Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Modulation of adiponectin system expression in the porcine uterus during early pregnancy by prostaglandin E2 and F

Kamil Dobrzyn A , Nina Smolinska A B , Karol Szeszko A , Marta Kiezun A , Anna Maleszka A and Tadeusz Kaminski A
+ Author Affiliations
- Author Affiliations

A Department of Animal Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland.

B Corresponding author. Email: nina.smolinska@uwm.edu.pl

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16181
Submitted: 2 May 2016  Accepted: 6 October 2016   Published online: 12 December 2016

Abstract

Studies have demonstrated that adiponectin could be a link between reproductive functions and energy metabolism in animals. The aim of the present study was to investigate the effects of prostaglandin (PG) E2 and PGF (10, 50, 100, 250 and 500 ng mL–1) on the expression and secretion of adiponectin and its receptor genes and proteins by cultured in vitro porcine endometrial and myometrial tissues on Days 10–28 of pregnancy and Days 10–11 of the oestrous cycle. The gene expression was analysed using the real-time PCR method. Adiponectin protein secretion was determined by ELISA, whereas the receptors proteins content was defined using Western Blot analysis. Both PGE2 and PGF modulated the expression of adiponectin system genes and proteins in the uterus during early pregnancy. PGE2 and PGF had similar effects on the adiponectin system, which differed between the stages of gestation and between pregnancy and the oestrous cycle. On Days 10–11 of gestation, PGE2 and PGF generally increased adiponectin secretion by endometrial and myometrial tissues. Both PGs decreased levels of endometrial adiponectin receptor type 1 (AdipoR1), whereas only PGF decreased myometrial levels of AdipoR1. Both PGs increased myometrial adiponectin receptor type 2 (AdipoR2) levels. On Days 12–13 of gestation, PGE2 decreased AdipoR1 concentrations in both tissues and AdipoR2 levels in the endometrium. PGF decreased myometrial concentrations of both receptors. On Days 15–16 of gestation, both PGE2 and PGF increased concentrations of AdipoR1 and AdipoR2 in the endometrium and myometrium. PGE2 stimulated the secretion of adiponectin in the endometrium, but not in the myometrium. On Days 27–28 of pregnancy, both PGE2 and PGF inhibited the expression of AdipoR1 and AdipoR2 in endometrial and myometrial tissues and decreased the secretion of endometrial adiponectin. Both PGE2 and PGF had tissue-specific and dose-dependent effects on the adiponectin system.

Additional keywords: adiponectin receptors.


References

Akinlosotu, B. A., Diehl, J. R., and Gimenez, T. (1988). Prostaglandin E2 counteracts the effects of PGF2 alpha in indomethacin treated cycling gilts. Prostaglandins 35, 81–93.
Prostaglandin E2 counteracts the effects of PGF2 alpha in indomethacin treated cycling gilts.CrossRef | 1:CAS:528:DyaL1cXhvVSrtr4%3D&md5=d486696c98e668613ebe8edae70548e5CAS | open url image1

Akins, E. L., and Morrissette, M. C. (1968). Gross ovarian changes during estrous cycle of swine. Am. J. Vet. Res. 29, 1953–1957.
| 1:STN:280:DyaF1M%2FgsVGqsg%3D%3D&md5=030b0b36f3c85deabcb61397010ed057CAS | open url image1

Anuradha, , and Krishna, A. (2014). Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx. J. Steroid. Biochem. Mol. Biol. 143, 291–305.
Modulation of ovarian steroidogenesis by adiponectin during delayed embryonic development of Cynopterus sphinx.CrossRef | 1:CAS:528:DC%2BC2cXhsVaksrfN&md5=ce6cbb6d02ab4ad56b63f72bac224b61CAS | open url image1

Bazer, F. W., and Thatcher, W. W. (1977). Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2 alpha by the uterine endometrium. Prostaglandins 14, 397–401.
Theory of maternal recognition of pregnancy in swine based on estrogen controlled endocrine versus exocrine secretion of prostaglandin F2 alpha by the uterine endometrium.CrossRef | 1:CAS:528:DyaE2sXls1WrtL8%3D&md5=c802c62b9dd55495540d01d9bc598e0eCAS | open url image1

Bazer, F. W., Geisert, R. D., Thatcher, W. W., and Roberts, R. M. (1982). The establishment and maintenance of pregnancy. In ‘Control of Pig Reproduction’. (Eds D. S. A. Cole and G. R. Foxcraft.) pp. 227–252. (Butterworth Scientific: London.)

