Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Sperm antioxidant defences decrease during epididymal transit from caput to cauda in parallel with increases in epididymal fluid in the goat (Capra hircus)

Mashidur Rana A , Sudhir C. Roy A B and Bannur C. Divyashree A
+ Author Affiliations
- Author Affiliations

A Molecular Biology Laboratory, Indian Council of Agricultural Research (ICAR) – National Institute of Animal Nutrition and Physiology, Hosur Road, Adugodi, Bangalore 560 030, Karnataka, India.

B Corresponding author. Email: scroy67@gmail.com

Reproduction, Fertility and Development 29(9) 1708-1719 https://doi.org/10.1071/RD16269
Submitted: 20 September 2015  Accepted: 23 August 2016   Published: 28 September 2016

Abstract

The status of antioxidant defences of both spermatozoa and their associated fluids during epididymal transit from the caput to cauda have not been studied so far in any species. Herein we report for the first time that sperm antioxidant defences, namely Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and catalase activity, decrease significantly (P < 0.05) from the caput to cauda during epididymal transit in parallel with increases in Cu,Zn-SOD, total SOD and total glutathione peroxidase (GPx) activity in the luminal fluid of the respective segments. However, levels of GPX1 and GPX3 in epididymal fluid did not change significantly from the caput to cauda. Catalase was detected for the first time in goat spermatozoa. A significantly higher total antioxidant capacity of caudal fluid than of the caput suggests a requirement for a rich antioxidant environment for the storage of spermatozoa. The retention of cytoplasmic droplets in most of the caudal spermatozoa confirmed that these droplets do not contribute to the increased antioxidant defences of cauda epididymidal fluid. Thus, the antioxidant defences of the spermatozoa and their associated epididymal fluid are modulated from the caput to cauda in a region-specific manner. This may be one of the compensatory mechanisms of epididymal fluid to scavenge any excess reactive oxygen species produced in the microenvironment of spermatozoa.

Additional keywords: catalase, Cu,Zn-superoxide dismutase, glutathione peroxidase, total antioxidant capacity.


References

Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121–126.
Catalase in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltVKis7s%3D&md5=e396777b354673b31a355523e594d814CAS | 6727660PubMed |

Alvarez, J. G., and Storey, B. T. (1989). Role of glutathione peroxidase in protecting mammalian spermatozoa from the loss of motility caused by spontaneous lipid peroxidation. Gamete Res. 23, 77–90.
Role of glutathione peroxidase in protecting mammalian spermatozoa from the loss of motility caused by spontaneous lipid peroxidation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXksFCrt74%3D&md5=af762cdaf86b123da120c1f74dfb14afCAS | 2545584PubMed |

Bilodeau, J. F., Chatterjee, S., Sirard, M. A., and Gagnon, C. (2000). Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing. Mol. Reprod. Dev. 55, 282–288.
Levels of antioxidant defenses are decreased in bovine spermatozoa after a cycle of freezing and thawing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtFeltr8%3D&md5=5cd22fb77220ebe9d227ee1ec2f0a59eCAS | 10657047PubMed |

Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=def289bee4247ee0e8f8ebf79062a762CAS | 942051PubMed |

Bustamante-Filho, I. C., Rosa, A. P., Van der Linden, L. S., Pederzolli, C. D., Neves, A. P., Dutra-Filho, C. S., Jobim, M. I. M., and Mattos, R. C. (2014). Enzymatic scavengers in the epididymal fluid: comparison between pony and miniature breed stallions. Anim. Reprod. Sci. 151, 164–168.
Enzymatic scavengers in the epididymal fluid: comparison between pony and miniature breed stallions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvFSmsr3E&md5=55e4cdf52c1681b9e0330778a9e0c053CAS | 25459078PubMed |

Chabory, E., Damon, C., Lenoir, A., Kauselmann, G., Kern, H., Zevnik, B., Garrel, C., Saez, F., Cadet, R., and Henry-Berger, J. (2009). Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J. Clin. Invest. 119, 2074–2085.
| 1:CAS:528:DC%2BD1MXosVCrs7k%3D&md5=7bd0329218478dd87275e098d1e40a2cCAS | 19546506PubMed |

