Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of vitrification of cumulus-enclosed porcine oocytes at the germinal vesicle stage on cumulus expansion, nuclear progression and cytoplasmic maturation

Ruth Appeltant A * , Tamás Somfai B D * , Elisa C. S. Santos B , Thanh Quang Dang-Nguyen A , Takashi Nagai C and Kazuhiro Kikuchi A
+ Author Affiliations
- Author Affiliations

A Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organisation, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan.

B Animal Breeding and Reproduction Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.

C Department of Research Planning and Coordination, National Agriculture and Food Research Organisation, Ikenodai 2, Tsukuba, Ibaraki 305-0901, Japan.

D Corresponding author. Email: somfai@affrc.go.jp

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16386
Submitted: 29 September 2016  Accepted: 19 April 2017   Published online: 15 May 2017

Abstract

Although offspring have been produced from porcine oocytes vitrified at the germinal vesicle (GV) stage, the rate of embryo development remains low. In the present study, nuclear morphology and progression, cumulus expansion, transzonal projections (TZPs), ATP and glutathione (GSH) levels were compared between vitrified cumulus–oocyte complexes (COCs) and control COCs (no cryoprotectant treatment and no cooling), as well as a toxicity control (no cooling). Vitrification was performed with 17.5% (v/v) ethylene glycol and 17.5% (v/v) propylene glycol. Vitrification at the GV stage caused premature meiotic progression, reflected by earlier GV breakdown and untimely attainment of the MII stage. However, cytoplasmic maturation, investigated by measurement of ATP and GSH levels, as well as cumulus expansion, proceeded normally despite detectable damage to TZPs in vitrified COCs. Moreover, treatment with cryoprotectants caused fragmentation of nucleolus precursor bodies and morphological changes in F-actin from which oocytes were able to recover during subsequent IVM culture. Reduced developmental competence may be explained by premature nuclear maturation leading to oocyte aging, although other mechanisms, such as initiation of apoptosis and reduction of cytoplasmic mRNA, can also be considered. Further research will be required to clarify the presence and effects of these phenomena during the vitrification of immature COCs.

Additional keywords: cryopreservation, cumulus cell, cytoskeleton, gamete.


References

Abràmoff, M., Magalhães, P., and Ram, S. (2004). Image processing with ImageJ. Biophoton. Int. 11, 36–43. open url image1

Anderson, M. (1985) Determination of glutathione and glutathione disulfide in biological samples. In ‘Glutamate, Glutamine, Glutathione, and Related Compounds’. (Ed. A. Meister.) pp. 548–555. (Academic Press: New York.)

Appeltant, R., Somfai, T., Nakai, M., Bodó, S., Maes, D., Kikuchi, K., and Van Soom, A. (2015). Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus–oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation. Theriogenology 83, 567–576.
Interactions between oocytes and cumulus cells during in vitro maturation of porcine cumulus–oocyte complexes in a chemically defined medium: effect of denuded oocytes on cumulus expansion and oocyte maturation.CrossRef | 1:CAS:528:DC%2BC2cXhvFKmsbbL&md5=24bfdc88e5d61a73d5c46d943774e850CAS | open url image1

Appeltant, R., Somfai, T., Santos, E., and Kikuchi, K. (2017). The effect of exposure time on toxicity of vitrification solution on porcine cumulus–oocyte complexes before in vitro maturation. Reprod. Fertil. Dev. 29, 127.
The effect of exposure time on toxicity of vitrification solution on porcine cumulus–oocyte complexes before in vitro maturation.CrossRef | open url image1

Brambillasca, F., Guglielmo, M. C., Coticchio, G., Mignini Renzini, M., Dal Canto, M., and Fadini, R. (2013). The current challenges to efficient immature oocyte cryopreservation. J. Assist. Reprod. Genet. 30, 1531–1539.
The current challenges to efficient immature oocyte cryopreservation.CrossRef | open url image1

Dai, J., Wu, C., Muneri, C. W., Niu, Y., Zhang, S., Rui, R., and Zhang, D. (2015). Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability. Cryobiology 71, 291–298.
Changes in mitochondrial function in porcine vitrified MII-stage oocytes and their impacts on apoptosis and developmental ability.CrossRef | 1:CAS:528:DC%2BC2MXht1ygs7rP&md5=e7a1518a548c41e3ce1cb648efdb6d69CAS | open url image1