Brochu-Gaudreau, K., Beaudry, D., Blouin, R., Bordignon, V., Murphy, B. D., and Palin, M. F. (2008). Adiponectin regulates gene expression in the porcine uterus. Biol. Reprod. 78, 210–211. open url image1

Burghardt, R. C., Johnson, G. A., Jaeger, L. A., Ka, H., Garlow, J. E., Spencer, T. E., and Bazer, F. W. (2002). Integrins and extracellular matrix proteins at the maternal–fetal interface in domestic animals. Cells Tissues Organs 172, 202–217.
Integrins and extracellular matrix proteins at the maternal–fetal interface in domestic animals.CrossRef | 1:CAS:528:DC%2BD38XpsVSjur8%3D&md5=9350abc501c5a7cbeb22e4fde82b8610CAS | open url image1

Chabrolle, C., Tosca, L., Ramé, C., Lecomte, P., Royère, D., and Dupont, J. (2009). Adiponectin increases insulin-like growth factor I-induced progesterone and oestradiol secretion in human granulosa cells. Fertil. Steril. 92, 1988–1996.
Adiponectin increases insulin-like growth factor I-induced progesterone and oestradiol secretion in human granulosa cells.CrossRef | 1:CAS:528:DC%2BC3cXitFGisLs%3D&md5=2c7c25f26f78e961f1ab68b6855e842cCAS | open url image1

Chappaz, E., Albornoz, M. S., Campos, D., Che, L., Palin, M. F., Murphy, B. D., and Bordignon, V. (2008). Adiponectin enhances in vitro development of swine embryos. Domest. Anim. Endocrinol. 35, 198–207.
Adiponectin enhances in vitro development of swine embryos.CrossRef | 1:CAS:528:DC%2BD1cXoslWlsLc%3D&md5=32b525beac7ae963b82e737ccf994435CAS | open url image1

Chen, H. L., Yang, Y. P., Hu, X. L., Yelavarthi, K. K., Fishback, J. L., and Hunt, J. S. (1991). Tumor necrosis factor alpha mRNA and protein are present in human placental and uterine cells at early and late stages of gestation. Am. J. Pathol. 139, 327–335.
| 1:CAS:528:DyaK3MXmslOltrY%3D&md5=8490212e6bd349d91e1592a44faa1052CAS | open url image1

de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M., and Vogel, C. (2009). Global signatures of protein and mRNA expression levels. Mol. Biosyst. 5, 1512–1526. open url image1

Deepa, S. S., and Dong, L. Q. (2009). APPL1: role in adiponectin signaling and beyond. Am. J. Physiol. Endocrinol. Metab. 296, E22–E36.
APPL1: role in adiponectin signaling and beyond.CrossRef | 1:CAS:528:DC%2BD1MXpsFChug%3D%3D&md5=dab39a4e0ecf68bca2fef2f9940e1db7CAS | open url image1

Dobrzyn, K., Smolinska, N., Szeszko, K., Kiezun, M., Maleszka, A., Rytelewska, E., and Kaminski, T. (2017a). Effect of progesterone on adiponectin system in the porcine uterus during early pregnancy. J. Anim. Sci. 95, 1–15.
Effect of progesterone on adiponectin system in the porcine uterus during early pregnancy.CrossRef | open url image1

Dobrzyn, K., Smolinska, N., Kiezun, M., Szeszko, K., Maleszka, A., and Kaminski, T. (2017b). The effect of estrone and estradiol on the expression of the adiponectin system in the porcine uterus during early pregnancy. Theriogenology 88, 183–196.
The effect of estrone and estradiol on the expression of the adiponectin system in the porcine uterus during early pregnancy.CrossRef | 1:CAS:528:DC%2BC28Xhs1aksbjN&md5=fdf7a56d71ca3d55dae3ba544d398bd2CAS | open url image1

Dos Santos, E., Serazin, V., Morvan, C., Torre, A., Wainer, R., and de Mazancourt, P. (2012). Adiponectin and leptin systems in human endometrium during window of implantation. Fertil. Steril. 97, 771–778.e1.
Adiponectin and leptin systems in human endometrium during window of implantation.CrossRef | 1:CAS:528:DC%2BC38Xjs1Ggs78%3D&md5=b6a4ba30f8d191655c2a1ec37c740d30CAS | open url image1

