Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Epigenetic changes of hepatic glucocorticoid receptor in sheep male offspring undernourished in utero

Stella Chadio A E , Basiliki Kotsampasi B , Stylliani Taka C , Emmanouil Liandris A , Nikolaos Papadopoulos C D and Elias Plakokefalos A
+ Author Affiliations
- Author Affiliations

A Department of Anatomy and Physiology of Farm Animals, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, 75 Iera Odos, PO Box 11855, Athens, Greece.

B Research Institute of Animal Science, Directorate General of Agricultural Research, Hellenic Agricultural Organisation ‘DEMETER’, Paralimni, PO Box 58100, Giannitsa, Greece.

C Allergy Department, Second Paediatric Clinic, University of Athens, 41 Fidippidou, PO Box 11527, Athens, Greece.

D Centre for Paediatrics and Child Health, Institute of Human Development, University of Manchester, Royal Manchester Children’s Hospital, Manchester, M13 9WL, UK.

E Corresponding author. Email: shad@aua.gr

Reproduction, Fertility and Development 29(10) 1995-2004 https://doi.org/10.1071/RD16276
Submitted: 13 July 2016  Accepted: 1 December 2016   Published: 12 January 2017

Abstract

The aim of this study was to characterise the effects of maternal undernutrition during gestation on hepatic gluconeogenic enzyme gene expression and to determine whether such effects are mediated through epigenetic changes in the glucocorticoid receptor (GR). Pregnant ewes were fed a 50% nutrient-restricted diet from Day 0 to 30 (R1) or from Day 31 to 100 of gestation (R2) or a 100% diet throughout gestation (Control). After parturition lambs were fed to appetite. At 10 months of age offspring were euthanised and livers were removed. Maternal undernutrition did not affect offspring bodyweight at birth or at 10 months of age. However, liver weight of males of the R2 group was lower (P < 0.05) in relation to other groups. A significant (P < 0.05) hypomethylation of the hepatic GR promoter was revealed in males of the R2 group and a tendency towards the same in the R1 group, along with increased (P < 0.001) GR gene expression in both restricted groups. A significant increase (P < 0.05) in hepatic phosphoenolpyruvate carboxykinase (PEPCK) gene expression was found in male lambs of both undernourished groups, accompanied by increased (P < 0.01) protein levels, while no differences were detected for glucose-6-phosphatase (G6Pase) mRNA abundance and protein levels. In female lambs, no differences between groups were observed for any parameter studied. These data represent potential mechanisms by which insults in early life may lead to persistent physiological changes in the offspring.

Additional keywords: gluconeogenic genes, lamb, maternal undernutrition, methylation.


References

Bamberger, C. M., Schulte, H. M., and Chrousos, G. P. (1996). Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr. Rev. 17, 245–261.
Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids.CrossRef | 1:CAS:528:DyaK28Xktlalsbc%3D&md5=1e33899ef46993e816667a96d27cad73CAS |

Barker, D. J. P. (2007). The origins of the developmental origins theory. J. Intern. Med. 261, 412–417.
The origins of the developmental origins theory.CrossRef | 1:STN:280:DC%2BD2s3js1CqsA%3D%3D&md5=456e956a6317e1a8f93e5d03f2a19aafCAS |

Bermejo-Alvarez, P., Rizos, D., Lonergan, P., and Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction 141, 563–570.
Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease.CrossRef | 1:CAS:528:DC%2BC3MXmvFCju7Y%3D&md5=9057ec120bc71c8ede2e975588a7cfc3CAS |

Bispham, J., Gopalakrishnan, G. S., Dandrea, J., Wilson, V., Budge, H., Keisler, D. H., Broughton Pipkin, F., Stephenson, T., and Symonds, M. E. (2003). Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development. Endocrinology 144, 3575–3585.
Maternal endocrine adaptation throughout pregnancy to nutritional manipulation: consequences for maternal plasma leptin and cortisol and the programming of fetal adipose tissue development.CrossRef | 1:CAS:528:DC%2BD3sXlslGjt7g%3D&md5=4fdfb39053549ab3e95dabfed9f61ad7CAS |

Bradford, M. M. (1976). A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
| 1:CAS:528:DyaE28XksVehtrY%3D&md5=d166069944bf0e551b4658d7addafd30CAS |

Burdge, G. C., Slater-Jefferies, J., Torrens, C., Phillips, E. S., Hanson, M. A., and Lillycrop, K. A. (2007). Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br. J. Nutr. 97, 435–439.
Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations.CrossRef | 1:CAS:528:DC%2BD2sXjvVSitbY%3D&md5=4ef8ede1dc85ec4211c64055c313305fCAS |

