Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Induced sub-lethal oxidative damage affects osmotic tolerance and cryosurvival of spermatozoa

Franziska Ertmer A , Harriëtte Oldenhof A E , Saskia Schütze A B , Karl Rohn C , Willem F. Wolkers D and Harald Sieme A
+ Author Affiliations
- Author Affiliations

A Clinic for Horses – Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Bünteweg 15, D-30559 Hannover, Germany.

B National Stud Lower Saxony, Spörckenstraße 10, D-29221 Celle, Germany.

C Institute of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Bünteweg 2, D-30559 Hannover, Germany.

D Institute of Multiphase Processes, Leibniz Universität Hannover, Callinstrasse 36, D-30167 Hannover, Germany.

E Corresponding author. Email: harriette.oldenhof@tiho-hannover.de

Reproduction, Fertility and Development 29(9) 1739-1750 https://doi.org/10.1071/RD16183
Submitted: 3 May 2016  Accepted: 2 September 2016   Published: 19 October 2016

Abstract

If the physiological balance between production and scavenging of reactive oxygen species (ROS) is shifted towards production of ROS this may result in accumulation of cell damage over time. In this study stallion spermatozoa were incubated with xanthine and xanthine oxidase (X–XO) to artificially generate defined levels of superoxide and hydrogen peroxide resulting in sub-lethal oxidative damage. The effects of X–XO treatment on various sperm characteristics were studied. Special emphasis was placed on sperm osmotic tolerance pre-freeze and its correlation with cryosurvival, given that cryopreservation exposes cells to osmotic stress. ROS accumulation occurred predominantly in the sperm midpiece region, where the mitochondria are located. Exposing spermatozoa to increasing X–XO concentrations resulted in a dose-dependent decrease in sperm motility. Percentages of plasma membrane-intact spermatozoa were not affected, whereas stability of membranes towards hypotonic stress decreased with increasing levels of induced oxidative stress. Infrared spectroscopic studies showed that X–XO treatment does not alter sperm membrane phase behaviour. Spermatozoa exposed to higher oxidative stress levels pre-freeze exhibited reduced cryosurvival. Centrifugation processing and addition of catalase were found to have little beneficial effect. Taken together, these results show that treatment of spermatozoa with X–XO resulted in different levels of intracellular ROS, which decreased sperm osmotic tolerance and cryosurvival.

Additional keywords: antioxidants, centrifugation processing, cryopreservation, equine spermatozoa, membrane phase behaviour, reactive oxygen species.


References

Agarwal, A., Durairajanayagam, D., and Du Plessis, S. (2014). Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod. Biol. Endocrinol. 12, 112.
Utility of antioxidants during assisted reproductive techniques: an evidence based review.CrossRef | 25421286PubMed |

Aitken, R. J. (1995). Free radicals, lipid peroxidation and sperm function. Reprod. Fertil. Dev. 7, 659–668.
Free radicals, lipid peroxidation and sperm function.CrossRef | 1:CAS:528:DyaK28Xht1Clsrw%3D&md5=abd4f936469db218ee492eb32109415fCAS | 8711202PubMed |

Aitken, J., and Fisher, H. (1994). Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. BioEssays 16, 259–267.
Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk.CrossRef | 1:CAS:528:DyaK2cXksl2jtrs%3D&md5=a2e140bf30e059440c1e7645ee01085cCAS | 8031303PubMed |

Aitken, R. J., Whiting, S., De Iuliis, G. N., McClymont, S., Mitchell, L. A., and Baker, M. A. (2012). Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J. Biol. Chem. 287, 33048–33060.
Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase.CrossRef | 1:CAS:528:DC%2BC38XhtlyqsrfF&md5=e0368066cc2395a16482c3dc1ec610b7CAS | 22851170PubMed |

Aitken, R. J., Smith, T. B., Lord, T., Kuczera, L., Koppers, A. J., Naumovski, N., Connaughton, H., Baker, M. A., and De Iuliis, G. N. (2013). On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology 1, 192–205.
On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid.CrossRef | 1:CAS:528:DC%2BC3sXislOmtrg%3D&md5=09ab72ad2fbb22a9821bcde4ff065516CAS | 23316012PubMed |

