Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Localisation of stem cell factor, stanniocalcin-1, connective tissue growth factor and heparin-binding epidermal growth factor in the bovine uterus at the time of blastocyst formation

M. Muñoz A E , D. Martin A , S. Carrocera A , M. Alonso-Guervos B , M. I. Mora C , F. J. Corrales C , N. Peynot D , C. Giraud-Delville D , V. Duranthon D , O. Sandra D and E. Gómez A

A Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Camino de Rioseco 1225, 33394 Gijón, Spain.

B Unidad de Microscopía Fotónica y Proceso de Imágenes, Servicios Científico Técnicos, Universidad de Oviedo, Instituto Universitario de Oncología de Asturias (IUOPA), 33006, Oviedo, Spain.

C Unidad de Proteomica, Centro de Investigación Médica Aplicada (CIMA) – Universidad de Navarra, 31008, Pamplona, Navarra, Spain.

D UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France.

E Corresponding author. Email: mmunoz@serida.org

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16383
Submitted: 28 September 2016  Accepted: 12 January 2017   Published online: 24 February 2017

Abstract

Early embryonic losses before implantation account for the highest rates of reproductive failure in mammals, in particular when in vitro-produced embryos are transferred. In the present study, we used molecular biology techniques (real-time quantitative polymerase chain reaction), classical immunohistochemical staining coupled with confocal microscopy and proteomic analysis (multiple reaction monitoring and western blot analysis) to investigate the role of four growth factors in embryo–uterine interactions during blastocyst development. Supported by a validated embryo transfer model, the study investigated: (1) the expression of stem cell factor (SCF), stanniocalcin-1 (STC1), connective tissue growth factor (CTGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) in bovine uterine fluid; (2) the presence of SCF, STC1, CTGF and HB-EGF mRNA and protein in the bovine endometrium and embryos; and (3) the existence of reciprocal regulation between endometrial and embryonic expression of SCF, STC1, CTGF and HB-EGF. The results suggest that these growth factors most likely play an important role during preimplantation embryo development in cattle. The information obtained from the present study can contribute to improving the performance of in vitro culture technology in cattle and other species.

Additional keywords: early embryo–maternal communication, embryo, endometrium.


References

Alavi-Shoushtari, S. M., Asri-Rezai, S., and Abshenas, J. (2006). A study of the uterine protein variations during the estrus cycle in the cow: a comparison with the serum proteins. Anim. Reprod. Sci. 96, 10–20.
A study of the uterine protein variations during the estrus cycle in the cow: a comparison with the serum proteins.CrossRef | 1:CAS:528:DC%2BD28Xps1CitLY%3D&md5=0eebfe012f38426faa4d59fbb59d09b6CAS | open url image1

Arceci, R. J., Pampfer, S., and Pollard, J. W. (1992). Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantation mouse development. Dev. Biol. 151, 1–8.
Expression of CSF-1/c-fms and SF/c-kit mRNA during preimplantation mouse development.CrossRef | 1:CAS:528:DyaK38Xit1yjsbw%3D&md5=ec7028f45bb9c8af4c0e4cc95ea1e430CAS | open url image1

Barnard, J. A., Graves-Dea, R., Pittelkow, M. R., DuBois, R., Cook, P., Ramsey, G. W., Bishop, P. R., Damstrup, L., and Coffey, R. J. (1994). Auto- and cross-induction within the mammalian epidermal growth factorrelatedpeptide family. J. Biol. Chem. 269, 22 817–22 822.
| 1:CAS:528:DyaK2cXlvFKrsrw%3D&md5=52237eebb7a986751ad4fd81eabb170aCAS | open url image1

Bauersachs, S., Ulbrich, S. E., Gross, K., Schmidt, S. E., Meyer, H. H., Einspanier, R., Wenigerkind, H., Vermehren, M., Blum, H., Sinowatz, F., and Wolf, E. (2005). Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. J. Mol. Endocrinol. 34, 889–908.
Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes.CrossRef | 1:CAS:528:DC%2BD2MXlslCisL8%3D&md5=7b6aa0e391bd85791dc9f7f7110bb159CAS | open url image1