Chabory, E., Damon, C., Lenoir, A., Henry-Berger, J., Vernet, P., Cadet, R., and Drevet, J. R. (2010). Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity. J. Anim. Sci. 88, 1321–1331.
Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXksVCgu7g%3D&md5=529eb2c811e888768b63264f20a4bb96CAS | 20042549PubMed |

Cooper, T. G. (2011). The epididymis, cytoplasmic droplets and male fertility. Asian J. Androl. 13, 130–138.
The epididymis, cytoplasmic droplets and male fertility.Crossref | GoogleScholarGoogle Scholar | 21076437PubMed |

Dacheux, J. L., and Dacheux, F. (2014). New insights into epididymal function in relation to sperm maturation. Reproduction 147, R27–R42.
New insights into epididymal function in relation to sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFartro%3D&md5=352f4c07673e0a0ae30f979fec4f1b12CAS | 24218627PubMed |

de Lamirande, E., Jiang, H., Zini, A., Kodama, H., and Gagnon, C. (1997). Reactive oxygen species and sperm physiology. Rev. Reprod. 2, 48–54.
Reactive oxygen species and sperm physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhs1Kmsrk%3D&md5=1df874979edd42f7f3e98863dfd86c05CAS | 9414465PubMed |

Haidl, G., and Opper, C. (1997). Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation. Hum. Reprod. 12, 2720–2723.
Changes in lipids and membrane anisotropy in human spermatozoa during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVOhtg%3D%3D&md5=0f6ae1668737012a1cacc5615868c722CAS | 9455842PubMed |

Halliwell, B., and Gutteridge, J. M. C. (2007). ‘Free Radical in Biology and Medicine.’ 4th edn. (Oxford University Press: Oxford.)

Holland, M. K., Alvarez, J. G., and Storey, B. T. (1982). Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa. Biol. Reprod. 27, 1109–1118.
Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXjtF2qug%3D%3D&md5=eea66515dc1b92976ca4b73cdefb1786CAS | 6297628PubMed |

Jervis, K. M., and Robaire, B. (2001). Dynamic changes in gene expression along the rat epididymis. Biol. Reprod. 65, 696–703.
Dynamic changes in gene expression along the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtFemsr4%3D&md5=b2d439a1a73d9a6a9cda31bb676defd6CAS | 11514330PubMed |

Jeulin, C., Soufir, J. C., Weber, P., Laval-Martin, D., and Calvayrac, R. (1989). Catalase activity in human spermatozoa and seminal plasma. Gamete Res. 24, 185–196.
Catalase activity in human spermatozoa and seminal plasma.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvFWqu7g%3D&md5=d24ac5ef6ef6dcc36c0dc80740a1f501CAS | 2793057PubMed |

Kar, S., Divyashree, B. C., and Roy, S. C. (2015). Temporal leakage of Cu,Zn superoxide dismutase and loss of two low-molecular-weight forms of glutathione peroxidase-1 from buffalo (Bubalus bubalis) sperm after freezing and thawing. Theriogenology 83, 512–519.e2.
Temporal leakage of Cu,Zn superoxide dismutase and loss of two low-molecular-weight forms of glutathione peroxidase-1 from buffalo (Bubalus bubalis) sperm after freezing and thawing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVOku7%2FL&md5=d429dd9341780c658824e2fcd61380d5CAS | 25459023PubMed |

Kato, S., Shibukawa, T., Harayama, H., and Kannan, Y. (1996). Timing of shedding and disintergration of cytoplasmic droplets from boar and goat spermatozoa. J. Reprod. Dev. 42, 237–241.
Timing of shedding and disintergration of cytoplasmic droplets from boar and goat spermatozoa.Crossref | GoogleScholarGoogle Scholar |

Koziorowska-Gilun, M., Gilun, P., Fraser, L., Koziorowska, M., Kordan, W., and Stefanczyk-Krzymowska, S. (2013). Antioxidant enzyme activity and mRNA expression in reproductive tract of male European bison (Bison bonasus, Linnaeus 1758). Reprod. Domest. Anim. 48, 7–14.
Antioxidant enzyme activity and mRNA expression in reproductive tract of male European bison (Bison bonasus, Linnaeus 1758).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktVOhsbo%3D&md5=e760a00372f5622c113b1f23bc3e4431CAS | 22458932PubMed |

