensitive factor.CrossRef | 1:CAS:528:DC%2BD3cXmtlehs7k%3D&md5=df7532609a0bac790a4c50943d5d3efdCAS | 10954749PubMed | open url image1

Miura, T., Kasugai, T., Nagahama, Y., and Yamauchi, K. (1995). Acquisition of potential for sperm motility in vitro in Japanese eel Anguilla japonica. Fish. Sci. 61, 533–534.
Acquisition of potential for sperm motility in vitro in Japanese eel Anguilla japonica.CrossRef | 1:CAS:528:DyaK2MXmsFerur0%3D&md5=11a5c7a3c9ddf847cd444dc8cb6a3302CAS | open url image1

Morisawa, S., and Morisawa, M. (1986). Acquisition of potential for sperm motility in rainbow trout and chum salmon. J. Exp. Biol. 126, 89–96.
| 1:STN:280:DyaL2s7htFemug%3D%3D&md5=d04daea34108cd1b5ee966c9b3b6484bCAS | 3806005PubMed | open url image1

Morisawa, S., and Morisawa, M. (1988). Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J. Exp. Biol. 136, 13–22.
| 1:STN:280:DyaL1c3pvFykug%3D%3D&md5=3f31b75295adc73e5cfc2685d5f6455eCAS | 3404073PubMed | open url image1

Morisawa, M., and Suzuki, K. (1980). Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. Science 210, 1145–1147.
Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts.CrossRef | 1:STN:280:DyaL3M%2FnvVOntQ%3D%3D&md5=d41d0bc43d9c761e3e087b302d106a86CAS | 7444445PubMed | open url image1

Morita, M., Takemura, A., and Okuno, M. (2003). Requirement of Ca2+ on activation of sperm motility in euryhaline tilapia Oreochromis mossambicus. J. Exp. Biol. 206, 913–921.
Requirement of Ca2+ on activation of sperm motility in euryhaline tilapia Oreochromis mossambicus.CrossRef | 1:CAS:528:DC%2BD3sXislKmtb8%3D&md5=384af9d0c96343f0268261bff076c0d8CAS | 12547946PubMed | open url image1

Morita, M., Fujinoki, M., and Okuno, M. (2005). K+-independent initiation of motility in chum salmon sperm treated with an organic alcohol, glycerol. J. Exp. Biol. 208, 4549–4556.
K+-independent initiation of motility in chum salmon sperm treated with an organic alcohol, glycerol.CrossRef | 1:CAS:528:DC%2BD28Xot1emtw%3D%3D&md5=6435a3bbab0c21996e4c42fd00257ed9CAS | 16339873PubMed | open url image1

Morita, M., Takemura, A., Nakajima, A., and Okuno, M. (2006). Microtubule sliding movement in tilapia sperm flagella axoneme is regulated by Ca2+/calmodulin-dependent protein phosphorylation. Cell Motil. Cytoskeleton 63, 459–470.
Microtubule sliding movement in tilapia sperm flagella axoneme is regulated by Ca2+/calmodulin-dependent protein phosphorylation.CrossRef | 1:CAS:528:DC%2BD28XotlSktrg%3D&md5=7e02ffb3c625254624567407af4290a1CAS | 16767745PubMed | open url image1

Naaby-Hansen, S., Wolkowicz, M. J., Klotz, K., Bush, L. A., Westbrook, V. A., Shibahara, H., Shetty, J., Coonrod, S. A., Reddi, P. P., Shannon, J., Kinter, M., Sherman, N. E., Fox, J., Flickinger, C. J., and Herr, J. C. (2001). Co-localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of human spermatozoa. Mol. Hum. Reprod. 7, 923–933.
Co-localization of the inositol 1,4,5-trisphosphate receptor and calreticulin in the equatorial segment and in membrane bounded vesicles in the cytoplasmic droplet of human spermatozoa.CrossRef | 1:CAS:528:DC%2BD3MXnvVGhsbY%3D&md5=91390375f0f8b331cc8b0088c201b634CAS | 11574661PubMed | open url image1