Cassuto, H., Kochan, K., Chakravarty, K., Cohen, H., Blum, B., Olswang, Y., Hakimi, P., Xu, C., Massilon, D., Hanson, R. W., and Reshef, L. (2005). Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit. J. Biol. Chem. 280, 33873–33884.
Glucocorticoids regulate transcription of the gene for phosphoenolpyruvate carboxykinase in the liver via an extended glucocorticoid regulatory unit.CrossRef | 1:CAS:528:DC%2BD2MXhtVKisbnM&md5=c2ea3aa4006ec6cbd1b83e37ed53c68cCAS |

Chadio, S. E., Kotsampasi, B., Papadomichelakis, G., Deligeorgis, S., Kalogiannis, D., Menegatos, I., and Zervas, G. (2007). Impact of maternal undernutrition on the hypothalamic–pituitary–adrenal axis responsiveness in sheep at different ages postnatal. J. Endocrinol. 192, 495–503.
Impact of maternal undernutrition on the hypothalamic–pituitary–adrenal axis responsiveness in sheep at different ages postnatal.CrossRef | 1:CAS:528:DC%2BD2sXktFGmsLo%3D&md5=5a4c4cd5541bc102e15dd013f4c06ad3CAS |

Costello, P. M., Hollis, L. J., Cripps, R. L., Bearpark, N., Patel, H. P., Sayer, A. A., Cooper, C., Hanson, M. A., Ozanne, S. E., and Green, L. R. (2013). Lower maternal body condition during pregnancy affects skeletal muscle structure and Glut-4 protein levels but not glucose tolerance in mature adult sheep. Reprod. Sci. 20, 1144–1155.
Lower maternal body condition during pregnancy affects skeletal muscle structure and Glut-4 protein levels but not glucose tolerance in mature adult sheep.CrossRef | 1:CAS:528:DC%2BC2cXhslWgtLzN&md5=7aa6889d117e62056d9c817ddef848a5CAS |

DeFronzo, R. A. (1992). Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview. Diabetologia 35, 389–397.
Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview.CrossRef | 1:CAS:528:DyaK38XkvVOltb4%3D&md5=ae3e8f136933f0dff307963d16b991a1CAS |

Desai, M., Byrne, C. D., Zhang, J., Petry, C. J., Lucas, A., and Hales, C. N. (1997). Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein restricted diet. Am. J. Physiol. 272, G1083–G1090.
| 1:CAS:528:DyaK2sXjsFCqtrc%3D&md5=3b6a2ed9c4c92fdb2ea70ee9db8da73bCAS |

Ding, E. L., Song, Y., Malik, V. S., and Liu, S. (2006). Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta analysis. JAMA 295, 1288–1299.
Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta analysis.CrossRef | 1:CAS:528:DC%2BD28Xis1ShsLs%3D&md5=fe82faa2bf823bc55fd6ee35e069da30CAS |

Drake, A. J., Walker, B. R., and Seck, J. R. (2005). Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R34–R38.
Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats.CrossRef | 1:CAS:528:DC%2BD2MXhtVCqtbY%3D&md5=996036a023590044aacd5d51ed8b9a71CAS |

Ford, S. P., Hess, B. W., Schwope, M. M., Nijland, M. J., Gilbert, J. S., Vonnahme, K. A., Means, W. J., Han, H., and Nathanielsz, P. W. (2007). Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. J. Anim. Sci. 85, 1285–1294.
Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring.CrossRef | 1:CAS:528:DC%2BD2sXksF2hur8%3D&md5=eb8fbde0265987bd64117d80e9cd31d1CAS |

Gabory, A., Attig, L., and Junien, C. (2009). Sexual dimorphism in environmental epigenetic programming. Mol. Cell. Endocrinol. 304, 8–18.
Sexual dimorphism in environmental epigenetic programming.CrossRef | 1:CAS:528:DC%2BD1MXls1ylsLY%3D&md5=12e9b6bac3e14775163e5babe6e2eacaCAS |

Gardner, D. S., Tingey, K., Van Bon, B. W., Ozanne, S. E., Wilson, V., Dandrea, J., Keisler, D. H., Stephenson, T., and Symonds, M. E. (2005). Programming of glucose–insulin metabolism in adult sheep after maternal undernutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R947–R954.
Programming of glucose–insulin metabolism in adult sheep after maternal undernutrition.CrossRef | 1:CAS:528:DC%2BD2MXhtFensb7I&md5=c63191ef36721956954ac37bad0cce16CAS |