Aitken, J. B., Naumovski, N., Curry, B., Grupen, C. G., Gibb, Z., and Aitken, R. J. (2015). Characterization of an L-amino acid oxidase in equine spermatozoa. Biol. Reprod. 92, 125.
Characterization of an L-amino acid oxidase in equine spermatozoa.CrossRef | 25740544PubMed |

Alvarez, J. G., and Storey, B. T. (1983). Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol. Reprod. 29, 548–555.
Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility.CrossRef | 1:CAS:528:DyaL3sXlslShtL4%3D&md5=31e6defe4a922186623e178212074977CAS | 6626644PubMed |

Alvarez, J. G., Touchstone, J. C., Blasco, L., and Storey, B. T. (1987). Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J. Androl. 8, 338–348.
Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity.CrossRef | 1:CAS:528:DyaL2sXmtFGhtb4%3D&md5=6454ac07b802bad44f3dd131995a1190CAS | 2822642PubMed |

Aurich, C. (2005). Factors affecting the plasma membrane function of cooled–stored stallion spermatozoa. Anim. Reprod. Sci. 89, 65–75.
Factors affecting the plasma membrane function of cooled–stored stallion spermatozoa.CrossRef | 1:CAS:528:DC%2BD2MXhtVart7%2FJ&md5=2d358c7f4bf08a44fec5f6e6742625b2CAS | 16081230PubMed |

Aurich, C. (2016). Seasonal influences on cooled–shipped and frozen–thawed stallion semen. J. Equine Vet. Sci. 43, 1–5.
Seasonal influences on cooled–shipped and frozen–thawed stallion semen.CrossRef |

Ball, B. A. (2008). Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse. Anim. Reprod. Sci. 107, 257–267.
Oxidative stress, osmotic stress and apoptosis: impacts on sperm function and preservation in the horse.CrossRef | 1:CAS:528:DC%2BD1cXoslWkt7c%3D&md5=959c0cae8e64b51ac930329fd453362aCAS | 18524506PubMed |

Ball, B. A., and Vo, A. (2001). Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential. J. Androl. 22, 1061–1069.
Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential.CrossRef | 1:CAS:528:DC%2BD3MXotlyns7o%3D&md5=910f1aed2b5bef2b8a6989c9601cceecCAS | 11700853PubMed |

Ball, B. A., Medina, V., Gravance, C. G., and Baumber, J. (2001). Effect of antioxidants on preservation of motility, viability and acrosomal integrity of equine spermatozoa during storage at 5°C. Theriogenology 56, 577–589.
Effect of antioxidants on preservation of motility, viability and acrosomal integrity of equine spermatozoa during storage at 5°C.CrossRef | 1:CAS:528:DC%2BD3MXntlahsbo%3D&md5=da600601f526584636ddebf0b0f8689dCAS | 11572439PubMed |

Baumber, J., Ball, B. A., Gravance, C. G., Medina, V., and Davies-Morel, M. C. (2000). The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J. Androl. 21, 895–902.
| 1:CAS:528:DC%2BD3cXot1agu78%3D&md5=da453babb184d3f75c7a34c8a2a6de6eCAS | 11105916PubMed |

Baumber, J., Ball, B. A., Linfor, J. J., and Meyers, S. A. (2003). Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. J. Androl. 24, 621–628.
Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa.CrossRef | 1:CAS:528:DC%2BD2cXjtl2itb0%3D&md5=ad897dae547938fcf43d6be6c3bb071bCAS | 12826702PubMed |

Baumber, J., Ball, B. A., and Linfor, J. L. (2005). Assessment of the cryopreservation of equine spermatozoa in the presence of enzyme scavengers and antioxidants. Am. J. Vet. Res. 66, 772–779.
Assessment of the cryopreservation of equine spermatozoa in the presence of enzyme scavengers and antioxidants.CrossRef | 1:CAS:528:DC%2BD2MXksFOjs7Y%3D&md5=8d2536c1beeefe7df0f280279c3784aaCAS | 15934604PubMed |