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlsFags7s%3D&md5=eaef889ef44ef5add96fde2f9929889fCAS | 5432063PubMed |

Lawrence, R. A., and Burk, R. F. (1976). Glutathione peroxidise activity in selenium-deficient rat liver. Biochem. Biophys. Res. Commun. 71, 952–958.
Glutathione peroxidise activity in selenium-deficient rat liver.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XlsVWls7s%3D&md5=fed6c0586a84067fe559c6d3af896d89CAS | 971321PubMed |

Marti, E., Marti, J. I., Muino-Blanco, T., and Cebrian Parez, J. A. (2008). Effect of cryopreservation process on the activity and immunolocalisation of antioxidant enzymes in ram spermatozoa. J. Androl. 29, 459–467.
Effect of cryopreservation process on the activity and immunolocalisation of antioxidant enzymes in ram spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosVCru7s%3D&md5=af61598bea8991728fd80009828c10e0CAS | 18296478PubMed |

McCord, J. M., and Fridovich, I. (1969). Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055.
| 1:CAS:528:DyaE3cXmsVU%3D&md5=6ce9845c1da5c8dc95d6c1addff0e8caCAS | 5389100PubMed |

Nivasarkar, A. E., Kunzru, O. N., and Dwarakanath, P. K. (1971). Catalases in ram’s semen. Indian J. Exp. Biol. 9, 266–267.
| 1:CAS:528:DyaE3MXkvVKjtr4%3D&md5=555c194adb3044587fef276d5c68ef00CAS | 5092748PubMed |

Noblanc, A., Kocer, A., Chabory, E., Vernet, P., Saez, F., Cadet, R., Conrad, M., and Drevet, J. R. (2011). Glutathione peroxidases at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability. J. Androl. 32, 641–650.
Glutathione peroxidases at work on epididymal spermatozoa: an example of the dual effect of reactive oxygen species on mammalian male fertilizing ability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCru73P&md5=2724939f6f7bdd974b0f77424ec9e2caCAS | 21441427PubMed |

Otter, T., King, S. M., and Witman, G. B. (1987). A two step procedure for efficient electrotransfer of both high-molecular-weight (greater than 400,000) and low-molecular-weight (less than 20,000) proteins. Anal. Biochem. 162, 370–377.
A two step procedure for efficient electrotransfer of both high-molecular-weight (greater than 400,000) and low-molecular-weight (less than 20,000) proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitFSgu7o%3D&md5=51ce8bc3f88b17c72bb81b49052ab6d9CAS | 2440344PubMed |

Paglia, D. E., and Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of eryhthrocyte glutathione peroxidise. J. Lab. Clin. Med. 70, 158–169.
| 1:CAS:528:DyaF2sXks1Wjur8%3D&md5=e9a21e976d763becb560e3e5b1aed0b4CAS | 6066618PubMed |

Park, K., Jeon, S., Song, Y. J., and Yi, L. S. H. (2012). Proteomic analysis of boar spermatozoa and quantity changes of superoxide dismutase 1, glutathione peroxidase and peroxiredoxin 5 during epididymal maturation. Anim. Reprod. Sci. 135, 53–61.
Proteomic analysis of boar spermatozoa and quantity changes of superoxide dismutase 1, glutathione peroxidase and peroxiredoxin 5 during epididymal maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlGqu7rJ&md5=99c705d0448656379845fdfdeef6912fCAS | 22981846PubMed |

Pukazhenthi, B., Comizzoli, P., Travis, A. J., and Wildt, D. E. (2006). Applications of emerging technologies to the study and conservation of threatened and endangered species. Reprod. Fertil. Dev. 18, 77–90.
Applications of emerging technologies to the study and conservation of threatened and endangered species.Crossref | GoogleScholarGoogle Scholar | 16478605PubMed |