Franczak, A., and Kotwica, G. (2008). Secretion of estradiol-17β by porcine endometrium and myometrium during early pregnancy and luteolysis. Theriogenology 69, 283–289.
Secretion of estradiol-17β by porcine endometrium and myometrium during early pregnancy and luteolysis.CrossRef | 1:CAS:528:DC%2BD1cXlvV2itA%3D%3D&md5=b8891477a327b16a0583ca4007f04c5aCAS | open url image1

Fruebis, J., Tsao, T.-S., Javorschi, S., Ebbets-Reed, D., Erickson, M. R. S., Yen, F. T., Bihain, B. E., and Lodish, H. F. (2001). Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl Acad. Sci. USA 98, 2005–2010.
Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.CrossRef | 1:CAS:528:DC%2BD3MXhsVWit78%3D&md5=72e00843879b31ab966b3b663243a8adCAS | open url image1

Gadsby, J. E., Lovdal, J. A., Britt, J. H., and Fitz, T. A. (1993). Prostaglandin F2 alpha receptor concentrations in corpora lutea of cycling, pregnant, and pseudopregnant pigs. Biol. Reprod. 49, 604–608.
Prostaglandin F2 alpha receptor concentrations in corpora lutea of cycling, pregnant, and pseudopregnant pigs.CrossRef | 1:CAS:528:DyaK3sXms1ehurw%3D&md5=97df03b5cf46511c84950684edbe98faCAS | open url image1

Gamundi-Segura, S., Serna, J., Oehninger, S., Horcajadas, J. A., and Arbones-Mainar, J. M. (2015). Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro. J. Physiol. Biochem. 71, 537–546.
Effects of adipocyte-secreted factors on decidualized endometrial cells: modulation of endometrial receptivity in vitro.CrossRef | 1:CAS:528:DC%2BC2MXivVSqurc%3D&md5=48a6a62741ffc31d88668e70f0f285b9CAS | open url image1

Geisert, R. D., and Yelich, J. V. (1997). Regulation of conceptus development and attachment in pigs. J. Reprod. Fertil. Suppl. 52, 133–149.
| 1:STN:280:DyaK1c3msFCgtw%3D%3D&md5=1d737b8a92a00111ad501cb8c67afb67CAS | open url image1

Gregoraszczuk, E. L., and Michas, N. (1999). Progesterone and estradiol secretion by porcine luteal cells is influenced by individual and combined treatment with prostaglandins E2 and F2 alpha throughout the estrus cycle. Prostaglandins Other Lipid Mediat. 57, 231–241.
Progesterone and estradiol secretion by porcine luteal cells is influenced by individual and combined treatment with prostaglandins E2 and F2 alpha throughout the estrus cycle.CrossRef | 1:CAS:528:DyaK1MXkt12msr8%3D&md5=948404783b4a1ae83d46708ce854a329CAS | open url image1

Gry, M., Rimini, R., Strömberg, S., Asplund, A., Pontén, F., Uhlén, M., and Nilsson, P. (2009). Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 10, 365.
Correlations between RNA and protein expression profiles in 23 human cell lines.CrossRef | open url image1

Hensby, C. N. (1975). Distribution studies on the reduction of prostaglandin E-2 to prostaglandin F-2α by tissue homogenates. Biochim. Biophys. Acta 409, 225–234.
Distribution studies on the reduction of prostaglandin E-2 to prostaglandin F-2α by tissue homogenates.CrossRef | 1:CAS:528:DyaE28XivVGjsQ%3D%3D&md5=26b7c983b768c9db50f6990caef24220CAS | open url image1

Hunt, J. S., Soares, M. J., Lei, M. G., Smith, R. N., Wheaton, D., Atherton, R. A., and Morrison, D. C. (1989). Products of lipopolysaccharide-activated macrophages (tumor necrosis factor-α, transforming growth factor-β) but not lipopolysaccharidemodify DNA synthesis by rat trophoblast cells exhibitingthe 80-kDa lipopolysaccharide-binding protein. J. Immunol. 143, 1606–1613.
| 1:CAS:528:DyaL1MXlsFWrtLg%3D&md5=0be4a3fa8d7e619d97234665d5a2b0fbCAS | open url image1

Johnson, G. A., Bazer, F. W., Jaeger, L. A., Ka, H., Garlow, J. E., Pfarrer, C., Spencer, T. E., and Burghardt, R. C. (2001). Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep. Biol. Reprod. 65, 820–828.
Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep.CrossRef | 1:CAS:528:DC%2BD3MXmtFems7k%3D&md5=88eb5bd0d30d93b9b81a537dd0d6acbeCAS | open url image1