Dalton, C. M., Szabadkai, G., and Carroll, J. (2014). Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption. J. Cell. Physiol. 229, 353–361.
Measurement of ATP in single oocytes: impact of maturation and cumulus cells on levels and consumption.CrossRef | 1:CAS:528:DC%2BC3sXhvVWgtL7I&md5=9010dcfdf9bea7892cb0e45bf06060afCAS | open url image1

Dekel, N. (2005). Cellular, biochemical and molecular mechanisms regulating oocyte maturation. Mol. Cell. Endocrinol. 234, 19–25.
Cellular, biochemical and molecular mechanisms regulating oocyte maturation.CrossRef | 1:CAS:528:DC%2BD2MXjt1SqtL8%3D&md5=905ec5bc29a95965a3953b0582efa244CAS | open url image1

Dekel, N., and Phillips, D. M. (1980). Cyclic AMP, prostaglandin E2 and steroids: possible mediators in the rat cumulus oophorus mucification. Biol. Reprod. 22, 289–296.
Cyclic AMP, prostaglandin E2 and steroids: possible mediators in the rat cumulus oophorus mucification.CrossRef | 1:CAS:528:DyaL3cXhvFWmtLY%3D&md5=2c04f96bd7ead5452fd6c8a364171b07CAS | open url image1

Egerszegi, I., Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Nagai, T., Ratky, J., and Kikuchi, K. (2013). Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model. Cryobiology 67, 287–292.
Comparison of cytoskeletal integrity, fertilization and developmental competence of oocytes vitrified before or after in vitro maturation in a porcine model.CrossRef | open url image1

Ferreira, E. M., Vireque, A. A., Adona, P. R., Meirelles, F. V., Ferriani, R. A., and Navarro, P. A. A. S. (2009). Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology 71, 836–848.
Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence.CrossRef | 1:CAS:528:DC%2BD1MXitVSgs7k%3D&md5=f91a75ef471829f8367aec20f883c6b4CAS | open url image1

Funahashi, H., Cantley, T., and Day, B. (1997). Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biol. Reprod. 57, 49–53.
Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization.CrossRef | 1:CAS:528:DyaK2sXktFCntb0%3D&md5=ffb7701b6168879bc26861ac3c1a7997CAS | open url image1

Grupen, C. G. (2014). The evolution of porcine embryo in vitro production. Theriogenology 81, 24–37.
The evolution of porcine embryo in vitro production.CrossRef | open url image1

Grupen, C. G., Nagashima, H., and Nottle, M. B. (1997). Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization? Reprod. Fertil. Dev. 9, 187–191.
Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization?CrossRef | 1:STN:280:DyaK2szlt1WntA%3D%3D&md5=f66f8ea25835c6d7c28fdf252aa64c9aCAS | open url image1

Herrick, J. R., Wang, C., and Machaty, Z. (2016). The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes. Reprod. Fertil. Dev. 28, 599–607.
The effects of permeating cryoprotectants on intracellular free-calcium concentrations and developmental potential of in vitro-matured feline oocytes.CrossRef | 1:CAS:528:DC%2BC28XktVOisLs%3D&md5=15e66af3c9046b0101c436fa37d13914CAS | open url image1

Homa, S. T. (1991). Neomycin, an inhibitor of phosphoinositide hydrolysis, inhibits the resumption of bovine oocyte spontaneous meiotic maturation. J. Exp. Zool. 258, 95–103.
Neomycin, an inhibitor of phosphoinositide hydrolysis, inhibits the resumption of bovine oocyte spontaneous meiotic maturation.CrossRef | 1:CAS:528:DyaK3MXkt1alsLk%3D&md5=0808509935c7acadeb9a43f49d48d736CAS | open url image1

Jo, J. W., Jee, B. C., Lee, J. R., and Suh, C. S. (2011). Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence. Fertil. Steril. 96, 1239–1245.
Effect of antifreeze protein supplementation in vitrification medium on mouse oocyte developmental competence.CrossRef | 1:CAS:528:DC%2BC3MXhsVSkt73K&md5=b0aeef6f254fcc7b7f9d1c63a444c3c5CAS | open url image1

Kaufman, M. L., and Homa, S. T. (1993). Defining a role for calcium in the resumption and progression of meiosis in the pig oocyte. J. Exp. Zool. 265, 69–76.
| 1:STN:280:DyaK3s3htVCquw%3D%3D&md5=12b77f4f47132041819a5f1cd78080a0CAS | open url image1

Kim, S. S., Olsen, R., Kim, D. D., and Albertini, D. F. (2014). The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model. J. Assist. Reprod. Genet. 31, 739–747.
The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model.CrossRef | open url image1

