Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Changes in testicular function proteins and sperm acrosome status in rats treated with valproic acid

Wannisa Sukhorum A and Sitthichai Iamsaard A B C

A Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.

B Center for Research and Development of Herbal Health Products, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.

C Corresponding author. Email: sittia@kku.ac.th

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16205
Submitted: 23 December 2015  Accepted: 21 July 2016   Published online: 11 August 2016

Abstract

Valproic acid (VPA), an anti-epileptic drug, reduces testosterone levels and sperm quality. However, the degree to which testosterone levels and sperm quality are decreased under VPA treatment needs to be clarified. The aim of the present study was to investigate the testicular proteins involved in testosterone synthesis and spermatogenesis, histopathology and sperm acrosome status in VPA-treated rats. Adult rats were divided into control and experimental groups (n = 8 in each). Rats in the experimental group were treated with 500 mg kg–1, i.p., VPA for 10 consecutive days. Expression of Ki-67, tyrosine phosphorylated proteins and testicular steroidogenic proteins was examined. As expected, VPA-treated rats exhibited adverse changes in almost all reproductive parameters, particularly an increase in precocious acrosome reactions, compared with the control group. In addition, fibrosis of the tunica albuginea and tubule basement membrane was observed in testes from VPA-treated rats. Moreover, the expression of testicular Ki-67, cholesterol side-chain cleavage enzyme (P450scc) and phosphorylated proteins (41, 51 and 83 kDa) was decreased significantly in VPA-treated rats compared with control. In contrast, the expression of steroidogenic acute regulatory proteins in the VPA-treated group was significantly higher than in the control group. In conclusion, VPA treatment changes the expression of testicular proteins responsible for spermatogenesis and testosterone production, resulting in male infertility.

Additional keywords: cytochrome P450scc (CYP11A1), Ki-67, steroidogenic acute regulatory protein (StAR), tyrosine testicular phosphorylated protein.


References

Arad-Dann, H., Beller, U., Haimovitch, R., Gavrieli, Y., and Ben-Sasson, S. A. (1993). Immunohistochemistry of phosphotyrosine residues: identification of distinct intracellular patterns in epithelial and steroidogenic tissues. J. Histochem. Cytochem. 41, 513–519.
Immunohistochemistry of phosphotyrosine residues: identification of distinct intracellular patterns in epithelial and steroidogenic tissues.CrossRef | 1:CAS:528:DyaK3sXitlSrsL4%3D&md5=14a47473880d1b05c52161555bae0697CAS | 7680679PubMed | open url image1

Arun, S., Burawat, J., Sukhorum, W., Sampannang, A., Uabuadit, N., and Iamsaard, S. (2016). Changes of testicular phosphorylated proteins in response to restraint stress in male rats. J. Zhejiang Univ. Sci. B 17, 21–29.
Changes of testicular phosphorylated proteins in response to restraint stress in male rats.CrossRef | 1:CAS:528:DC%2BC28XhtVaktbg%3D&md5=1dd541df8b581ff2bf5e94e9eb304dd1CAS | 26739523PubMed | open url image1

Baert, Y., Braye, A., Struijk, R. B., van Pelt, A. M., and Goossens, E. (2015). Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics. Fertil. Steril. 104, 1244–1252.e1–4.
Cryopreservation of testicular tissue before long-term testicular cell culture does not alter in vitro cell dynamics.CrossRef | 1:CAS:528:DC%2BC2MXhsVyrsL3F&md5=7c931e60a075d1f6fa860073240f51f7CAS | 26260199PubMed | open url image1

Bairy, L., Paul, V., and Rao, Y. (2010). Reproductive toxicity of sodium valproate in male rats. Indian J. Pharmacol. 42, 90–94.
Reproductive toxicity of sodium valproate in male rats.CrossRef | 1:CAS:528:DC%2BC3cXhtVylt7vP&md5=31d40b1afc1b056be9baaedba0a1fcb2CAS | 20711373PubMed | open url image1

Bauer, J., Blumenthal, S., Reuber, M., and Stoffel-Wangner, B. (2004). Epilepsy syndrome, focus location, and treatment choice affect testicular function in men with epilepsy. Neurology 62, 243–246.
Epilepsy syndrome, focus location, and treatment choice affect testicular function in men with epilepsy.CrossRef | 14745061PubMed | open url image1

