Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Potential risks to offspring of intrauterine exposure to maternal age-related obstetric complications

Juan J. Tarín A F , Miguel A. García-Pérez B C and Antonio Cano D E
+ Author Affiliations
- Author Affiliations

A Department of Cellular Biology, Functional Biology and Physical Anthropology, Faculty of Biological Sciences, University of Valencia, Dr. Moliner 50, Burjassot, Valencia 46100, Spain.

B Department of Genetics, Faculty of Biological Sciences, University of Valencia, Dr. Moliner 50, Burjassot, Valencia 46100, Spain.

C Research Unit-INCLIVA, University Clinic Hospital, Avda. Menéndez Pelayo, 4 accesorio, 46010 Valencia, Spain.

D Department of Pediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibañez 15, Valencia 46010, Spain.

E Service of Obstetrics and Gynecology, University Clinic Hospital, Avda. Blasco Ibañez 17, Valencia 46010, Spain.

F Corresponding author. Email: tarinjj@uv.es

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16163
Submitted: 19 April 2016  Accepted: 10 July 2016   Published online: 10 August 2016

Abstract

Several hypotheses have been proposed to explain the negative effects of delayed motherhood on an offspring’s morbidity later in life. However, these hypotheses are not supported by clinical and epidemiological evidence. Because advanced maternal age is associated with increased risk of obstetric complications, the aim of the present study was to ascertain whether the negative effects on offspring of intrauterine exposure to maternal age-related obstetric complications may explain the reported negative effects of delayed motherhood on offspring. To this end, a literature search was performed to identify relevant publications up to March 2016 on PubMed; references cited in relevant articles were also searched. There was a direct correlation between the risks to offspring conferred by intrauterine exposure to at least one of the obstetric complications present at the time of delivery in women aged ≥35 years and the risks to offspring of delayed motherhood. This correlation was not observed when comparing the risks to offspring of delayed motherhood and the risks associated with maternal transmission of defective mitochondria, chromosomal anomalies or DNA double-strand breaks. Most of the effects on offspring of intrauterine exposure to maternal age-related obstetric complications may be induced by epigenetic DNA reprogramming during critical periods of embryo or fetal development. Women wanting to enrol in a fertility preservation program to offset age-related declines in fertility should be informed not only about their chances of pregnancy and the percentage of live births, but also about the risks to themselves and their prospective offspring of delaying motherhood.

Additional keywords: advanced maternal age, chromosome anomalies, defective mitochondria, DNA double-strand breaks, epigenetics, long-term effects.


References

Boyd, P. A., Loane, M., Garne, E., Khoshnood, B., Dolk, H., EUROCAT Working Group (2011). Sex chromosome trisomies in Europe: prevalence, prenatal detection and outcome of pregnancy. Eur. J. Hum. Genet. 19, 231–234.
Sex chromosome trisomies in Europe: prevalence, prenatal detection and outcome of pregnancy.CrossRef | 20736977PubMed |

Brooks-Wilson, A. R. (2013). Genetics of healthy aging and longevity. Hum. Genet. 132, 1323–1338.
Genetics of healthy aging and longevity.CrossRef | 1:CAS:528:DC%2BC3sXht1OqurfP&md5=e612846194dbb9903eeb3881084b7da3CAS | 23925498PubMed |

Cassina, A., Silveira, P., Cantu, L., Montes, J. M., Radi, R., and Sapiro, R. (2015). Defective human sperm cells are associated with mitochondrial dysfunction and oxidant production. Biol. Reprod. 93, 119.
Defective human sperm cells are associated with mitochondrial dysfunction and oxidant production.CrossRef | 26447142PubMed |

Cedars, M. I. (2015). Introduction: childhood implications of parental aging. Fertil. Steril. 103, 1379–1380.
Introduction: childhood implications of parental aging.CrossRef | 25936233PubMed |

Chinnery, P. F. (2000). Mitochondrial disorders overview. In ‘GeneReviews®’. (Eds Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya,A., Bean, L.J.H., Bird, T.D., Fong, C.T., Mefford, H.C., Smith, R.J.H., and Stephens, K. (University of Washington: Seattle, WA). Available at http://www.ncbi.nlm.nih.gov/books/NBK1224/ [verified 18 July 2016].