Berendt, F. J., Fröhlich, T., Schmidt, S. E., Reichenbach, H. D., Wolf, E., and Arnold, G. J. (2005). Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period. Proteomics 5, 2551–2560.
Holistic differential analysis of embryo-induced alterations in the proteome of bovine endometrium in the preattachment period.CrossRef | 1:CAS:528:DC%2BD2MXmtF2gt7k%3D&md5=6712312df2650d9451c4bbdb03efb471CAS | open url image1

Brown, N., Deb, K., Paria, B. C., Das, S. K., and Reese, J. (2004). Embryo–uterine interactions via the neuregulin family of growth factors during implantation in the mouse. Biol. Reprod. 71, 2003–2011.
Embryo–uterine interactions via the neuregulin family of growth factors during implantation in the mouse.CrossRef | 1:CAS:528:DC%2BD2cXhtVWgsrrN&md5=2f97a16e4b5d75e4f0a62e53f2760d95CAS | open url image1

Carr, S. A., Abbatiello, S. E., Ackermann, B. L., Borchers, C., Domon, B., Deutsch, E. W., Grant, R. P., Hoofnagle, A. N., Hüttenhain, R., Koomen, J. M., Liebler, D. C., Liu, T., MacLean, B., Mani, D. R., Mansfield, E., Neubert, H., Paulovich, A. G., Reiter, L., Vitek, O., Aebersold, R., Anderson, L., Bethem, R., Blonder, J., Boja, E., Botelho, J., Boyne, M., Bradshaw, R. A., Burlingame, A. L., Chan, D., Keshishian, H., Kuhn, E., Kinsinger, C., Lee, J. S., Lee, S. W., Moritz, R., Oses-Prieto, J., Rifai, N., Ritchie, J., Rodriguez, H., Srinivas, P. R., Townsend, R. R., V.an Eyk, J., Whiteley, G., Wiita, A., and Weintraub, S. (2014). Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol. Cell. Proteomics 13, 907–917.
Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach.CrossRef | 1:CAS:528:DC%2BC2cXktlWjt7s%3D&md5=efd2587a4b9dfbb45efd06121bb5872eCAS | open url image1

Chronopoulou, E., and Harper, J. C. (2015). IVF culture media: past, present and future. Hum. Reprod. Update 21, 39–55.
IVF culture media: past, present and future.CrossRef | open url image1

Correia-Álvarez, E., Gómez, E., Martín, D., Carrocera, S., Pérez, S., Otero, J., Peynot, N., Giraud-Delville, C., Caamaño, J. N., Sandra, O., Duranthon, V., and Muñoz, M. (2015). Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo. J. Reprod. Immunol. 110, 1–13.
Expression and localization of interleukin 1 beta and interleukin 1 receptor (type I) in the bovine endometrium and embryo.CrossRef | open url image1

Faulkner, S., Elia, G., Mullen, M. P., O’Boyle, P., Dunn, M. J., and Morris, D. (2012). A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics. Proteomics 12, 2014–2023.
A comparison of the bovine uterine and plasma proteome using iTRAQ proteomics.CrossRef | 1:CAS:528:DC%2BC38Xpt12rtbo%3D&md5=efd1b8275a4a9b95d81ee974002d702eCAS | open url image1

Faulkner, S., Elia, G., O’ Boyle, P., Dunn, M., and Morris, D. (2013). Composition of the bovine uterine proteome is associated with stage of cycle and concentration of systemic progesterone. Proteomics 13, 3333–3353.
Composition of the bovine uterine proteome is associated with stage of cycle and concentration of systemic progesterone.CrossRef | 1:CAS:528:DC%2BC3sXhs1Clt7bM&md5=349ae900f1121f9c70bde127cfa39f3fCAS | open url image1

Garlow, J. E., Ka, H., Johnson, G. A., Burghardt, R. C., Jaeger, L. A., and Bazer, F. W. (2002). Analysis of osteopontin at the maternal–placental interface in pigs. Biol. Reprod. 66, 718–725.
Analysis of osteopontin at the maternal–placental interface in pigs.CrossRef | 1:CAS:528:DC%2BD38XhvVeiur8%3D&md5=0a2b7efa4b4bbe8481ecbfc7321d7ca0CAS | open url image1