Burnaugh, L., Ball, B. A., Sabeur, K., Thomas, A. D., and Meyers, S. A. (2010). Osmotic stress stimulates generation of superoxide anion by spermatozoa in horses. Anim. Reprod. Sci. 117, 249–260.
Osmotic stress stimulates generation of superoxide anion by spermatozoa in horses.CrossRef | 1:CAS:528:DC%2BD1MXhsVGltrbM&md5=f5df1e466e2c9ba98f545bdf0670a255CAS | 19553037PubMed |

Chatterjee, S., and Gagnon, C. (2001). Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing. Mol. Reprod. Dev. 59, 451–458.
Production of reactive oxygen species by spermatozoa undergoing cooling, freezing, and thawing.CrossRef | 1:CAS:528:DC%2BD3MXltVWmsb4%3D&md5=d8d1459a0651eef5d9c9d78aaae63d27CAS | 11468782PubMed |

Darr, C. R., Varner, D. D., Teague, S., Cortopassi, G. A., Datta, S., and Meyers, S. A. (2016). Lactate and pyruvate are major sources of energy for stallion sperm with dose effects on mitochondrial function, motility, and ROS production. Biol. Reprod. , .
Lactate and pyruvate are major sources of energy for stallion sperm with dose effects on mitochondrial function, motility, and ROS production.CrossRef | 27335066PubMed |

De Iuliis, G. N., Thomson, L. K., Mitchell, L. A., Finnie, J. M., Koppers, A. J., Hedges, A., Nixon, B., and Aitken, R. J. (2009). DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol. Reprod. 81, 517–524.
DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress.CrossRef | 1:CAS:528:DC%2BD1MXhtVChu7%2FE&md5=10a8e46dedb293938ef134691cdd7f5cCAS | 19494251PubMed |

de Lamirande, E., Jiang, H., Zini, A., Kodema, H., and Gagnon, C. (1997). Reactive oxygen species and sperm physiology. Rev. Reprod. 2, 48–54.
Reactive oxygen species and sperm physiology.CrossRef | 1:CAS:528:DyaK2sXhs1Kmsrk%3D&md5=1df874979edd42f7f3e98863dfd86c05CAS | 9414465PubMed |

Esfandiari, N., Sharma, R. K., Saleh, R. A., Thomas, A. J., and Agarwal, A. (2003). Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa. J. Androl. 24, 862–870.
Utility of the nitroblue tetrazolium reduction test for assessment of reactive oxygen species production by seminal leukocytes and spermatozoa.CrossRef | 1:CAS:528:DC%2BD3sXps1Kns74%3D&md5=6fd28a71b886a5a2822dc89537272b47CAS | 14581512PubMed |

Evenson, D. P., Larson, K. L., and Jost, L. K. (2002). Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J. Androl. 23, 25–43.
| 11780920PubMed |

Gibb, Z., and Aitken, R. J. (2016). The impact of sperm metabolism during in vitro storage: the stallion as a model. Biomed. Res. Int. 2016, 9380609.
The impact of sperm metabolism during in vitro storage: the stallion as a model.CrossRef | 26881234PubMed |

Glazar, A. I., Mullen, S. F., Liu, J., Benson, J. D., Critser, J. K., Squires, E. L., and Graham, J. K. (2009). Osmotic tolerance limits and membrane permeability characteristics of stallion spermatozoa treated with cholesterol. Cryobiology 59, 201–206.
Osmotic tolerance limits and membrane permeability characteristics of stallion spermatozoa treated with cholesterol.CrossRef | 1:CAS:528:DC%2BD1MXhtVKgu7nE&md5=1ca0e885a499b474474d6848fcd8f548CAS | 19646432PubMed |

Hagedorn, M., McCarthy, M., Carter, V. L., and Meyers, S. A. (2012). Oxidative stress in zebrafish (Danio rerio) sperm. PLoS One 7, e39397.
Oxidative stress in zebrafish (Danio rerio) sperm.CrossRef | 1:CAS:528:DC%2BC38XptlSgu70%3D&md5=2147f87be354d5a8a3b63bf260d0b995CAS | 22724013PubMed |

Hammadeh, M. E., Filippos, A., and Hamad, M. F. (2009). Reactive oxygen species and antioxidant in seminal plasma and their impact on male fertility. Int. J. Fertil. Steril. 3, 87–110.