George, L. A., Zhang, L., Tuersunjiang, N., Ma, Y., Long, N. M., Uthlaut, A. B., Smith, D. T., Nathanielsz, P. W., and Ford, S. P. (2012). Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R795–R804.
Early maternal undernutrition programs increased feed intake, altered glucose metabolism and insulin secretion, and liver function in aged female offspring.CrossRef | 1:CAS:528:DC%2BC38XmvFSjsL8%3D&md5=e95690f28ea6f4be4a093799d2c79790CAS |

Hales, C. N., and Barker, D. J. P. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35, 595–601.
Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis.CrossRef | 1:STN:280:DyaK38zlsVyhuw%3D%3D&md5=5c6b05b7ece12c8f38e7307b30f38b13CAS |

Harris, A., and Seckl, J. (2011). Glucocorticoids, prenatal stress and the programming of disease. Horm. Behav. 59, 279–289.
Glucocorticoids, prenatal stress and the programming of disease.CrossRef | 1:CAS:528:DC%2BC3MXjs1WisLw%3D&md5=2f52f85344fcfa8dd7aa55589dc34d01CAS |

Hyatt, M. A., Gopalakrishnan, G. S., Bispham, J., Gentili, S., McMillen, I. C., Rhind, S. M., Rae, M. T., Kyle, C. E., Brooks, A. N., Jones, C., Budge, H., Walker, D., Stephenson, T., and Symonds, M. E. (2007). Maternal nutrient restriction in early pregnancy programs hepatic mRNA expression of growth-related genes and liver size in adult male sheep. J. Endocrinol. 192, 87–97.
Maternal nutrient restriction in early pregnancy programs hepatic mRNA expression of growth-related genes and liver size in adult male sheep.CrossRef | 1:CAS:528:DC%2BD2sXktlKqtb4%3D&md5=9365abc12f373aa52f0e348927dd5834CAS |

Hyatt, M. A., Budge, H., and Symonds, M. E. (2008). Early developmental influences on hepatic organogenesis. Organogenesis 4, 170–175.
Early developmental influences on hepatic organogenesis.CrossRef |

Jia, Y., Cong, R., Li, R., Yang, X., Sun, Q., Parvizi, N., and Zhao, R. (2012). Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. J. Nutr. 142, 1659–1665.
Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver.CrossRef | 1:CAS:528:DC%2BC38XhtlWnsLbE&md5=f96560344c2d5762b9ca04cb9043cd60CAS |

Klein-Hitpass, L., Schwerk, C., Kahmann, S., and Vassen, L. J. (1998). Targets of activated steroid hormone receptors: basal transcription factors and receptor interacting proteins. J. Mol. Med. 76, 490–496.
Targets of activated steroid hormone receptors: basal transcription factors and receptor interacting proteins.CrossRef | 1:CAS:528:DyaK1cXksVSktL0%3D&md5=ca58af136023797dfac5548aac7deb88CAS |

Kotsampasi, B., Balaskas, C., Papadomichelakis, G., and Chadio, S. E. (2009a). Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in uterο. Anim. Reprod. Sci. 114, 135–147.
Reduced Sertoli cell number and altered pituitary responsiveness in male lambs undernourished in uterο.CrossRef | 1:CAS:528:DC%2BD1MXms1yqu7c%3D&md5=de3622544aa6b3e3b1bbcf7e009f1fe7CAS |

Kotsampasi, B., Chadio, S. E., Papadomichelakis, G., Deligeorgis, S., Kalogiannis, D., Menegatos, I., and Zervas, G. (2009b). Effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis function in female sheep offspring. Reprod. Domest. Anim. 44, 677–684.
Effects of maternal undernutrition on the hypothalamic–pituitary–gonadal axis function in female sheep offspring.CrossRef | 1:CAS:528:DC%2BD1MXhtVaiurbM&md5=17a9bdf3ce462472425901d3f75f33e9CAS |

Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A., and Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J. Nutr. 135, 1382–1386.
| 1:CAS:528:DC%2BD2MXltFaiu7Y%3D&md5=b933122da9805b66c189d0a97ca5f1ecCAS |