Krisher, R. L., Brad, A. M., Herrick, J. R., Sparman, M. L., and Swain, J. E. (2007). A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation. Anim. Reprod. Sci. 98, 72–96.
A comparative analysis of metabolism and viability in porcine oocytes during in vitro maturation.CrossRef | 1:CAS:528:DC%2BD2sXhs1Sksrw%3D&md5=a2c515e0be04b04f358b4a2773ada758CAS | open url image1

Macháty, Z., Wang, W., Day, B. N., and Prather, R. S. (1997). Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal. Biol. Reprod. 57, 1123–1127.
Complete activation of porcine oocytes induced by the sulfhydryl reagent, thimerosal.CrossRef | open url image1

Maedomari, N., Kikuchi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., Nakai, M., Shino, M., Nagai, T., and Kashiwazaki, N. (2007). Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 67, 983–993.
Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro.CrossRef | 1:CAS:528:DC%2BD2sXitFOns70%3D&md5=6a31f92647e993a7f5e1f6a940f444e2CAS | open url image1

Manipalviratn, S., Tong, Z. B., Stegmann, B., Widra, E., Carter, J., and DeCherney, A. (2011). Effect of vitrification and thawing on human oocyte ATP concentration. Fertil. Steril. 95, 1839–1841.
Effect of vitrification and thawing on human oocyte ATP concentration.CrossRef | 1:CAS:528:DC%2BC3MXjs1Sru7k%3D&md5=46319f2831f0e09cdb5f0a231e7b0ba5CAS | open url image1

Mattioli, M., Barboni, B., Gioia, L., and Loi, P. (2003). Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes. Mol. Reprod. Dev. 65, 289–297.
Cold-induced calcium elevation triggers DNA fragmentation in immature pig oocytes.CrossRef | 1:CAS:528:DC%2BD3sXksVOitbo%3D&md5=d3ad727fd120e676e3062d747eae4230CAS | open url image1

Miao, Y. L., Kikuchi, K., Sun, Q. Y., and Schatten, H. (2009). Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585.
Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility.CrossRef | open url image1

Mori, T., Amano, T., and Shimizu, H. (2000). Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro. Biol. Reprod. 62, 913–919.
Roles of gap junctional communication of cumulus cells in cytoplasmic maturation of porcine oocytes cultured in vitro.CrossRef | 1:CAS:528:DC%2BD3cXitFajt7k%3D&md5=1ea690f4b8bb92c3b9fa821114995f95CAS | open url image1

Motlík, J., and Fulka, J. (1976). Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J. Exp. Zool. 198, 155–162.
Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro.CrossRef | open url image1

Ozawa, M., Nagai, T., Somfai, T. s., Nakai, M., Maedomari, N., Miyazaki, H., Kaneko, H., Noguchi, J., and Kikuchi, K. (2010). Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs. J. Cell. Physiol. 222, 294–301.
Cumulus cell-enclosed oocytes acquire a capacity to synthesize GSH by FSH stimulation during in vitro maturation in pigs.CrossRef | 1:CAS:528:DC%2BD1MXhsFSgsrrN&md5=4fc5c805a787d83d48e3f799b9a6b912CAS | open url image1

Petters, R. M., and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
| 1:STN:280:DyaK2c7psVCktQ%3D%3D&md5=d2a8664c44881c286edee782a5e17448CAS | open url image1

Rice, C., and McGaughey, R. (1981). Effect of testosterone and dibutytyl cAMP on the spontaneous maturation of pig oocytes. J. Reprod. Fertil. 62, 245–256.
Effect of testosterone and dibutytyl cAMP on the spontaneous maturation of pig oocytes.CrossRef | 1:CAS:528:DyaL3MXktVSrtL0%3D&md5=b42dd51264a50c60a2037fd599964d5eCAS | open url image1

Russell, D. L., Gilchrist, R. B., Brown, H. M., and Thompson, J. G. (2016). Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology 86, 62–68.
Bidirectional communication between cumulus cells and the oocyte: old hands and new players?CrossRef | 1:CAS:528:DC%2BC28XmslKru7s%3D&md5=e907f83a632e00b6516a4db3938364ecCAS | open url image1

Salvetti, P., Buff, S., Afanassieff, M., Daniel, N., Guerin, P., and Joly, T. (2010). Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing. Theriogenology 74, 847–855.
Structural, metabolic and developmental evaluation of ovulated rabbit oocytes before and after cryopreservation by vitrification and slow freezing.CrossRef | 1:CAS:528:DC%2BC3cXhtVGrtbjF&md5=8e99a234acf2912fef0a4dd2e1d7accbCAS | open url image1