Gillette, M. A., and Carr, S. A. (2013). Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat. Methods 10, 28–34.
Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry.CrossRef | 1:CAS:528:DC%2BC38XhvFShtb%2FF&md5=49f48f82ad16888a47395b99cff61e5aCAS | open url image1

Gómez, E., and Muñoz, M. (2015). Multiple-embryo transfer for studying very early maternal–embryo interactions in cattle. Reproduction 150, R35–R43.
Multiple-embryo transfer for studying very early maternal–embryo interactions in cattle.CrossRef | open url image1

Gómez, E., Rodríguez, A., Muñoz, M., Caamaño, J. N., Carrocera, S., Martín, D., Facal, N., and Díez, C. (2008). Development and quality of bovine morulae cultured in serum-free medium with specific retinoid receptor agonists. Reprod. Fertil. Dev. 20, 884–891.
Development and quality of bovine morulae cultured in serum-free medium with specific retinoid receptor agonists.CrossRef | open url image1

Gómez, E., Caamaño, J. N., Corrales, F. J., Díez, C., Correia-Álvarez, E., Martín, D., Trigal, B., Carrocera, S., Mora, M. I., Pello-Palma, J., Moreno, J. F., and Muñoz, M. (2013). Embryonic sex induces differential expression of proteins in bovine uterine fluid. J. Proteome Res. 12, 1199–1210.
Embryonic sex induces differential expression of proteins in bovine uterine fluid.CrossRef | open url image1

Gómez, E., Correia-Álvarez, E., Caamaño, J. N., Díez, C., Carrocera, S., Peynot, N., Martín, D., Giraud-Delville, C., Duranthon, V., Sandra, O., and Muñoz, M. (2014). Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture. Reproduction 148, 353–365.
Hepatoma-derived growth factor: from the bovine uterus to the in vitro embryo culture.CrossRef | open url image1

Goossens, K., Van Poucke, M., Van Soom, A., Vandesompele, J., Van Zeveren, A., and Peelman, L. J. (2005). Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos. BMC Dev. Biol. 5, 27.
Selection of reference genes for quantitative real-time PCR in bovine preimplantation embryos.CrossRef | open url image1

Goossens, K., Van Soom, A., Van Zeveren, A., Favoreel, H., and Peelman, L. J. (2009). Quantification of fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos. BMC Dev. Biol. 9, 1.
Quantification of fibronectin 1 (FN1) splice variants, including two novel ones, and analysis of integrins as candidate FN1 receptors in bovine preimplantation embryos.CrossRef | open url image1

Goossens, K., Tesfaye, D., Rings, F., Schellander, K., Hölker, M., Van Poucke, M., Van Zeveren, A., Lemahieu, I., Van Soom, A., and Peelman, L. J. (2010). Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod. Fertil. Dev. 22, 395–404.
Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference.CrossRef | 1:CAS:528:DC%2BC3cXjtlar&md5=ac1e851d62e7dad66ba8090810098f29CAS | open url image1

Grebe, S. K., and Singh, R. J. (2011). LC-MS/MS in the clinical laboratory – where to from here? Clin. Biochem. Rev. 32, 5–31. open url image1

Harding, P. A., Surveyor, G. A., and Brigstock, D. R. (1998). Characterization of pig connective tissue growth factor (CTGF) cDNA, mRNA and protein from uterine tissue. DNA Seq. 8, 385–390.
Characterization of pig connective tissue growth factor (CTGF) cDNA, mRNA and protein from uterine tissue.CrossRef | 1:CAS:528:DC%2BD3cXislSrtLg%3D&md5=ae5b97667045b0d775d16f449283e5f4CAS | open url image1

Hardy, K., and Spanos, S. (2002). Growth factor expression and function in the human and mouse preimplantation embryo. J. Endocrinol. 172, 221–236.
Growth factor expression and function in the human and mouse preimplantation embryo.CrossRef | 1:CAS:528:DC%2BD38XhvVejt78%3D&md5=5bc8fa11f2497757355c76560b69b23dCAS | open url image1