Hammerstedt, R. H., Graham, J. K., and Nolan, J. P. (1990). Cryopreservation of mammalian sperm: what we ask them to survive. J. Androl. 11, 73–88.
| 1:CAS:528:DyaK3cXhtlKgs7c%3D&md5=839d449ae799d6ef7b2c181550b6673aCAS | 2179184PubMed |

Janett, F., Thun, R., Niederer, K., Burger, D., and Hässig, M. (2003). Seasonal changes in semen quality and freezability in the Warmblood stallion. Theriogenology 60, 453–461.
Seasonal changes in semen quality and freezability in the Warmblood stallion.CrossRef | 1:STN:280:DC%2BD3s3kt1Shsg%3D%3D&md5=2b094fb4eaebacab0202cb5d50f0328bCAS | 12763159PubMed |

Loomis, P. R., and Graham, J. K. (2008). Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim. Reprod. Sci. 105, 119–128.
Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols.CrossRef | 1:CAS:528:DC%2BD1cXislSmtLk%3D&md5=641071d5b331616aca9b82e66dea524dCAS | 18178040PubMed |

Macías García, B., González Fernández, L., Ortega Ferrusola, C., Morillo Rodríguez, A., Gallardo Bolaños, J. M., Rodríguez Martinez, H., Tapia, J. A., Morcuende, D., and Peña, F. J. (2011). Fatty acids and plasmalogens of the phospholipids of the sperm membranes and their relation with the post-thaw quality of stallion spermatozoa. Theriogenology 75, 811–818.
Fatty acids and plasmalogens of the phospholipids of the sperm membranes and their relation with the post-thaw quality of stallion spermatozoa.CrossRef | 21144567PubMed |

Martinez-Alborcia, M. J., Valverde, A., Parrilla, I., Vazquez, J. M., Martinez, E. A., and Roca, J. (2012). Detrimental effects of non-functional spermatozoa on the freezability of functional spermatozoa from boar ejaculate. PLoS One 7, e36550.
Detrimental effects of non-functional spermatozoa on the freezability of functional spermatozoa from boar ejaculate.CrossRef | 1:CAS:528:DC%2BC38Xntlegtr0%3D&md5=076f245230786860c54b065c4e5d7f8bCAS | 22567165PubMed |

Martínez-Pastor, F., Aisen, E., Fernández-Santos, M. R., Esteso, M. C., Maroto-Morales, A., García-Alvarez, O., and Garde, J. J. (2009). Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa. Reproduction 137, 225–235.
Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa.CrossRef | 19028926PubMed |

Mazur, P. (1984). Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247, C125–C142.
| 1:CAS:528:DyaL2cXls1Ors7w%3D&md5=262468d592b81ee5008cfa151546a0aeCAS | 6383068PubMed |

Morrell, J. M., Lagerqvist, A., Humblot, P., and Johannisson, A. (2016). Effect of single layer centrifugation on reactive oxygen species and sperm mitochondrial membrane potential in cooled stallion semen. Reprod. Fertil. Dev. , .
Effect of single layer centrifugation on reactive oxygen species and sperm mitochondrial membrane potential in cooled stallion semen.CrossRef | 27048867PubMed |

Oldenhof, H., Wolkers, W. F., Bowman, J. L., Tablin, F., and Crowe, J. H. (2006). Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study. Biochim. Biophys. Acta 1760, 1226–1234.
Freezing and desiccation tolerance in the moss Physcomitrella patens: an in situ Fourier transform infrared spectroscopic study.CrossRef | 1:CAS:528:DC%2BD28Xmt1Ors7s%3D&md5=5d57e85b1901dd6f370682eb84bbe43fCAS | 16740364PubMed |