Lillycrop, K. A., Slater-Jefferies, J. L., Hanson, M. A., Godfrey, K. M., Jackson, A. A., and Burdge, G. C. (2007). Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br. J. Nutr. 97, 1064–1073.
Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications.CrossRef | 1:CAS:528:DC%2BD2sXnt1Gisrs%3D&md5=f1be5a8726f0279c995afc58ff34c1a9CAS |

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(–delta delta C(T)) method. Methods 25, 402–408.
Analysis of relative gene expression data using real-time quantitative PCR and the 2(–delta delta C(T)) method.CrossRef | 1:CAS:528:DC%2BD38XhtFelt7s%3D&md5=27001fc4d390214adec9d2e6245c9fd6CAS |

McCurdy, C. E., and Friedman, J. E. (2006). Early foetal programming of hepatic gluconeogenesis: glucocorticoids strike back. Diabetologia 49, 1138–1141.
Early foetal programming of hepatic gluconeogenesis: glucocorticoids strike back.CrossRef | 1:STN:280:DC%2BD283ltlagtQ%3D%3D&md5=b59e441d1ff62d0c2d218751046d50d0CAS |

McMillen, I. C., and Robinson, J. S. (2005). Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol. Rev. 85, 571–633.
Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.CrossRef | 1:CAS:528:DC%2BD2MXjt12lsLw%3D&md5=5055c371085737e166335faf9a33ad88CAS |

Moss, T. J. M., Sloboda, D. M., Gurrin, L. C., Harding, R., Challis, J. R. G., and Newnham, J. P. (2001). Programming effects in sheep of prenatal growth restriction and glucocorticoid exposure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R960–R970.
| 1:CAS:528:DC%2BD3MXmvFWju7w%3D&md5=7ed834d20c707dba3069ac7c4f90a0f7CAS |

National Research Council (NRC) (1985). ‘Nutrient Requirements of Sheep’. (National Academy Press: Washington, DC.)

Nijland, M. J., Mitsuya, K., Li, C., Ford, S., McDonald, T. J., Nathanielsz, P. W., and Cox, L. A. (2010). Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J. Physiol. 588, 1349–1359.
Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability.CrossRef | 1:CAS:528:DC%2BC3cXlt1KgsLg%3D&md5=f5ffc4dad7634da9d6630fde219bd8f2CAS |

Nyirenda, M. J., Lindsay, R. S., Kenyon, C. J., Burchell, A., and Seckl, J. R. (1998). Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J. Clin. Invest. 101, 2174–2181.
Glucocorticoid exposure in late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring.CrossRef | 1:CAS:528:DyaK1cXjt1CgtL0%3D&md5=582104e50c487d12a824740b36d0eb15CAS |

Oliver, M. H., Hawkins, P., and Harding, J. E. (2005). Periconceptional undernutrition alters growth trajectory and metabolic and endocrine responses to fasting in late-gestation fetal sheep. Pediatr. Res. 57, 591–598.
Periconceptional undernutrition alters growth trajectory and metabolic and endocrine responses to fasting in late-gestation fetal sheep.CrossRef |

Opherk, C., Tronche, F., Kellendonk, C., Kohlmuller, D., Schulze, A., Schimid, W., and Schitz, G. (2004). Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus. Mol. Endocrinol. 18, 1346–1353.
Inactivation of the glucocorticoid receptor in hepatocytes leads to fasting hypoglycemia and ameliorates hyperglycemia in streptozotocin-induced diabetes mellitus.CrossRef | 1:CAS:528:DC%2BD2cXksl2ju7o%3D&md5=106df6ddcb4bdcf5725e7832039630b0CAS |

Owens, J. A., Thavaneswaran, P., De Blasio, M. J., McMillen, I. C., Robinson, J. S., and Gatford, K. L. (2007). Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep. Am. J. Physiol. Endocrinol. Metab. 292, E1879–E1889.
Sex-specific effects of placental restriction on components of the metabolic syndrome in young adult sheep.CrossRef | 1:CAS:528:DC%2BD2sXmvF2mur0%3D&md5=2d9b816635792e38e5612906d83d6f73CAS |

Pedersen, J. F. (1980). Ultrasound evidence of sexual difference in fetal size in first trimester. BMJ 281, 1253.
Ultrasound evidence of sexual difference in fetal size in first trimester.CrossRef | 1:STN:280:DyaL3M%2FktFGisA%3D%3D&md5=69ec666d6742d849b526c33c039eacf6CAS |