Chinnery, P. F., DiMauro, S., Shanske, S., Schon, E. A., Zeviani, M., Mariotti, C., Carrara, F., Lombes, A., Laforet, P., Ogier, H., Jaksch, M., Lochmüller, H., Horvath, R., Deschauer, M., Thorburn, D. R., Bindoff, L. A., Poulton, J., Taylor, R. W., Matthews, J. N., and Turnbull, D. M. (2004). Risk of developing a mitochondrial DNA deletion disorder. Lancet 364, 592–596.
Risk of developing a mitochondrial DNA deletion disorder.CrossRef | 1:CAS:528:DC%2BD2cXmslaltrk%3D&md5=53e9a8b74b2362b5b26c99ccbafa532aCAS | 15313359PubMed |

Cummins, J. M., Jequier, A. M., and Kan, R. (1994). Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol. Reprod. Dev. 37, 345–362.
Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress?CrossRef | 1:CAS:528:DyaK2cXktVKitrY%3D&md5=8ea3afaaef697416bdcb3dcd7abcb917CAS | 8185940PubMed |

Denduluri, N., and Ershler, W. B. (2004). Aging biology and cancer. Semin. Oncol. 31, 137–148.
Aging biology and cancer.CrossRef | 15112145PubMed |

Fall, C. H., Sachdev, H. S., Osmond, C., Restrepo-Mendez, M. C., Victora, C., Martorell, R., Stein, A. D., Sinha, S., Tandon, N., Adair, L., Bas, I., Norris, S., Richter, L. M., COHORTS Investigators (2015). Association between maternal age at childbirth and child and adult outcomes in the offspring: a prospective study in five low-income and middle-income countries (COHORTS collaboration). Lancet Glob. Health 3, e366–e377.
Association between maternal age at childbirth and child and adult outcomes in the offspring: a prospective study in five low-income and middle-income countries (COHORTS collaboration).CrossRef | 25999096PubMed |

Giráldez-García, C., Sangrós, F. J., Díaz-Redondo, A., Franch-Nadal, J., Serrano, R., Díez, J., Buil-Cosiales, P., García-Soidán, F. J., Artola, S., Ezkurra, P., Carrillo, L., Millaruelo, J. M., Seguí, M., Martínez-Candela, J., Muñoz, P., Goday, A., Regidor, E., PREDAPS Study Group (2015). Cardiometabolic risk profiles in patients with impaired fasting glucose and/or hemoglobin A1c 5.7% to 6.4%: evidence for a gradient according to diagnostic criteria: the PREDAPS Study. Medicine (Baltimore) 94, e1935.
Cardiometabolic risk profiles in patients with impaired fasting glucose and/or hemoglobin A1c 5.7% to 6.4%: evidence for a gradient according to diagnostic criteria: the PREDAPS Study.CrossRef | 26554799PubMed |

Gorman, G. S., Schaefer, A. M., Ng, Y., Gomez, N., Blakely, E. L., Alston, C. L., Feeney, C., Horvath, R., Yu-Wai-Man, P., Chinnery, P. F., Taylor, R. W., Turnbull, D. M., and McFarland, R. (2015). Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann. Neurol. 77, 753–759.
Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease.CrossRef | 1:CAS:528:DC%2BC2MXms1Giurw%3D&md5=29b8c6bc4abf32c9951651f90fa16742CAS | 25652200PubMed |

Grotegut, C. A., Chisholm, C. A., Johnson, L. N., Brown, H. L., Heine, R. P., and James, A. H. (2014). Medical and obstetric complications among pregnant women aged 45 and older. PLoS One 9, e96237.
Medical and obstetric complications among pregnant women aged 45 and older.CrossRef | 24769856PubMed |

Hassold, T. J., and Jacobs, P. A. (1984). Trisomy in man. Annu. Rev. Genet. 18, 69–97.
Trisomy in man.CrossRef | 1:STN:280:DyaL2M7kslKhtQ%3D%3D&md5=12017e01b93e787893d24c7ffc30c885CAS | 6241455PubMed |