Hidalgo, C. O., Gomez, E., Prieto, L., Duque, P., Goyache, F., Fernández, L., Fernández, I., Facal, N., and Díez, C. (2004). Pregnancy rates and metabolic profiles in cattle treated with propylene glycol prior to embryo transfer. Theriogenology 62, 664–676.
Pregnancy rates and metabolic profiles in cattle treated with propylene glycol prior to embryo transfer.CrossRef | 1:CAS:528:DC%2BD2cXltF2rsrc%3D&md5=64abf4caf48b098b22eba2639c519cbaCAS | open url image1

Holm, P., Booth, P. J., Schmidt, M. H., Greve, T., and Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 52, 683–700.
High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins.CrossRef | 1:STN:280:DC%2BD3c7pvVGnsw%3D%3D&md5=4b5bf1ef366000f0c309b3ada47205f5CAS | open url image1

Hugentobler, S. A., Morris, D. G., Sreenan, J. M., and Diskin, M. G. (2007). Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine. Theriogenology 68, 538–548.
Ion concentrations in oviduct and uterine fluid and blood serum during the estrous cycle in the bovine.CrossRef | 1:CAS:528:DC%2BD2sXotlWqu78%3D&md5=defda0e87d325717e691852a00db552bCAS | open url image1

Ibrahim, S., Salilew-Wondim, D., Rings, F., Hoelker, M., Neuhoff, C., Tholen, E., Looft, C., Schellander, K., and Tesfaye, D. (2015). Expression pattern of inflammatory response genes and their regulatory microRNAs in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development. PLoS One 10, e0119388.
Expression pattern of inflammatory response genes and their regulatory microRNAs in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development.CrossRef | open url image1

Inagaki, N., Stern, C., McBain, J., Lopata, A., Kornman, L., and Wilkinson, D. (2003). Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer. Hum. Reprod. 18, 608–615.
Analysis of intra-uterine cytokine concentration and matrix-metalloproteinase activity in women with recurrent failed embryo transfer.CrossRef | 1:CAS:528:DC%2BD3sXit1yruro%3D&md5=ebd856179c8616239134b77654fa5b32CAS | open url image1

James, A., and Jorgensen, C. (2010). Basic design of MRM assays for peptide quantification. Methods Mol. Biol. 658, 167–185.
Basic design of MRM assays for peptide quantification.CrossRef | 1:CAS:528:DC%2BC3cXhtFKqsLrM&md5=447f0893ec667e89ebd54292d9f9d3ebCAS | open url image1

Johnson, G. A., Spencer, T. E., Burghardt, R. C., Burghardt, R. C., and Bazer, F. W. (1999). Ovine osteopontin: I. Cloning and expression of messenger ribonucleic acid in the uterus during the periimplantation period. Biol. Reprod. 61, 884–891.
Ovine osteopontin: I. Cloning and expression of messenger ribonucleic acid in the uterus during the periimplantation period.CrossRef | 1:CAS:528:DyaK1MXmtlajsb4%3D&md5=a43691550e58b96ecab204b725d3e858CAS | open url image1

Joyce, M. M., Burghardt, J. R., Burghardt, R. C., Hooper, R. N., Bazer, F. W., and Johnson, G. A. (2008). Uterine major histocompatibility class I molecules and 2 microglobulin are regulated by progesterone and conceptus interferons during pig pregnancy. J. Immunol. 181, 2494–2505.
Uterine major histocompatibility class I molecules and 2 microglobulin are regulated by progesterone and conceptus interferons during pig pregnancy.CrossRef | 1:CAS:528:DC%2BD1cXptlKqu74%3D&md5=58d341cb964f32ea6a363df0bc353543CAS | open url image1

Kannampuzha-Francis, J., Tribulo, P., and Hansen, P. J. (2016). Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo. Reprod. Fertil. Dev. , .
Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo.CrossRef | open url image1