Poore, K. R., Cleal, J. K., Newman, J. P., Boullin, J. P., Noakes, D., Hanson, M. A., and Green, L. R. (2007). Nutritional challenges during development induce sex-specific changes in glucose homeostasis in the adult sheep. Am. J. Physiol. Endocrinol. Metab. 292, E32–E39.
Nutritional challenges during development induce sex-specific changes in glucose homeostasis in the adult sheep.CrossRef | 1:CAS:528:DC%2BD2sXisFCqsLk%3D&md5=6201d3a3af2cb94617988bd52370d64fCAS |

Poore, K. R., Hollis, L. J., Murray, R. J. S., Warlow, A., Brewin, A., Fulford, L., Cleal, J. K., Lillycrop, K. A., Burdge, G. C., Hanson, M. A., and Green, L. R. (2014). Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep. PLoS One 9, e90994.
Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep.CrossRef |

Shimizu, T., Jiang, J. Y., Sasada, H., and Sato, E. (2002). Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts. Biol. Reprod. 67, 1846–1852.
Changes of messenger RNA expression of angiogenic factors and related receptors during follicular development in gilts.CrossRef | 1:CAS:528:DC%2BD38XptVelsb0%3D&md5=ddc5412607556874c6513ce63380af66CAS |

Sinclair, K. D., Allegrucci, C., Singh, R., Gardner, D. S., Sebastian, S., Bispham, J., Thurston, A., Huntley, J. F., Rees, W. D., Maloney, C. A., Lea, G. G., Craigon, J., McEvoy, T. G., and Young, L. E. (2007). DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc. Natl. Acad. Sci. USA 104, 19351–19356.
DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status.CrossRef | 1:CAS:528:DC%2BD1cXisVOjug%3D%3D&md5=b23cf8a186ddb23be526b0f7f965fd72CAS |

Smith, N. A., McAuliffe, F. M., Quinn, K., Lonergan, P., and Evans, A. C. O. (2010). The negative effects of a short period of maternal undernutrition at conception on the glucose–insulin system of offspring in sheep. Anim. Reprod. Sci. 121, 94–100.
The negative effects of a short period of maternal undernutrition at conception on the glucose–insulin system of offspring in sheep.CrossRef | 1:CAS:528:DC%2BC3cXos1yqsrc%3D&md5=d461a18e4233f3982f63f26f1bd9ce1bCAS |

Stevens, A., Begum, G., Cook, A., Connor, K., Rumball, C., Oliver, M., Challis, J., Bloomfield, F., and White, A. (2010). Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 151, 3652–3664.
Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition.CrossRef | 1:CAS:528:DC%2BC3cXht1Oju77J&md5=315d0537aebb658208937d651831bc66CAS |

Sugden, M. C., and Holness, M. J. (2002). Gender-specific programming of insulin secretion and action. J. Endocrinol. 175, 757–767.
Gender-specific programming of insulin secretion and action.CrossRef | 1:CAS:528:DC%2BD3sXhvVKhtg%3D%3D&md5=7941014e58136756a4be2362a9711da1CAS |

Todd, S. E., Oliver, M. H., Jaquiery, A. L., Bloomfield, F. H., and Harding, J. E. (2009). Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring. Pediatr. Res. 65, 409–413.
Periconceptional undernutrition of ewes impairs glucose tolerance in their adult offspring.CrossRef |

Tronche, F., Kellendonk, C., Reichardt, H. M., and Schütz, G. (1998). Genetic dissection of glucocorticoid receptor function in mice. Curr. Opin. Genet. Dev. 8, 532–538.
Genetic dissection of glucocorticoid receptor function in mice.CrossRef | 1:CAS:528:DyaK1cXntVSmtb8%3D&md5=2f520a6779972e24ad4b8d23762a33f0CAS |

Vander Kooi, B. T., Onuma, H., Oeser, J. K., Svitek, C. A., Allen, S. R., Vander Kooi, C. W., Chazin, W. J., and O’ Brien, R. M. (2005). The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements. Mol. Endocrinol. 19, 3001–3022.
The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements.CrossRef | 1:CAS:528:DC%2BD2MXht12nu77L&md5=1ca90fd4d552727abe9a429139503f55CAS |

Whorwood, C. B., Firth, K. M., Budge, H., and Symonds, M. E. (2001). Maternal undernutrition during early to mid gestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin ii receptor in neonatal sheep. Endocrinology 142, 2854–2864.
| 1:CAS:528:DC%2BD3MXkslelsLw%3D&md5=ceadefef9b8f65f4e1e7ca21562dd82cCAS |



Rent Article (via Deepdyve) Export Citation