Kaminski, T., Smolinska, N., Maleszka, A., Kiezun, M., Dobrzyn, K., Czerwinska, J., Szeszko, K., and Nitkiewicz, A. (2014). Expression of adiponectin and its receptors in the porcine hypothalamus during the oestrous cycle. Reprod. Domest. Anim. 49, 378–386.
Expression of adiponectin and its receptors in the porcine hypothalamus during the oestrous cycle.CrossRef | 1:CAS:528:DC%2BC2cXns12ls7Y%3D&md5=40868bbcfb6cccada7035f42d62680fcCAS | open url image1

Kennedy, T. G., and Lukash, L. A. (1982). Induction of decidualization in rats by the intrauterine infusion of prostaglandins. Biol. Reprod. 27, 253–260.
Induction of decidualization in rats by the intrauterine infusion of prostaglandins.CrossRef | 1:CAS:528:DyaL38Xlt1Wis7c%3D&md5=abd8de9dfc9ca24c1d994c9ec84b96e4CAS | open url image1

Kiezun, M., Maleszka, A., Smolinska, N., Nitkiewicz, A., and Kaminski, T. (2013). Expression of adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine pituitary during the oestrous cycle. Reprod. Biol. Endocrinol. 11, 18.
| 1:CAS:528:DC%2BC3sXot1Wnsrg%3D&md5=dd40f598bd42e921e72ac69ec6d6c89bCAS | open url image1

Kim, S. T., Marquard, K., Stephens, S., Louden, E., Allsworth, J., and Moley, K. H. (2011). Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus. Hum. Reprod. 26, 82–95.
Adiponectin and adiponectin receptors in the mouse preimplantation embryo and uterus.CrossRef | 1:CAS:528:DC%2BC3cXhs1Wqu7%2FN&md5=56ef9c5e70eb12f30458c448c7e536eeCAS | open url image1

Kraeling, R. R., Rampacek, G. B., and Fiorello, N. A. (1985). Inhibition of pregnancy with indomethacin in mature gilts and prepuberal gilts induced to ovulate. Biol. Reprod. 32, 105–110.
Inhibition of pregnancy with indomethacin in mature gilts and prepuberal gilts induced to ovulate.CrossRef | 1:CAS:528:DyaL2MXptVGksA%3D%3D&md5=3e70f33250f834525521722551f7986bCAS | open url image1

Lord, E., Ledoux, S., Murphy, B. D., Beaudry, D., and Palin, M. F. (2005). Expression of Adipoq and its receptors in swine. J. Anim. Sci. 83, 565–578.
Expression of Adipoq and its receptors in swine.CrossRef | 1:CAS:528:DC%2BD2MXitVSltbg%3D&md5=0380f6ff8526c69921cc459262e993e3CAS | open url image1

Maeda, K., Okubo, K., Shimomura, I., Funahashi, T., Matsuzawa, Y., and Matsubara, K. (1996). cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 221, 286–289.
cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).CrossRef | 1:CAS:528:DyaK28XisVaht7s%3D&md5=39dab6f97f71543120fa928c51500208CAS | open url image1

Maillard, V., Uzbekova, S., Guignot, F., Perreau, C., Rame, C., Coyral-Castel, S., and Dupont, J. (2010). Effect of Adipoq on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development. Reprod. Biol. Endocrinol. 8, 23.
Effect of Adipoq on bovine granulosa cell steroidogenesis, oocyte maturation and embryo development.CrossRef | open url image1

Maleszka, A., Smolinska, N., Nitkiewicz, A., Kiezun, M., Chojnowska, K., Dobrzyn, K., Szwaczek, H., and Kaminski, T. (2014a). Adiponectin expression in the porcine ovary during the oestrous cycle and its effect on ovarian steroidogenesis. Int. J. Endocrinol. 2014, 957076.
Adiponectin expression in the porcine ovary during the oestrous cycle and its effect on ovarian steroidogenesis.CrossRef | open url image1