Kauma, S., Huff, T., Krystal, G., Ryan, J., Takacs, P., and Turner, T. (1996). The expression of stem cell factor and its receptor, c-kit in human endometrium and placental tissues during pregnancy. J. Clin. Endocrinol. Metab. 81, 1261–1266.
| 1:CAS:528:DyaK28Xhs1agtL8%3D&md5=41a4c20d05d58e1e12d151e58e82b1a3CAS | open url image1

Kikuchi, M., Nakano, Y., Nambo, Y., Haneda, S., Matsui, M., Miyake, Y., Macleod, J. N., Nagaoka, K., and Imakawa, K. (2011). Production of calcium maintenance factor Stanniocalcin-1 (STC1) by the equine endometrium during the early pregnant period. J. Reprod. Dev. 57, 203–211.
Production of calcium maintenance factor Stanniocalcin-1 (STC1) by the equine endometrium during the early pregnant period.CrossRef | 1:CAS:528:DC%2BC3MXnsFKmtbk%3D&md5=bffbde475d78f50a952915fbbfe08aabCAS | open url image1

Kliem, A., Tetens, F., Klonisch, T., Grealy, M., and Fischer, B. (1998). Epidermal growth factor receptor and ligands in elongating bovine blastocysts. Mol. Reprod. Dev. 51, 402–412.
Epidermal growth factor receptor and ligands in elongating bovine blastocysts.CrossRef | 1:CAS:528:DyaK1cXnt1Ortrs%3D&md5=dd2dc046da1eb26d33c5a555cbadcb68CAS | open url image1

Ledgard, A. M., Lee, R. S., and Peterson, A. J. (2009). Bovine endometrial legumain and TIMP-2 regulation in response to presence of a conceptus. Mol. Reprod. Dev. 76, 65–74.
Bovine endometrial legumain and TIMP-2 regulation in response to presence of a conceptus.CrossRef | 1:CAS:528:DC%2BD1cXhsFemtL3P&md5=ba3614842c8f2c5f918130c222587090CAS | open url image1

Lim, J. J., Lee, D. R., Song, H. S., Kim, K. S., Yoon, T. K., Gye, M. C., and Kim, M. K. (2006). Heparin-binding epidermal growth factor (HB-EGF) may improve embryonic development and implantation by increasing vitronectin receptor (integrin alphanubeta3) expression in peri-implantation mouse embryos. J. Assist. Reprod. Genet. 23, 111–119.
Heparin-binding epidermal growth factor (HB-EGF) may improve embryonic development and implantation by increasing vitronectin receptor (integrin alphanubeta3) expression in peri-implantation mouse embryos.CrossRef | open url image1

Lim, J. J., Eum, J. H., Lee, J. E., Leroy, J. L., and Bols, P. E. (2010). Stem cell factor/c-Kit signaling in in vitro cultures supports early mouse embryonic development by accelerating proliferation via a mechanism involving Akt-downstream genes. J. Assist. Reprod. Genet. 27, 619–627.
Stem cell factor/c-Kit signaling in in vitro cultures supports early mouse embryonic development by accelerating proliferation via a mechanism involving Akt-downstream genes.CrossRef | open url image1

Lonergan, P., Rizos, D., Gutiérrez-Adán, A., Fair, T., and Boland, M. P. (2003). Effect of culture environment on embryo quality and gene expression – experience from animal studies. Reprod. Biomed. Online 7, 657–663.
Effect of culture environment on embryo quality and gene expression – experience from animal studies.CrossRef | 1:STN:280:DC%2BD2c%2FkvFahsw%3D%3D&md5=dbbf8ebbf18f93558c21f6100efa7edcCAS | open url image1

Mansouri-Attia, N., Aubert, J., Reinaud, P., Giraud-Delville, C., Taghouti, G., Galio, L., Everts, R. E., Degrelle, S., Richard, C., Hue, I., Yang, X., Tian, X. C., Lewin, H. A., Renard, J. P., and Sandra, O. (2009). Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation. Physiol. Genomics 39, 14–27.
Gene expression profiles of bovine caruncular and intercaruncular endometrium at implantation.CrossRef | 1:CAS:528:DC%2BC3cXhtlakt7rM&md5=214c62741cf51d70dd8a3300d7b1966bCAS | open url image1