Oda, S., and Morisawa, M. (1993). Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts. Cell Motil. Cytoskeleton 25, 171–178.
Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts.CrossRef | 1:CAS:528:DyaK3sXlslOqsb0%3D&md5=1c63161d2ac2574f425ebab97cded677CAS | 8324831PubMed | open url image1

Ohta, H., Ikeda, K., and Izawa, T. (1997). Increases in concentrations of potassium and bicarbonate ions promote acquisition of motility in vitro by Japanese eel spermatozoa. J. Exp. Zool. 277, 171–180.
Increases in concentrations of potassium and bicarbonate ions promote acquisition of motility in vitro by Japanese eel spermatozoa.CrossRef | 1:CAS:528:DyaK2sXhvFOks74%3D&md5=061d1588e279fbed9ef47ae8756d4f25CAS | open url image1

Padan, E., Venturi, M., Gerchman, Y., and Dover, N. (2001). Na+/H+ antiporters. Biochim. Biophys. Acta 1505, 144–157.
Na+/H+ antiporters.CrossRef | 1:CAS:528:DC%2BD3MXhvVagtrs%3D&md5=c87afe02e263b2b2a96e1c1d04a46ee5CAS | 11248196PubMed | open url image1

Perry Gardner, H., Rajan, J. V., Ha, S. I., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Marquis, S. T., and Chodosh, L. A. (2000). Cloning, characterization, and chromosomal localization of Pnck, a Ca2+/calmodulin-dependent protein kinase. Genomics 63, 279–288.
Cloning, characterization, and chromosomal localization of Pnck, a Ca2+/calmodulin-dependent protein kinase.CrossRef | 1:CAS:528:DC%2BD3cXhtVKis78%3D&md5=a7a22ccfc65759b5708f3d2149819ecaCAS | open url image1

Rahman, M. S., Kwon, W. S., and Pang, M. G. (2014). Calcium influx and male fertility in the context of the sperm proteome: an update. BioMed Res. Int. , .
Calcium influx and male fertility in the context of the sperm proteome: an update.CrossRef | 24877140PubMed | open url image1

Rossato, M., Di Virgilio, F., Rizzuto, R., Galeazzi, C., and Foresta, C. (2001). Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential. Mol. Hum. Reprod. 7, 119–128.
Intracellular calcium store depletion and acrosome reaction in human spermatozoa: role of calcium and plasma membrane potential.CrossRef | 1:CAS:528:DC%2BD3MXhsFahsbs%3D&md5=850a930eb0a503f12b18c09670e64dd9CAS | 11160837PubMed | open url image1

Siegel, S., and Tukey, J. W. (1960). A nonparametric sum of ranks procedure for relative spread in unpaired samples. J. Am. Stat. Assoc. 55, 429–445.
A nonparametric sum of ranks procedure for relative spread in unpaired samples.CrossRef | open url image1

Tash, J. S., and Means, A. R. (1987). Ca2+ regulation of sperm axonemal motility. Methods Enzymol. 139, 808–823.
Ca2+ regulation of sperm axonemal motility.CrossRef | 1:CAS:528:DyaL2sXksFGhtLw%3D&md5=a3a90a98be71e78da35043c6b15cba35CAS | 3587047PubMed | open url image1

Treviño, C. L., Santi, C. M., Beltrán, C., Hernández-Cruz, A., Darszon, A., and Lomeli, H. (1998). Localisation of inositol trisphosphate and ryanodine receptors during mouse spermatogenesis: possible functional implications. Zygote 6, 159–172.
Localisation of inositol trisphosphate and ryanodine receptors during mouse spermatogenesis: possible functional implications.CrossRef | 9770782PubMed | open url image1