Bendahmane, M., Zeng, H. T., and Tulsiani, D. R. (2002). Assessment of acrosomal status in rat spermatozoa: studies on carbohydrate and non-carbohydrate agonists. Arch. Biochem. Biophys. 404, 38–47.
Assessment of acrosomal status in rat spermatozoa: studies on carbohydrate and non-carbohydrate agonists.CrossRef | 1:CAS:528:DC%2BD38XltlSqu7Y%3D&md5=0732e178ae8a3a91dc4a94390b61b609CAS | 12127067PubMed | open url image1

Berendsen, S., Broekman, M., Seute, T., Snijders, T., van Es, C., de Vos, F., Regli, L., and Robe, P. (2012). Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results. Expert Opin. Investig. Drugs 21, 1391–1415.
Valproic acid for the treatment of malignant gliomas: review of the preclinical rationale and published clinical results.CrossRef | 1:CAS:528:DC%2BC38XhtF2rs7nN&md5=82160033301ced63ec0e56ee26f4ba6cCAS | 22668241PubMed | open url image1

Bialer, M., and Yagen, B. (2007). Valproic acid: second generation. Neurotherapeutics 4, 130–137.
Valproic acid: second generation.CrossRef | 1:CAS:528:DC%2BD2sXisFaksbo%3D&md5=77c2b300404d68ed9404b54f3622e10bCAS | 17199028PubMed | open url image1

Brion, L., Gorostizaga, A., Gómez, N. V., Podestá, E. J., Cornejo Maciel, F., and Paz, C. (2011). Valproic acid alters mitochondrial cholesterol transport in Y1 adrenocortical cells. Toxicol. In Vitro 25, 7–12.
Valproic acid alters mitochondrial cholesterol transport in Y1 adrenocortical cells.CrossRef | 1:CAS:528:DC%2BC3cXhs1agsb7L&md5=16d8f52ecc5c336b0b4061a889c4bd59CAS | 20732403PubMed | open url image1

Buffone, M. G., Kim, K. S., Doak, B. J., Rodriguez-Miranda, E., and Gerton, G. L. (2009). Functional consequences of cleavage, dissociation and exocytotic release of ZP3R, a C4BP-related protein, from the mouse sperm acrosomal matrix. J. Cell Sci. 122, 3153–3160.
Functional consequences of cleavage, dissociation and exocytotic release of ZP3R, a C4BP-related protein, from the mouse sperm acrosomal matrix.CrossRef | 1:CAS:528:DC%2BD1MXht1WksbzI&md5=a6d8ba9cc2c0f5bcaabb37934daf3bc5CAS | 19654207PubMed | open url image1

Buffone, M. G., Hirohashi, N., and Gerton, G. L. (2014). Unresolved questions concerning mammalian sperm acrosomal exocytosis. Biol. Reprod. 90, 112.
Unresolved questions concerning mammalian sperm acrosomal exocytosis.CrossRef | 24671881PubMed | open url image1

Death, A. K., McGrath, K. C., and Handelsman, D. J. (2005). Valproate is an anti-androgen and anti-progestin. Steroids 70, 946–953.
Valproate is an anti-androgen and anti-progestin.CrossRef | 1:CAS:528:DC%2BD2MXht1egu73E&md5=2c24d516857cf5ecde8e455dfad3f282CAS | 16165177PubMed | open url image1

Girish, C., Shweta, O., Raj, V., Balakrishnan, S., and Varghese, R. G. (2014). Ellagic acid modulates sodium valproate reproductive toxicity in male Wistar rats. Indian J. Physiol. Pharmacol. 58, 416–422.
| 1:CAS:528:DC%2BC2cXitFGiurbM&md5=cdd2779ea05f7c3c708099693a567367CAS | 26215011PubMed | open url image1

Glister, C., Satchell, L., Michael, A. E., Bicknell, A. B., and Knight, P. G. (2012). The anti-epileptic drug valproic acid (VPA) inhibits steroidogenesis in bovine theca and granulosa cells in vitro. PLoS One 7, e49553.
The anti-epileptic drug valproic acid (VPA) inhibits steroidogenesis in bovine theca and granulosa cells in vitro.CrossRef | 1:CAS:528:DC%2BC38XhslCqu7fP&md5=e94824b2748e17a776260d126c565d68CAS | 23152920PubMed | open url image1