Schoevers, E. J., Bevers, M. M., Roelen, B. A., and Colenbrander, B. (2005). Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation. Theriogenology 63, 1111–1130.
Nuclear and cytoplasmic maturation of sow oocytes are not synchronized by specific meiotic inhibition with roscovitine during in vitro maturation.CrossRef | 1:CAS:528:DC%2BD2MXhtlSltLc%3D&md5=36f05ce4bdd1310c7c264f3a6b0617c1CAS | open url image1

Sirard, M. A. (2001). Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence. Theriogenology 55, 1241–1254.
Resumption of meiosis: mechanism involved in meiotic progression and its relation with developmental competence.CrossRef | 1:CAS:528:DC%2BD3MXjsFSisr0%3D&md5=f9ac6ab40205fabfd099d6d14a2f23a7CAS | open url image1

Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D., Papp, Á. B., Sato, E., and Nagai, T. (2003). Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11, 199–206.
Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes.CrossRef | 1:CAS:528:DC%2BD3sXot12gsL0%3D&md5=4dc8282b03423e04d31ca31390a99a5fCAS | open url image1

Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D.-i., Papp, B., Sato, E., and Nagai, T. (2004). Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes. Mol. Reprod. Dev. 68, 484–491.
Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes.CrossRef | 1:CAS:528:DC%2BD2cXlslWiu7g%3D&md5=95d83349eb8deb5338f24e3ed4a360a7CAS | open url image1

Somfai, T., Ozawa, M., Noguchi, J., Kaneko, H., Kuriani Karja, N. W., Farhudin, M., Dinnyés, A., Nagai, T., and Kikuchi, K. (2007). Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology 55, 115–126.
Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage.CrossRef | 1:CAS:528:DC%2BD2sXpvF2qtbc%3D&md5=eb3a674ffbaa35d88867c3e1b7930f9dCAS | open url image1

Somfai, T., Noguchi, J., Kaneko, H., Nakai, M., Ozawa, M., Kashiwazaki, N., Egerszegi, I., Ratky, J., Nagai, T., and Kikuchi, K. (2010). Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology 73, 147–156.
Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage.CrossRef | 1:CAS:528:DC%2BD1MXhsFGrsrfJ&md5=405ce273a799ecb3f40b79de9d315e6cCAS | open url image1

Somfai, T., Nakai, M., Tanihara, F., Noguchi, J., Kaneko, H., Kashiwazaki, N., Egerszegi, I., Nagai, T., and Kikuchi, K. (2013). Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes. J. Reprod. Dev. 59, 378–384.
Comparison of ethylene glycol and propylene glycol for the vitrification of immature porcine oocytes.CrossRef | 1:CAS:528:DC%2BC3sXhs1SitrbK&md5=b76e03f0abaa311b432767d43ecef120CAS | open url image1

Somfai, T., Yoshioka, K., Tanihara, F., Kaneko, H., Noguchi, J., Kashiwazaki, N., Nagai, T., and Kikuchi, K. (2014). Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS One 9, e97731.
Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production.CrossRef | open url image1

Somfai, T., Matoba, S., Inaba, Y., Nakai, M., Imai, K., Nagai, T., and Geshi, M. (2015a). Cytoskeletal and mitochondrial properties of bovine oocytes obtained by ovum pick-up: the effects of follicle stimulation and in vitro maturation. Anim. Sci. J. 86, 970–980.
Cytoskeletal and mitochondrial properties of bovine oocytes obtained by ovum pick-up: the effects of follicle stimulation and in vitro maturation.CrossRef | 1:CAS:528:DC%2BC2MXhvFKru7fM&md5=45f350aeda2b38fd6be05b8e4e5bea21CAS | open url image1

Somfai, T., Men, N. T., Noguchi, J., Kaneko, H., Kashiwazaki, N., and Kikuchi, K. (2015b). Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens. J. Reprod. Dev. 61, 571–579.
Optimization of cryoprotectant treatment for the vitrification of immature cumulus-enclosed porcine oocytes: comparison of sugars, combinations of permeating cryoprotectants and equilibration regimens.CrossRef | 1:CAS:528:DC%2BC2sXlsVGju7s%3D&md5=b83ab8cdeba253df3aeda7f7f4d2fd7bCAS | open url image1