Maleszka, A., Smolinska, N., Nitkiewicz, A., Kiezun, M., Dobrzyn, K., Czerwinska, J., Szeszko, K., and Kaminski, T. (2014b). Expression of adiponectin receptors 1 and 2 in the ovary and concentration of plasma adiponectin during the oestrous cycle of the pig. Acta Vet. Hung. 62, 386–396.
Expression of adiponectin receptors 1 and 2 in the ovary and concentration of plasma adiponectin during the oestrous cycle of the pig.CrossRef | 1:CAS:528:DC%2BC2cXhvFWrsrjL&md5=b0e05b195dfb71f4c4d04b69500505f0CAS | open url image1

Morgan, G. L., Geisert, R. D., Zavy, M. T., Shawley, R. V., and Fazleabas, A. T. (1987). Development of pig blastocysts in a uterine environment advanced by exogenous oestrogen. J. Reprod. Fertil. 80, 125–131.
Development of pig blastocysts in a uterine environment advanced by exogenous oestrogen.CrossRef | 1:CAS:528:DyaL2sXktlensr4%3D&md5=a7bc660ec143b644a0c9dc7d10e0f487CAS | open url image1

Palin, M. F., Bordignon, V. V., and Murphy, B. D. (2012). Adiponectin and the control of female reproductive functions. Vitam. Horm. 90, 239–287.
Adiponectin and the control of female reproductive functions.CrossRef | 1:CAS:528:DC%2BC3sXntVGqsA%3D%3D&md5=8eac3d627b1df4e38f814d304b6fbeeaCAS | open url image1

Pharriss, B. B. (1971). Prostaglandins in fertility. Proc. R. Soc. Med. 64, 10.
| 1:STN:280:DyaE3M7ls1yksQ%3D%3D&md5=e4369334ec1aed9c50e569b197b06424CAS | open url image1

Richards, J. S., Liu, Z., Kawai, T., Tabata, K., Watanabe, H., Suresh, D., Kuo, F. T., Pisarska, M. D., and Shimada, M. (2012). Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil. Steril. 98, 471–479.e1.
Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human.CrossRef | 1:CAS:528:DC%2BC38XnslOhs7w%3D&md5=7f5821c467e70008363ae56dfc80e1e5CAS | open url image1

Smolinska, N., Kaminski, T., Siawrys, G., and Przala, J. (2007). Long form of leptin receptor gene and protein expression in the porcine ovary during the estrous cycle and early pregnancy. Reprod. Biol. 7, 17–39. open url image1

Smolinska, N., Maleszka, A., Dobrzyn, K., Kiezun, M., Szeszko, K., and Kaminski, T. (2014a). Expression of adiponectin and adiponectin receptors 1 and 2 in the porcine uterus, conceptus, and trophoblast during early pregnancy. Theriogenology 82, 951–965.
Expression of adiponectin and adiponectin receptors 1 and 2 in the porcine uterus, conceptus, and trophoblast during early pregnancy.CrossRef | 1:CAS:528:DC%2BC2cXhtlCjtrvM&md5=6d5b7eec0edc0879979e43a06e33ce2cCAS | open url image1

Smolinska, N., Dobrzyn, K., Maleszka, A., Kiezun, M., Szeszko, K., and Kaminski, T. (2014b). Expression of adiponectin and adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine uterus during the oestrous cycle. Anim. Reprod. Sci. 146, 42–54.
Expression of adiponectin and adiponectin receptors 1 (AdipoR1) and 2 (AdipoR2) in the porcine uterus during the oestrous cycle.CrossRef | 1:CAS:528:DC%2BC2cXjsF2isLk%3D&md5=635ebdd0ebf041fe8ae9246e060b143bCAS | open url image1

Smolinska, N., Dobrzyn, K., Kiezun, M., Szeszko, K., Maleszka, A., and Kaminski, T. (2016). Effect of adiponectin on the steroidogenic acute regulatory protein, P450 side chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase genes expression, progesterone and androstenedione production by the porcine uterus during early pregnancy. J. Physiol. Pharmacol. 67, 443–456.
| 1:STN:280:DC%2BC2s3pvVaksw%3D%3D&md5=40797780595d2982934652104e8a93b2CAS | open url image1

Spagnuolo-Weaver, M., Fuerst, R., Campbell, S. T., Meehan, B. M., McNeilly, F., Adair, B., and Allan, G. (1999). A fluorimeter-based RT-PCR method for the detection and quantitation of porcine cytokines. J. Immunol. Methods 230, 19–27.
A fluorimeter-based RT-PCR method for the detection and quantitation of porcine cytokines.CrossRef | 1:CAS:528:DyaK1MXnslynsbk%3D&md5=042920c1f5c81a52fbb962567c7cc6c6CAS | open url image1