Jalali-Farahani, S., Amiri, P., Karimi, M., Gharibzadeh, S., Mirmiran, P., and Azizi, F. (2016). Socio-behavioral factors associated with overweight and central obesity in Tehranian adults: a structural equation model. Int. J. Behav. Med. , .
Socio-behavioral factors associated with overweight and central obesity in Tehranian adults: a structural equation model.CrossRef | 27272681PubMed |

Kim, M. A., Yee, N. H., Choi, J. S., Choi, J. Y., and Seo, K. (2012). Prevalence of birth defects in Korean livebirths, 2005–2006. J. Korean Med. Sci. 27, 1233–1240.
Prevalence of birth defects in Korean livebirths, 2005–2006.CrossRef | 23091323PubMed |

Kujjo, L. L., and Perez, G. I. (2012). Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction 143, 1–10.
Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players.CrossRef | 1:CAS:528:DC%2BC38Xhs1yht7g%3D&md5=da22a802c1799a1aedc9f812f0c888ddCAS | 22046054PubMed |

Mosconi, L., Tsui, W., Murray, J., McHugh, P., Li, Y., Williams, S., Pirraglia, E., Glodzik, L., De Santi, S., Vallabhajosula, S., and de Leon, M. J. (2012). Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer’s disease. Neurobiol. Aging 33, 624.e1–624.e9.
Maternal age affects brain metabolism in adult children of mothers affected by Alzheimer’s disease.CrossRef |

Myrskylä, M., Elo, I. T., Kohler, I. V., and Martikainen, P. (2014). The association between advanced maternal and paternal ages and increased adult mortality is explained by early parental loss. Soc. Sci. Med. 119, 215–223.
The association between advanced maternal and paternal ages and increased adult mortality is explained by early parental loss.CrossRef | 24997641PubMed |

Oktay, K., Turan, V., Titus, S., Stobezki, R., and Liu, L. (2015). BRCA mutations, DNA repair deficiency, and ovarian aging. Biol. Reprod. 93, 67.
BRCA mutations, DNA repair deficiency, and ovarian aging.CrossRef | 26224004PubMed |

Payne, B. A., Wilson, I. J., Yu-Wai-Man, P., Coxhead, J., Deehan, D., Horvath, R., Taylor, R. W., Samuels, D. C., Santibanez-Koref, M., and Chinnery, P. F. (2013). Universal heteroplasmy of human mitochondrial DNA. Hum. Mol. Genet. 22, 384–390.
Universal heteroplasmy of human mitochondrial DNA.CrossRef | 1:CAS:528:DC%2BC38XhvV2gtr%2FN&md5=6ae88960eb11e3e4c28848e7c4f31b79CAS | 23077218PubMed |

Ramalho-Santos, J., Varum, S., Amaral, S., Mota, P. C., Sousa, A. P., and Amaral, A. (2009). Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells. Hum. Reprod. Update 15, 553–572.
Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.CrossRef | 1:CAS:528:DC%2BD1MXhtVals7nI&md5=a32bcdc43d29aaaa1489a12c294efb54CAS | 19414527PubMed |

Rebolledo-Jaramillo, B., Su, M. S., Stoler, N., McElhoe, J. A., Dickins, B., Blankenberg, D., Korneliussen, T. S., Chiaromonte, F., Nielsen, R., Holland, M. M., Paul, I. M., Nekrutenko, A., and Makova, K. D. (2014). Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA. Proc. Natl Acad. Sci. USA 111, 15 474–15 479.
Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA.CrossRef | 1:CAS:528:DC%2BC2cXhslKmtbzJ&md5=717c57236428631ff78b627d7630ab67CAS |

Rueness, J., Vatten, L., and Eskild, A. (2012). The human sex ratio: effects of maternal age. Hum. Reprod. 27, 283–287.
The human sex ratio: effects of maternal age.CrossRef | 22025225PubMed |

Sauer, M. V. (2015). Reproduction at an advanced maternal age and maternal health. Fertil. Steril. 103, 1136–1143.
Reproduction at an advanced maternal age and maternal health.CrossRef | 25934599PubMed |