Martin, K. L., Barlow, D. H., and Sargent, I. L. (1998). Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum. Reprod. 13, 1645–1652.
Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium.CrossRef | 1:CAS:528:DyaK1cXkslOlurc%3D&md5=27d01175bc02d30c3126bedc16f8c765CAS | open url image1

Marx, V. (2013). Targeted proteomics. Nat. Methods 10, 19–22.
Targeted proteomics.CrossRef | 1:CAS:528:DC%2BC38XhvFShurvJ&md5=4fc698ff2abb80f67d2a3801bf06c488CAS | open url image1

Maybin, J. A., Barcroft, J., Thiruchelvam, U., Hirani, N., Jabbour, H. N., and Critchley, H. O. (2012). The presence and regulation of connective tissue growth factor in the human endometrium. Hum. Reprod. 27, 1112–1121.
The presence and regulation of connective tissue growth factor in the human endometrium.CrossRef | 1:CAS:528:DC%2BC38XksVarsLg%3D&md5=b22a5ceba3dbb6ba9ce22d0497102259CAS | open url image1

Mishra, A., and Seshagiri, P. B. (2000). Heparin binding-epidermal growth factor improves blastocyst hatching and trophoblast outgrowth in the golden hamster. Reprod. Biomed. Online 1, 87–95.
Heparin binding-epidermal growth factor improves blastocyst hatching and trophoblast outgrowth in the golden hamster.CrossRef | 1:CAS:528:DC%2BD3MXos1Grsb4%3D&md5=20b7fc9a583ac5950a7ce748316c115cCAS | open url image1

Mitsunari, M., Harada, T., Tanikawa, M., Iwabe, T., Taniguchi, F., and Terakawa, N. (1999). The potential role of stem cellfactor and its receptor c-kit in the mouse blastocyst implantation. Mol. Hum. Reprod. 5, 874–879.
The potential role of stem cellfactor and its receptor c-kit in the mouse blastocyst implantation.CrossRef | 1:CAS:528:DyaK1MXmsVaqtL4%3D&md5=4042743791ca0fa98fd5a23e9f4b544aCAS | open url image1

Moussad, E. E., and Brigstock, D. R. (2000). Connective tissue growth factor: what’s in a name? Mol. Genet. Metab. 71, 276–292.
Connective tissue growth factor: what’s in a name?CrossRef | 1:CAS:528:DC%2BD3cXms1yjurw%3D&md5=c2a756c73976047667b3b8a14ecbeec5CAS | open url image1

Moussad, E. E., Rageh, M. A., Wilson, A. K., Geisert, R. D., and Brigstock, D. R. (2002). Temporal and spatial expression of connective tissue growth factor (CCN2; CTGF) and transforming growth factor beta type 1 (TGF-beta1) at the utero-placental interface during early pregnancy in the pig. Mol. Pathol. 55, 186–192.
Temporal and spatial expression of connective tissue growth factor (CCN2; CTGF) and transforming growth factor beta type 1 (TGF-beta1) at the utero-placental interface during early pregnancy in the pig.CrossRef | 1:CAS:528:DC%2BD38Xlt1yrt74%3D&md5=81356881f4c321fcbeeedba3814fb3e2CAS | open url image1

Mullen, M. P., Elia, G., Hilliard, M., Parr, M. H., Diskin, M. G., Evans, A. C., and Crowe, M. A. (2012). Proteomic characterization of histotroph during the preimplantation phase of the estrous cycle in cattle. J. Proteome Res. 11, 3004–3018.
Proteomic characterization of histotroph during the preimplantation phase of the estrous cycle in cattle.CrossRef | 1:CAS:528:DC%2BC38XkslWju7c%3D&md5=088e1ab7ed45fbf0ceac5cae5f5b248dCAS | open url image1

Muñoz, M., Peirson, S. N., Hankins, M. W., and Foster, R. G. (2005). Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff’s rule? J. Biol. Rhythms 20, 3–14.
Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff’s rule?CrossRef | open url image1