Göttlicher, M. (2004). Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol. 83, S91–S92.
| 15124690PubMed | open url image1

Gustavsen, M. W., von Krogh, K., Taubøll, E., Zimmer, K. E., Dahl, E., Olsaker, I., Ropstad, E., and Verhaegen, S. (2009). Differential effects of antiepileptic drugs on steroidogenesis in a human in vitro cell model. Acta Neurol. Scand. Suppl. 120, 14–21.
Differential effects of antiepileptic drugs on steroidogenesis in a human in vitro cell model.CrossRef | open url image1

Hamza, A. A., and Amin, A. (2007). Apium graveolens modulates sodium valproate-induced reproductive toxicity in rats. J. Exp. Zool. A Ecol. Genet. Physiol. 307A, 199–206.
Apium graveolens modulates sodium valproate-induced reproductive toxicity in rats.CrossRef | 1:CAS:528:DC%2BD2sXksVSjt7c%3D&md5=cbaa643d7b98496e08a819aa26febf95CAS | open url image1

Hu, M. C., Hsu, N. C., El Hadj, N. B., Pai, C. I., Chu, H. P., Wang, C. K., and Chung, B. C. (2002). Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol. Endocrinol. 16, 1943–1950.
Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1.CrossRef | 1:CAS:528:DC%2BD38XlvVCmur4%3D&md5=6cb9e88c91ff06d16c6e76562f2a745aCAS | 12145347PubMed | open url image1

Iamsaard, S., Vanichviriyakit, R., Hommalai, G., Saewu, A., Srakaew, N., Withyachumnarnkul, B., Basak, A., and Tanphaichitr, N. (2011). Enzymatic activity of sperm proprotein convertase is important for mammalian fertilization. J. Cell. Physiol. 226, 2817–2826.
Enzymatic activity of sperm proprotein convertase is important for mammalian fertilization.CrossRef | 1:CAS:528:DC%2BC3MXhtVKksrjE&md5=5ad05b785a1c708f9726012cc2a13dc8CAS | 21302280PubMed | open url image1

Iamsaard, S., Prabsattroo, T., Sukhorum, W., Muchimapura, S., Srisaard, P., Uabundit, N., Thukhammee, W., and Wattanathorn, J. (2013). Anethum graveolens Linn. (dill) extract enhances the mounting frequency and level of testicular tyrosine protein phosphorylation in rats. J. Zhejiang Univ. Sci. B 14, 247–252.
Anethum graveolens Linn. (dill) extract enhances the mounting frequency and level of testicular tyrosine protein phosphorylation in rats.CrossRef | 1:CAS:528:DC%2BC3sXjvFektbk%3D&md5=5d2e637e5f1b1aa46421a533cd7acdafCAS | 23463768PubMed | open url image1

Iamsaard, S., Arun, S., Burawat, J., Sukhorum, W., Boonruangsri, P., Namking, M., Uabundit, N., Nualkaew, S., and Sripanidkulchai, B. (2015). Phylanthus emblica L. branch extract ameliorates testicular damage in valproic acid-induced rats. Int. J. Morphol. 33, 1016–1022.
Phylanthus emblica L. branch extract ameliorates testicular damage in valproic acid-induced rats.CrossRef | open url image1

Isojärvi, J. (2008). Disorders of reproduction in patients with epilepsy: antiepileptic drug related mechanisms. Seizure 17, 111–119.
Disorders of reproduction in patients with epilepsy: antiepileptic drug related mechanisms.CrossRef | 18164216PubMed | open url image1

Khan, S., Ahmad, T., Parekh, C. V., Trivedi, P. P., Kushwaha, S., and Jena, G. (2011). Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice. Reprod. Toxicol. 32, 385–394.
Investigation on sodium valproate induced germ cell damage, oxidative stress and genotoxicity in male Swiss mice.CrossRef | 1:CAS:528:DC%2BC3MXhsFegtrnK&md5=b83457eb556d7de98d684fc74b3aef51CAS | 22001255PubMed | open url image1