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237.
Antioxidant activity applying an improved ABTS radical cation decolorization assay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvVakt7o%3D&md5=527f3fe94abc21f4e25c1038df8a283fCAS | 10381194PubMed |

Salinovich, O., and Monteralo, R. C. (1986). Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate–polyacrylamide gel electrophoresis. Anal. Biochem. 156, 341–347.
Reversible staining and peptide mapping of proteins transferred to nitrocellulose after separation by sodium dodecylsulfate–polyacrylamide gel electrophoresis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XlsV2isLY%3D&md5=ee359903561d0450c8edca4db2356a0eCAS | 2429581PubMed |

Schwaab, V., Faure, J., Dufaure, J. P., and Drevet, J. R. (1998). GPX3: The plasma-type glutathione peroxidase is expressed under androgenic control in the mouse epididymis and vas deferens. Mol. Reprod. Dev. 51, 362–372.
GPX3: The plasma-type glutathione peroxidase is expressed under androgenic control in the mouse epididymis and vas deferens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXnt1Ortr4%3D&md5=81a3f909bcbd15d80c6bf77035d45ac7CAS | 9820194PubMed |

Seligman, J., Newton, G. L., Fahey, R. C., Shalgi, R., and Kowower, N. S. (2005). Nonprotein thiols and disulfides in rat epididymal spermatozoa and epididymal fluid: role of gamma-glutamyl-transpeptidase in sperm maturation. J. Androl. 26, 629–637.
Nonprotein thiols and disulfides in rat epididymal spermatozoa and epididymal fluid: role of gamma-glutamyl-transpeptidase in sperm maturation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWqs7%2FN&md5=c80c1c7d5f048e67a0cdea4428799e94CAS | 16088041PubMed |

Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Oslon, B. J., and Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.
Measurement of protein using bicinchoninic acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXlsFKksL0%3D&md5=b30de8d009c79b9dca5e51efbcdadc2dCAS | 3843705PubMed |

Sullivan, R., and Saez, F. (2013). Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology. Reproduction 146, R21–R35.
Epididymosomes, prostasomes, and liposomes: their roles in mammalian male reproductive physiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFejsLbN&md5=a4ec463317ddb77dc62f54a374c775a2CAS | 23613619PubMed |

Tramer, F., Rocco, F., Micali, F., Sandri, G., and Panifi, E. (1998). Antioxidant systems in rat epididymal spermatozoa. Biol. Reprod. 59, 753–758.
Antioxidant systems in rat epididymal spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmsVGrsL8%3D&md5=a9fe5b2fc2a9d0efdd670c8cbae657d1CAS | 9746722PubMed |

Vernet, P., Aitken, R. J., and Drevet, J. R. (2004). Antioxidant strategies in the epididymis. Mol. Cell. Endocrinol. 216, 31–39.
Antioxidant strategies in the epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVens78%3D&md5=f1d22296306d33d870003e15677d4a79CAS | 15109742PubMed |

Zanich, A., Pascall, J. C., and Jones, R. (2003). Secreted epididymal glycoprotein 2D6 that binds to the sperm’s plasma membrane is a member of the β-defensin superfamily of pore-forming glycopeptides. Biol. Reprod. 69, 1831–1842.
Secreted epididymal glycoprotein 2D6 that binds to the sperm’s plasma membrane is a member of the β-defensin superfamily of pore-forming glycopeptides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVCnsrc%3D&md5=a5c98e3d114c9ef2822d52078442bb89CAS | 12890730PubMed |

Zini, A., and Schlegel, P. N. (1997). Identification and characterization of antioxidant enzyme mRNAs in the rat epididymis. Int. J. Androl. 20, 86–91.
Identification and characterization of antioxidant enzyme mRNAs in the rat epididymis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXlvFaqtLs%3D&md5=7842a0705452420c4d75f7bc784a53e1CAS | 9292318PubMed |

Zini, A., de Lamirande, E., and Gagnon, C. (1993). Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatrozoa. Int. J. Androl. 16, 183–188.
Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatrozoa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhtVequ7k%3D&md5=aed4e6a0770e0747e642826ad6b5b325CAS | 8359932PubMed |