Vines, C. A., Yoshida, K., Griffin, F. J., Pillai, M. C., Morisawa, M., Yanagimachi, R., and Cherr, G. N. (2002). Motility initiation in herring sperm is regulated by reverse sodium-calcium exchange. Proc. Natl Acad. Sci. USA 99, 2026–2031.
Motility initiation in herring sperm is regulated by reverse sodium-calcium exchange.CrossRef | 1:CAS:528:DC%2BD38XitVSrsb8%3D&md5=08ca08b5e8745a5ddbeb762f0f3f80ecCAS | 11842223PubMed | open url image1

Walensky, L. D., and Snyder, S. H. (1995). Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J. Cell Biol. 130, 857–869.
Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm.CrossRef | 1:CAS:528:DyaK2MXnsVymtL8%3D&md5=3be7d970ab612c7d90334b1660d92d98CAS | 7642703PubMed | open url image1

Watanabe, H., Chopra, N., Laver, D., Hwang, H. S., Davies, S. S., Roach, D. E., Duff, H. J., Roden, D. M., Wilde, A. A. M., and Knollmann, B. C. (2009). Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat. Med. 15, 380–383.
Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans.CrossRef | 1:CAS:528:DC%2BD1MXjslart7Y%3D&md5=90f19a8ef93f7e470fa78168a542c11dCAS | 19330009PubMed | open url image1

White, D., Lamirande, E., and Gagnon, C. (2007). Proteine kinase C is an important signalling mediator associated with motility of intact sea urchin spermatozoa. J. Exp. Biol. 210, 4053–4064.
Proteine kinase C is an important signalling mediator associated with motility of intact sea urchin spermatozoa.CrossRef | 1:CAS:528:DC%2BD1cXhtFKmu7w%3D&md5=dd6a617b75330009a43f34f946695b7eCAS | 17981873PubMed | open url image1

Xia, J. S., Reigada, D., Mitchell, C. H., and Ren, D. (2007). CATSPER channel-mediated Ca2+ entry into mouse sperm triggers a tail-to-head propagation. Biol. Reprod. 77, 551–559.
CATSPER channel-mediated Ca2+ entry into mouse sperm triggers a tail-to-head propagation.CrossRef | 1:CAS:528:DC%2BD2sXpvFCrurk%3D&md5=4ed064ba94a7578d2779f1014391458cCAS | open url image1

Yoshida, M., Inaba, K., Ishida, K., and Morisawa, M. (1994). Calcium and cyclic AMP mediate sperm activation, but Ca2+ alone contributes sperm chemotaxis in the ascidian, Ciona savignyi. Dev. Growth Differ. 36, 589–595.
Calcium and cyclic AMP mediate sperm activation, but Ca2+ alone contributes sperm chemotaxis in the ascidian, Ciona savignyi.CrossRef | 1:CAS:528:DyaK2MXjvVOjtLk%3D&md5=d021b67ae877921288ada839d3c90cceCAS | open url image1

Yoshida, M., Ishikawa, M., Izumi, H., De Santis, R., and Morisawa, M. (2003). Store-operated calcium channel regulates the chemotactic behavior of ascidian sperm. Proc. Natl Acad. Sci. USA 100, 149–154.
Store-operated calcium channel regulates the chemotactic behavior of ascidian sperm.CrossRef | 1:CAS:528:DC%2BD3sXktlOhuw%3D%3D&md5=fb44a528ac2efedd658ce39633dd77bfCAS | 12518063PubMed | open url image1

Zapata, O., Ralston, J., Beltran, C., Parys, J. B., Chen, J. L., Longo, F. J., and Darszon, A. (1997). Inositol triphosphate receptors in sea urchin sperm. Zygote 5, 355–364.
Inositol triphosphate receptors in sea urchin sperm.CrossRef | 1:CAS:528:DyaK1cXisVGjsLw%3D&md5=7652ef8499a733b10f5c2f68f92caba5CAS | 9563683PubMed | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (1)