Oldenhof, H., Friedel, K., Akhoondi, M., Gojowsky, M., Wolkers, W. F., and Sieme, H. (2012). Membrane phase behavior during cooling of stallion sperm and its correlation with freezability. Mol. Membr. Biol. 29, 95–106.
Membrane phase behavior during cooling of stallion sperm and its correlation with freezability.CrossRef | 1:CAS:528:DC%2BC38Xoslals7g%3D&md5=00df7d0e1046c14618d8d5e7582e9470CAS | 22480267PubMed |

Oldenhof, H., Heutelbeck, A., Blässe, A.-K., Bollwein, H., Martinsson, G., Wolkers, W. F., and Sieme, H. (2015). Tolerance of spermatozoa to hypotonic stress: role of membrane fluidity and correlation with cryosurvival. Reprod. Fertil. Dev. 27, 285–293.
Tolerance of spermatozoa to hypotonic stress: role of membrane fluidity and correlation with cryosurvival.CrossRef | 25482034PubMed |

Oldenhof, H., Schütze, S., Wolkers, W. F., and Sieme, H. (2016). Fourier transform infrared spectroscopic analysis of sperm chromatin structure and DNA stability. Andrology 4, 430–441.
Fourier transform infrared spectroscopic analysis of sperm chromatin structure and DNA stability.CrossRef | 1:CAS:528:DC%2BC28Xnt1KltLs%3D&md5=bb970667c916b8776836f95fa2b9ad0dCAS | 26916383PubMed |

Ortega Ferrusola, C., González Fernández, L., Morrell, J. M., Salazar Sandoval, C., Macías García, B., Rodríguez Martínez, H., Tapia, J. A., and Peña, F. J. (2009). Lipid peroxidation, assessed with BODIPY-C11, increases after cryopreservation of stallion spermatozoa, is stallion-dependent and is related to apoptotic-like changes. Reproduction 138, 55–63.
Lipid peroxidation, assessed with BODIPY-C11, increases after cryopreservation of stallion spermatozoa, is stallion-dependent and is related to apoptotic-like changes.CrossRef | 1:STN:280:DC%2BD1Mvltlynuw%3D%3D&md5=f6600d9bc51790642120a0ac223c9af7CAS | 19380427PubMed |

Ortega Ferrusola, C., González Fernández, L., Salazar Sandoval, C., Macías García, B., Rodríguez Martínez, H., Tapia, J. A., and Peña, F. J. (2010). Inhibition of the mitochondrial permeability transition pore reduces “apoptosis like” changes during cryopreservation of stallion spermatozoa. Theriogenology 74, 458–465.
Inhibition of the mitochondrial permeability transition pore reduces “apoptosis like” changes during cryopreservation of stallion spermatozoa.CrossRef | 1:STN:280:DC%2BC3cnntVOisg%3D%3D&md5=9d284fc4178c70270bc17a676b1d195aCAS | 20451990PubMed |

Parks, J. E., and Lynch, D. V. (1992). Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29, 255–266.
Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes.CrossRef | 1:CAS:528:DyaK38Xitlaktr0%3D&md5=e05bd38c31c504f012b81acd42003843CAS | 1582232PubMed |

Peña, F. J., Plaza Davila, M., Ball, B. A., Squires, E. L., Martin Muñoz, P., Ortega Ferrusola, C., and Balao da Silva, C. (2015). The impact of reproductive technologies on stallion mitochondrial function. Reprod. Domest. Anim. 50, 529–537.
The impact of reproductive technologies on stallion mitochondrial function.CrossRef | 26031351PubMed |

Pommer, A. C., Rutllant, J., and Meyers, S. A. (2002). The role of osmotic resistance on equine spermatozoal function. Theriogenology 58, 1373–1384.
The role of osmotic resistance on equine spermatozoal function.CrossRef | 12387350PubMed |

Saleh, R. A., and Agarwal, A. (2002). Oxidative stress and male infertility: from research bench to clinical practice. J. Androl. 23, 737–752.
| 1:CAS:528:DC%2BD38XptV2htbo%3D&md5=a4058543c525660a91884a5c67fbdbbfCAS | 12399514PubMed |

Sieme, H., and Oldenhof, H. (2015). Cryopreservation of domestic livestock semen. In ‘Cryopreservation and Freeze-Drying Protocols’. 3rd edn. (Eds W. F. Wolkers and H. Oldenhof.) pp. 277–287. (Springer: New York.)