Koromilas, A. E. (2015). Roles of the translation initiation factor elF2α serine 51 phosphorylation in cancer formation and treatment. Biochim. Biophys. Acta 1849, 871–880.
Roles of the translation initiation factor elF2α serine 51 phosphorylation in cancer formation and treatment.CrossRef | 1:CAS:528:DC%2BC2MXlvFyisQ%3D%3D&md5=377d19e21008905c3e06d1eb8612e694CAS | 25497381PubMed | open url image1

Krogenaes, A. K., Taubøll, E., Stien, A., Oskam, I. C., Lyche, J. L., Dahl, E., Thomassen, R. F., Sweeney, T., and Ropstad, E. (2008). Valproate affects reproductive endocrine function, testis diameter and some semen variables in non-epileptic adolescent goat bucks. Theriogenology 70, 15–26.
Valproate affects reproductive endocrine function, testis diameter and some semen variables in non-epileptic adolescent goat bucks.CrossRef | 1:CAS:528:DC%2BD1cXmvVymurw%3D&md5=b417e6c0a53a9a1333ae95a18db71ce5CAS | 18394693PubMed | open url image1

Kutlu, Ö., Cansu, A., Karagüzel, E., Gürgen, S. G., Koç, Ö., Gür, M., and Özgür, G. K. (2012). Effect of valproic acid treatment on penile structure in prepubertal rats. Epilepsy Res. 99, 306–311.
Effect of valproic acid treatment on penile structure in prepubertal rats.CrossRef | 1:CAS:528:DC%2BC38XmtlKgsrw%3D&md5=dba120fc70627a6b1ffb22a1c0103118CAS | 22281060PubMed | open url image1

Landreh, L., Stukenborg, J. B., Söder, O., and Svechnikov, K. (2013). Phenotype and steroidogenic potential of PDGFRα-positive rat neonatal peritubular cells. Mol. Cell. Endocrinol. 372, 96–104.
Phenotype and steroidogenic potential of PDGFRα-positive rat neonatal peritubular cells.CrossRef | 1:CAS:528:DC%2BC3sXmvF2ltL0%3D&md5=0f9833ccc6d5049788bbae8a9ab28715CAS | 23545158PubMed | open url image1

Mannaerts, I., Nuytten, N. R., Rogiers, V., Vanderkerken, K., van Grunsven, L. A., and Geerts, A. (2010). Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology 51, 603–614.
Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo.CrossRef | 1:CAS:528:DC%2BC3cXisVGnsr4%3D&md5=19f192fe6904dc11676f7ac143351e6dCAS | 19957378PubMed | open url image1

Nishimura, T., Sakai, M., and Yonezawa, H. (2000). Effects of valproic acid on fertility and reproductive organs in male rats. J. Toxicol. Sci. 25, 85–93.
Effects of valproic acid on fertility and reproductive organs in male rats.CrossRef | 1:CAS:528:DC%2BD3cXlsVGqs7w%3D&md5=b62d8afc7a0ffc33424136e13ae11b7bCAS | 10845186PubMed | open url image1

Qi, L., Liu, Z., Wang, J., Cui, Y., Guo, Y., Zhou, T., Zhou, Z., Guo, X., Xue, Y., and Sha, J. (2014). Systematic analysis of the phosphoteome and kinase-substrate networks in the mouse testis. Mol. Cell. Proteomics 13, 3626–3638.
Systematic analysis of the phosphoteome and kinase-substrate networks in the mouse testis.CrossRef | 1:CAS:528:DC%2BC2cXhvF2rtrzI&md5=4de8f59139d1958b05d1f49bbf1b55ebCAS | 25293948PubMed | open url image1

Romarowski, A., Battistone, M. A., La Spina, F. A., Puga Molina Ldel, C., Luque, G. M., Vitale, A. M., Cuasnicu, P. S., Visconti, P. E., Krapf, D., and Buffone, M. G. (2015). PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev. Biol. 405, 237–249.
PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis.CrossRef | 1:CAS:528:DC%2BC2MXhtFOksrnL&md5=afdcbb0ad70b0862f09716ad55bcd9e1CAS | 26169470PubMed | open url image1