Savva, G. M., Walker, K., and Morris, J. K. (2010). The maternal age-specific live birth prevalence of trisomies 13 and 18 compared to trisomy 21 (Down syndrome). Prenat. Diagn. 30, 57–64.
| 19911411PubMed |

Schaefer, G. B. (2016). Clinical genetic aspects of ASD spectrum disorders. Int. J. Mol. Sci. 17, E180.
Clinical genetic aspects of ASD spectrum disorders.CrossRef | 26840296PubMed |

Schulkey, C. E., Regmi, S. D., Magnan, R. A., Danzo, M. T., Luther, H., Hutchinson, A. K., Panzer, A. A., Grady, M. M., Wilson, D. B., and Jay, P. Y. (2015). The maternal-age-associated risk of congenital heart disease is modifiable. Nature 520, 230–233.
The maternal-age-associated risk of congenital heart disease is modifiable.CrossRef | 1:CAS:528:DC%2BC2MXlslensLc%3D&md5=81f1f6d68748dbb312e9d4f6ed9a7eaaCAS | 25830876PubMed |

Stoop, D., Silber, S., and Cobo, A. (2015). Fertility preservation for age-related fertility decline – authors’ reply. Lancet 385, 507–508.
Fertility preservation for age-related fertility decline – authors’ reply.CrossRef | 25705841PubMed |

Stranc, L. C., Evans, J. A., and Hamerton, J. L. (1997). Chorionic villus sampling and amniocentesis for prenatal diagnosis. Lancet 349, 711–714.
Chorionic villus sampling and amniocentesis for prenatal diagnosis.CrossRef | 1:STN:280:DyaK2s3jt12ktw%3D%3D&md5=395c222f494f4bf7caa0cbddd5b071acCAS | 9078211PubMed |

Tarín, J. J., Brines, J., and Cano, A. (1998). Long-term effects of delayed parenthood. Hum. Reprod. 13, 2371–2376.
Long-term effects of delayed parenthood.CrossRef | 9806250PubMed |

Tarín, J. J., Gómez-Piquer, V., Rausell, F., Navarro, S., Hermenegildo, C., and Cano, A. (2005). Delayed motherhood decreases life expectancy of mouse offspring. Biol. Reprod. 72, 1336–1343.
Delayed motherhood decreases life expectancy of mouse offspring.CrossRef | 15689534PubMed |

Tarín, J. J., García-Pérez, M. A., and Cano, A. (2014). Assisted reproductive technology results: why are live-birth percentages so low? Mol. Reprod. Dev. 81, 568–583.
Assisted reproductive technology results: why are live-birth percentages so low?CrossRef | 24810886PubMed |

Tatone, C. (2008). Oocyte senescence: a firm link to age-related female subfertility. Gynecol. Endocrinol. 24, 59–63.
Oocyte senescence: a firm link to age-related female subfertility.CrossRef | 18210326PubMed |

Tearne, J. E. (2015). Older maternal age and child behavioral and cognitive outcomes: a review of the literature. Fertil. Steril. 103, 1381–1391.
Older maternal age and child behavioral and cognitive outcomes: a review of the literature.CrossRef | 26041693PubMed |

Wapner, R. J. (1997). Chorionic villus sampling. Obstet. Gynecol. Clin. North Am. 24, 83–110.
Chorionic villus sampling.CrossRef | 1:STN:280:DyaK2s3ktFWhsw%3D%3D&md5=16b6009907ced9ce10546fc2268c6fe6CAS | 9086520PubMed |

Wilding, M. (2015). Potential long-term risks associated with maternal aging (the role of the mitochondria). Fertil. Steril. 103, 1397–1401.
Potential long-term risks associated with maternal aging (the role of the mitochondria).CrossRef | 25936236PubMed |

Xiong, X., Dickey, R. P., Pridjian, G., and Buekens, P. (2015). Maternal age and preterm births in singleton and twin pregnancies conceived by in vitro fertilisation in the United States. Paediatr. Perinat. Epidemiol. 29, 22–30.
Maternal age and preterm births in singleton and twin pregnancies conceived by in vitro fertilisation in the United States.CrossRef | 25483622PubMed |



Rent Article (via Deepdyve) Supplementary MaterialSupplementary Material (217 KB) Export Citation

View Altmetrics