Sieme, H., Martinsson, G., Rauterberg, H., Walter, K., Aurich, C., Petzoldt, R., and Klug, E. (2003). Application of techniques for sperm selection in fresh and frozen–thawed stallion semen. Reprod. Domest. Anim. 38, 134–140.
Application of techniques for sperm selection in fresh and frozen–thawed stallion semen.CrossRef | 1:STN:280:DC%2BD3s7nvFyiuw%3D%3D&md5=0796273275361e94db3158799972b472CAS | 12654024PubMed |

Sikka, S. C. (2004). Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J. Androl. 25, 5–18.
Role of oxidative stress and antioxidants in andrology and assisted reproductive technology.CrossRef | 1:CAS:528:DC%2BD2cXkslCguw%3D%3D&md5=31c72df1be00392cfeb57205fc5b4a98CAS | 14662779PubMed |

Stuhtmann, G., Oldenhof, H., Peters, P., Klewitz, J., Martinsson, G., and Sieme, H. (2012). Iodixanol density gradient centrifugation for selecting stallion sperm for cold storage and cryopreservation. Anim. Reprod. Sci. 133, 184–190.
Iodixanol density gradient centrifugation for selecting stallion sperm for cold storage and cryopreservation.CrossRef | 1:CAS:528:DC%2BC38XpvFGju7Y%3D&md5=97254878764b6628839480566ba851ccCAS | 22784972PubMed |

Wolkers, W. F., and Hoekstra, F. A. (1995). Aging of dry desiccation-tolerant pollen does not affect protein secondary structure. Plant Physiol. 109, 907–915.
| 1:CAS:528:DyaK2MXpsVOrsLk%3D&md5=e9a012e6ffd11984471f3dd044250069CAS | 12228641PubMed |

Wolkers, W. F., Crowe, L. M., Tsvetkova, N. M., Tablin, F., and Crowe, J. H. (2002). In situ assessment of erythrocyte membrane properties during cold storage. Mol. Membr. Biol. 19, 59–65.
In situ assessment of erythrocyte membrane properties during cold storage.CrossRef | 1:CAS:528:DC%2BD38XjtFKgsrc%3D&md5=c01afbf34074c054da127bc0fb8f50d5CAS | 11989823PubMed |

Woods, E. J., Benson, J. D., Agca, Y., and Critser, J. K. (2004). Fundamental cryobiology of reproductive cells and tissues. Cryobiology 48, 146–156.
Fundamental cryobiology of reproductive cells and tissues.CrossRef | 1:CAS:528:DC%2BD2cXjt1amurw%3D&md5=5318c52256e88e681eb505c93c0e0db0CAS | 15094091PubMed |

Wrench, N., Pinto, C. R. F., Klinefelter, G. R., Dix, D. J., Flowers, W. L., and Farin, C. E. (2010). Effect of season on fresh and cryopreserved stallion semen. Anim. Reprod. Sci. 119, 219–227.
Effect of season on fresh and cryopreserved stallion semen.CrossRef | 1:CAS:528:DC%2BC3cXktVaitrs%3D&md5=61efb265dabaf88489220b51b8e52a07CAS | 20227205PubMed |

Yeste, M., Estrada, E., Rocha, L. G., Marín, H., Rodríguez-Gil, J. E., and Miró, J. (2015). Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 3, 395–407.
Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus.CrossRef | 1:CAS:528:DC%2BC2MXntFSgtL8%3D&md5=dd172247e78ba687efc42c07323d374aCAS | 25294093PubMed |



Rent Article (via Deepdyve) Export Citation