Takemura, Y., Osuga, Y., Harada, M., Hirata, T., Koga, K., Morimoto, C., Hirota, Y., Yoshino, O., Yano, T., and Taketani, Y. (2005). Serum adiponectin concentrations are decreased in women with endometriosis. Hum. Reprod. 20, 3510–3513.
Serum adiponectin concentrations are decreased in women with endometriosis.CrossRef | 1:CAS:528:DC%2BD2MXht1Gltr3K&md5=f4e45da6f9fbe3ecf1d97a5129beeb9fCAS | open url image1

Takemura, Y., Osuga, Y., Yamauchi, T., Kobayashi, M., Harada, M., Hirata, T., Morimoto, C., Hirota, Y., Yoshino, O., Koga, K., Yano, T., Kadowaki, T., and Taketani, Y. (2006). Expression of adiponectin receptors and its possible implication in the human endometrium. Endocrinology 147, 3203–3210.
Expression of adiponectin receptors and its possible implication in the human endometrium.CrossRef | 1:CAS:528:DC%2BD28XmtlOku7Y%3D&md5=a465f12b9c4a4f5f131c774971e999e5CAS | open url image1

Tobert, J. A. (1976). A study of the possible role of prostaglandins in decidualization using a nonsurgical method for the instillation of fluids into the rat uterine lumen. J. Reprod. Fertil. 47, 391–393.
A study of the possible role of prostaglandins in decidualization using a nonsurgical method for the instillation of fluids into the rat uterine lumen.CrossRef | 1:CAS:528:DyaE28XkvFWnsrs%3D&md5=1dd558de5d8a7d22bf2ed0db7c6daf6cCAS | open url image1

Tsujii, H. (1996). Effect of prostaglandin E2, F and indomethacin on the incorporation of 3H-methionine in rat blastocysts development. J. Mamm. Ova Res. 13, 8–11.
Effect of prostaglandin E2, F and indomethacin on the incorporation of 3H-methionine in rat blastocysts development.CrossRef | open url image1

Waclawik, A., and Ziecik, A. J. (2007). Differential expression of prostaglandin (PG) synthesis enzymes in conceptus during peri-implantation period and endometrial expression of carbonyl reductase/PG 9-ketoreductase in the pig. J. Endocrinol. 194, 499–510.
Differential expression of prostaglandin (PG) synthesis enzymes in conceptus during peri-implantation period and endometrial expression of carbonyl reductase/PG 9-ketoreductase in the pig.CrossRef | 1:CAS:528:DC%2BD2sXhtFKms7vE&md5=e0eb54da0843b1346c4242e42fd0c4c0CAS | open url image1

Wang, Y., Wang, X., Lau, W. B., Yuan, Y., Booth, D., Li, J. J., Scalia, R., Preston, K., Gao, E., Koch, W., and Ma, X. L. (2014). Adiponectin inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation. Circ. Res. 114, 792–805.
Adiponectin inhibits tumor necrosis factor-α-induced vascular inflammatory response via caveolin-mediated ceramidase recruitment and activation.CrossRef | 1:CAS:528:DC%2BC2cXjtlSiurs%3D&md5=33a38c0cf6b442262979553050eaf1e0CAS | open url image1

Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P., and Kadowaki, T. (2001). The fat-derived hormone Adipoq reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946.
The fat-derived hormone Adipoq reverses insulin resistance associated with both lipoatrophy and obesity.CrossRef | 1:CAS:528:DC%2BD3MXlvVOkt7o%3D&md5=1b61548dd1062b9cf0a0afaf62128f33CAS | open url image1

Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N. H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R., and Kadowaki, T. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769.
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.CrossRef | 1:CAS:528:DC%2BD3sXksV2itL8%3D&md5=8a4b6d1d816f43f380f8cb15e2bb3517CAS | open url image1

Yokota, T., Oritani, K., Takahashi, I., Ishikawa, J., Matsuyama, A., Ouchi, N., Kihara, S., Funahashi, T., Tenner, A. J., Tomiyama, Y., and Matsuzawa, Y. (2000). Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96, 1723–1732.
| 1:CAS:528:DC%2BD3cXmt1OmtLY%3D&md5=a745ec1456463386a9500511694342b6CAS | open url image1



Supplementary MaterialSupplementary Material (1.1 MB) Export Citation