Pernemalm, M., and Lehtiö, J. (2014). Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev. Proteomics 11, 431–448.
Mass spectrometry-based plasma proteomics: state of the art and future outlook.CrossRef | 1:CAS:528:DC%2BC2cXhtFCrtLzP&md5=df42866b26525685b09f9b1d83099d06CAS | open url image1

Picotti, P., and Aebersold, R. (2012). Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat. Methods 9, 555–566.
Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions.CrossRef | 1:CAS:528:DC%2BC38XotVSrurg%3D&md5=fb9a8f305e68b5770159334927a267faCAS | open url image1

Richter, K. S. (2008). The importance of growth factors for preimplantation embryo development and in-vitro culture. Curr. Opin. Obstet. Gynecol. 20, 292–304.
The importance of growth factors for preimplantation embryo development and in-vitro culture.CrossRef | open url image1

Robertson, S. A., Chin, P. Y., Schjenken, J. E., and Thompson, J. G. (2015). Female tract cytokines and developmental programming in embryos. Adv. Exp. Med. Biol. 843, 173–213.
Female tract cytokines and developmental programming in embryos.CrossRef | open url image1

Salamonsen, L. A., Edgell, T., Rombauts, L. J., Stephens, A. N., Robertson, D. M., Rainczuk, A., Nie, G., and Hannan, N. J. (2013). Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery. Fertil. Steril. 99, 1086–1092.
Proteomics of the human endometrium and uterine fluid: a pathway to biomarker discovery.CrossRef | 1:CAS:528:DC%2BC38XhsVyhtLvF&md5=73659f12e4e92d64301866e3f7d8f0a4CAS | open url image1

Sharkey, A. M., Dellow, K., Blayney, M., Macnamee, M., Charnock-Jones, S., and Smith, S. K. (1995). Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos. Biol. Reprod. 53, 974–981.
Stage-specific expression of cytokine and receptor messenger ribonucleic acids in human preimplantation embryos.CrossRef | 1:CAS:528:DyaK2MXotFyisrc%3D&md5=0e759a733ef69c4c9948ff88cb8a6966CAS | open url image1

Song, G., Bazer, F. W., Wagner, G. F., and Spencer, T. E. (2006). Stanniocalcin (STC) in the endometrial glands of the ovine uterus: regulation by progesterone and placental hormones. Biol. Reprod. 74, 913–922.
Stanniocalcin (STC) in the endometrial glands of the ovine uterus: regulation by progesterone and placental hormones.CrossRef | 1:CAS:528:DC%2BD28Xjsl2jurs%3D&md5=4c669bb56547718b82b9b6b4e465f365CAS | open url image1

Song, G., Dunlap, K. A., Kim, J., Bailey, D. W., Spencer, T. E., Burghardt, R. C., Wagner, G. F., Johnson, G. A., and Bazer, F. W. (2009). Stanniocalcin 1 is a luminal epithelial marker for implantation in pigs regulated by progesterone and estradiol. Endocrinology 150, 936–945.
Stanniocalcin 1 is a luminal epithelial marker for implantation in pigs regulated by progesterone and estradiol.CrossRef | 1:CAS:528:DC%2BD1MXhs1Sgtr0%3D&md5=47e333dd0cb6b69ac55470fd3d6ead9bCAS | open url image1

Stasko, S. E., DiMattia, G. E., and Wagner, G. F. (2001). Dynamic changes in stanniocalcin gene expression in the mouse uterus during early implantation. Mol. Cell. Endocrinol. 174, 145–149.
Dynamic changes in stanniocalcin gene expression in the mouse uterus during early implantation.CrossRef | 1:CAS:528:DC%2BD3MXisF2ktLo%3D&md5=832ccc9cf61c9f44211b17b7c73e922aCAS | open url image1

Surveyor, G. A., Wilson, A. K., and Brigstock, D. R. (1998). Localization of connective tissue growth factor during the period of embryo implantation in the mouse. Biol. Reprod. 59, 1207–1213.
Localization of connective tissue growth factor during the period of embryo implantation in the mouse.CrossRef | 1:CAS:528:DyaK1cXmvF2js7w%3D&md5=c394db1dd21da7f47bd722a79acf6e19CAS | open url image1