Stojkovic, M., Machado, S., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture.CrossRef | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=8b7cf000f9af1a1d5cf28bb11a06283eCAS | open url image1

Succu, S., Bebbere, D., Bogliolo, L., Ariu, F., Fois, S., Leoni, G. G., Berlinguer, F., Naitana, S., and Ledda, S. (2008). Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance. Mol. Reprod. Dev. 75, 538–546.
Vitrification of in vitro matured ovine oocytes affects in vitro pre-implantation development and mRNA abundance.CrossRef | 1:CAS:528:DC%2BD1cXhs1Crsrk%3D&md5=563e8344984307e56c7e2c8e10223844CAS | open url image1

Tanghe, S., Van Soom, A., Nauwynck, H., Coryn, M., and de Kruif, A. (2002). Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61, 414–424.
Minireview: functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization.CrossRef | 1:CAS:528:DC%2BD38XhsFCgtbk%3D&md5=5acaa592247f798a811f0840fe5423c7CAS | open url image1

Tharasanit, T., Colleoni, S., Galli, C., Colenbrander, B., and Stout, T. A. (2009). Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes. Reproduction 137, 391–401.
Protective effects of the cumulus–corona radiata complex during vitrification of horse oocytes.CrossRef | 1:CAS:528:DC%2BD1MXovV2ksbo%3D&md5=79a4b59b773dc288c5f81959c8ef3f64CAS | open url image1

Tombes, R. M., Simerly, C., Borisy, G. G., and Schatten, G. (1992). Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte. J. Cell Biol. 117, 799–811.
| 1:CAS:528:DyaK38XitFWks7o%3D&md5=0686a7f17667daf899a0420807b22c8fCAS | open url image1

Vallorani, C., Spinaci, M., Bucci, D., Porcu, E., Tamanini, C., and Galeati, G. (2012). Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade. Anim. Reprod. Sci. 135, 68–74.
Pig oocyte vitrification by Cryotop method and the activation of the apoptotic cascade.CrossRef | 1:CAS:528:DC%2BC38XhtlCiur7E&md5=11c1eb85babaf196efad90bed6c431b8CAS | open url image1

Wang, C., and Machaty, Z. (2013). Calcium influx in mammalian eggs. Reproduction 145, R97–R105.
Calcium influx in mammalian eggs.CrossRef | 1:CAS:528:DC%2BC3sXotFait7k%3D&md5=4ddd0f239d318b63a8d8fb5c075b638bCAS | open url image1

Wang, W. H., Machaty, Z., Abeydeera, L. R., Prather, R. S., and Day, B. N. (1998). Parthenogenogenetic activation of pig oocytes with calcium ionophore and the block to sperm penetration after activation. Biol. Reprod. 58, 1357–1366.
Parthenogenogenetic activation of pig oocytes with calcium ionophore and the block to sperm penetration after activation.CrossRef | 1:CAS:528:DyaK1cXjsFSht7Y%3D&md5=5f7d91c4ac0a7c06ac6a6f3514c89ccbCAS | open url image1

Yoshida, M., Ishigaki, K., Nagai, T., Chikyu, M., and Pursel, V. G. (1993). Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biol. Reprod. 49, 89–94.
Glutathione concentration during maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus.CrossRef | 1:CAS:528:DyaK3sXkvFahtLY%3D&md5=52e19af116f3120149468a07d0acf995CAS | open url image1

Yoshioka, K., Suzuki, C., and Onishi, A. (2008). Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213.
Defined system for in vitro production of porcine embryos using a single basic medium.CrossRef | open url image1

Zhao, X. M., Du, W. H., Wang, D., Hao, H. S., Liu, Y., Qin, T., and Zhu, H. B. (2011). Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture. Mol. Reprod. Dev. 78, 942–950.
Recovery of mitochondrial function and endogenous antioxidant systems in vitrified bovine oocytes during extended in vitro culture.CrossRef | 1:CAS:528:DC%2BC3MXhsVOitr7M&md5=ae110530c2cf0aad7eb5909127442c06CAS | open url image1

Zhou, G. B., and Li, N. (2009). Cryopreservation of porcine oocytes: recent advances. Mol. Hum. Reprod. 15, 279–285.
Cryopreservation of porcine oocytes: recent advances.CrossRef | 1:CAS:528:DC%2BD1MXksVSqtLk%3D&md5=00d8637294a0b51c9c7060c9f4046e2aCAS | open url image1



Supplementary MaterialSupplementary Material (95 KB) Export Citation

View Altmetrics