Rosenberg, G. (2007). The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees? Cell. Mol. Life Sci. 64, 2090–2103.
The mechanisms of action of valproate in neuropsychiatric disorders: can we see the forest for the trees?CrossRef | 1:CAS:528:DC%2BD2sXhtVaisb7F&md5=925265a62cc61174c459863df9f62d62CAS | 17514356PubMed | open url image1

Røste, L. S., Taubøll, E., Mørkrid, L., Bjørnenak, T., Saetre, E. R., Mørland, T., and Gjerstad, L. (2005). Antiepileptic drugs alter reproductive endocrine hormones in men with epilepsy. Eur. J. Neurol. 12, 118–124.
Antiepileptic drugs alter reproductive endocrine hormones in men with epilepsy.CrossRef | 15679699PubMed | open url image1

Sakr, S., Zowail, M. E., and Marzouk, A. M. (2014). Effect of saffron (Crocus sativus L.) on sodium valproate induced cytogenetic and testicular alterations in albino rats. Anat. Cell Biol. 47, 171–179.
Effect of saffron (Crocus sativus L.) on sodium valproate induced cytogenetic and testicular alterations in albino rats.CrossRef | 25276476PubMed | open url image1

Steger, K., Aleithe, I., Behre, H., and Bergmann, M. (1998). The proliferation of spermatogonia in normal and pathological human seminiferous epithelium: an immunohistochemical study using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen. Mol. Hum. Reprod. 4, 227–233.
The proliferation of spermatogonia in normal and pathological human seminiferous epithelium: an immunohistochemical study using monoclonal antibodies against Ki-67 protein and proliferating cell nuclear antigen.CrossRef | 1:CAS:528:DyaK1cXivFSkt7s%3D&md5=5b0211aaa8deb4280743a7051bbe895fCAS | 9570268PubMed | open url image1

Stocco, D. M., and Clark, B. J. (1996). Regulation of the acute production of steroids in steroidogenic cells. Endocr. Rev. 17, 221–244.
Regulation of the acute production of steroids in steroidogenic cells.CrossRef | 1:CAS:528:DyaK28XktlalsbY%3D&md5=51524cc2655df4e4d638612f41767a91CAS | 8771357PubMed | open url image1

Stocco, D. M., and McPhaul, M. J. (2006). ‘Knobil and Neill’s Physiology of Reproduction.’ 3rd edn. (Elsevier.)

Sveberg Røste, L. S., Taubøll, E., Berner, A., Berg, K. A., Aleksandersen, M., and Gjerstad, L. (2001). Morphological changes in the testis after long-term valproate treatment in male Wistar rats. Seizure 10, 559–565.
Morphological changes in the testis after long-term valproate treatment in male Wistar rats.CrossRef | open url image1

Taubøll, E., Røste, L. S., Svalheim, S., and Gjerstad, L. (2008). Disorders of reproduction in epilepsy: what can we learn from animal studies. Seizure 17, 120–126.
Disorders of reproduction in epilepsy: what can we learn from animal studies.CrossRef | 18155932PubMed | open url image1

Vijay, P., Yeshwanth, R., and Bairy, K. L. (2008). The effect of sodium valproate on the biochemical parameters of reproductive function in male albino Wistar rats. Indian J. Pharmacol. 40, 248–250.
The effect of sodium valproate on the biochemical parameters of reproductive function in male albino Wistar rats.CrossRef | 1:CAS:528:DC%2BD1MXjsVertbs%3D&md5=12fb92e9288911ddc41902f4af124108CAS | 21279179PubMed | open url image1

Walker, R. M., Smith, G. S., Barsoum, N. J., and Macallum, G. E. (1990). Preclinical toxicology of the anticonvulsant calcium valproate. Toxicology 63, 137–155.
Preclinical toxicology of the anticonvulsant calcium valproate.CrossRef | 1:CAS:528:DyaK3cXmt1Cnurc%3D&md5=43ab4d192ac4ed756841c214f00ad124CAS | 2119078PubMed | open url image1

Wang, Y. C., Peterson, S. E., and Loring, J. F. (2014). Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res. 24, 143–160.
Protein post-translational modifications and regulation of pluripotency in human stem cells.CrossRef | 24217768PubMed | open url image1



Export Citation