Swain, J. E., Carrell, D., Cobo, A., Meseguer, M., Rubio, C., and Smith, G. D. (2016). Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential. Fertil. Steril. 105, 571–587.
Optimizing the culture environment and embryo manipulation to help maintain embryo developmental potential.CrossRef | open url image1

Takatsu, K., and Acosta, T. J. (2015). Expression of heparin-binding EGF-like growth factor (HB-EGF) in bovine endometrium: effects of HB-EGF and interferon-τ on prostaglandin production. Reprod. Domest. Anim. 50, 458–464.
Expression of heparin-binding EGF-like growth factor (HB-EGF) in bovine endometrium: effects of HB-EGF and interferon-τ on prostaglandin production.CrossRef | 1:CAS:528:DC%2BC2MXntFSgs74%3D&md5=114c368a8415fbececbf6f77f5eeb8e6CAS | open url image1

Urrego, R., Rodriguez-Osorio, N., and Niemann, H. (2014). Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle. Epigenetics 9, 803–815.
Epigenetic disorders and altered gene expression after use of assisted reproductive technologies in domestic cattle.CrossRef | 1:CAS:528:DC%2BC2cXhs1GntbvE&md5=2ab98caf4763fe9d53c1ce99f48428c5CAS | open url image1

Uzumcu, M., Homsi, M. F., Ball, D. K., Coskun, S., Jaroudi, K., Hollanders, J. M., and Brigstock, D. R. (2000). Localization of connective tissue growth factor in human uterine tissues. Mol. Hum. Reprod. 6, 1093–1098.
Localization of connective tissue growth factor in human uterine tissues.CrossRef | 1:CAS:528:DC%2BD3MXjsFKnsw%3D%3D&md5=d529c9a393e8120eeead888f5fde619eCAS | open url image1

Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1.
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.CrossRef | open url image1

Vega-Díaz, B., Herron, G. S., and Michel, S. (2001). An autocrine loop mediates expression of vascular endothelial growth factor in human dermal microvascular endothelial cells. J. Invest. Dermatol. 116, 525–530.
An autocrine loop mediates expression of vascular endothelial growth factor in human dermal microvascular endothelial cells.CrossRef | open url image1

Walker, C. G., Meier, S., Littlejohn, M. D., Lehnert, K., Roche, J. R., and Mitchell, M. D. (2010). Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 11, 474.
Modulation of the maternal immune system by the pre-implantation embryo.CrossRef | open url image1

Wang, J., Mayernik, L., Schultz, J. F., and Armant, D. R. (2000). Acceleration of trophoblast differentiation by heparin-binding EGF-like growth factor is dependent on the stage-specific activation of calcium influx by ErbB receptors in developing mouse blastocysts. Development 127, 33–44.
| 1:CAS:528:DC%2BD3cXpvFGrtQ%3D%3D&md5=6ced794a04eee23c2656087bc2fbd21dCAS | open url image1

Xiao, L. J., Yuan, J. X., Song, X. X., Li, Y. C., Hu, Z. Y., and Liu, Y. X. (2006). Expression and regulation of stanniocalcin 1 and 2 in rat uterus during embryo implantation and decidualization. Reproduction 131, 1137–1149.
Expression and regulation of stanniocalcin 1 and 2 in rat uterus during embryo implantation and decidualization.CrossRef | 1:CAS:528:DC%2BD28Xpt1ehu74%3D&md5=bb25cef9d86e414d98ba376a73e1566aCAS | open url image1

Yeung, B. H., Law, A. Y., and Wong, C. K. (2012). Evolution and roles of stanniocalcin. Mol. Cell. Endocrinol. 349, 272–280.
Evolution and roles of stanniocalcin.CrossRef | 1:CAS:528:DC%2BC3MXhs1Cqsb3E&md5=1103be6afe32f3804f13ebc2bb0033abCAS | open url image1



Supplementary MaterialSupplementary Material (100 KB) Export Citation