Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Effects of ovarian disaggregation on adult murine follicle yield and viability

Fiona Young A B C , John Drummond A , Emma Akers A , Louise Bartle A , David Kennedy A and Mohammad Asaduzzaman A
+ Author Affiliations
- Author Affiliations

A Department of Medical Biotechnology, Flinders University, Adelaide, SA 5042, Australia.

B Flinders Fertility Pty Ltd, Flinders Medical Centre, Adelaide, SA 5042, Australia.

C Corresponding author. Email: fiona.young@flinders.edu.au

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16398
Submitted: 15 June 2016  Accepted: 8 April 2017   Published online: 1 June 2017

Abstract

Follicles are isolated from ovaries for numerous reasons, including IVM, but adult murine yields are <2 follicles mg-1. The aim of the present study was to optimise ovarian disaggregation and develop methods applicable to the rapid screening of follicle viability. Ovaries from adult mice (n = 7) were halved and disaggregated mechanically, or by using collagenase IV (Col-IV; 590 U mL-1) or animal origin-free collagenase IV (AOF) at 590 or 1180 U mL-1. Isolated follicles were stained with 4′,6′-diamidino-2-phenylindole (DAPI; nuclei), chloromethyl-X-rosamine (CMXRos; mitochondria) or fluorescein isothiocyanate-conjugated anti-α-tubulin antibody. Follicle diameters and staining were measured and analysed using ImageJ, and data analysed using GraphPad Prism. Col-IV disaggregation yielded the highest number of follicles (17 ± 10 follicles mg-1 ovarian tissue). All disaggregation methods released more secondary follicles (86 ± 20 per ovary; P < 0.05) than any other size cohort. Mechanical and Col-IV disaggregation yielded similar numbers of morphologically intact follicles, whereas AOF disaggregation caused more damage (P < 0.01). As the morphological disruption increased, DAPI and CMXRos staining decreased (P < 0.05), and tubulin localisation became more heterogeneous. Col-IV disaggregation gave the best yield of morphologically intact follicles containing viable granulosa cells. In conclusion, we improved adult murine follicle yields and applied molecular markers to assess follicle morphology, cellular cytoskeleton and mitochondrial function.

Additional keywords: alpha-tubulin, Animal Origin-Free Collagenase IV, CMXRos, cytoskeleton, DAPI, follicle morphology, granulosa cell, mitochondrial activity.


References

Aerts, J. M., Martinez-Madrid, B., Flothmann, K., De Clercq, J. B., Van Aelst, S., and Bols, P. E. (2008). Quantification and viability assessment of isolated bovine primordial and primary ovarian follicles retrieved through a standardized biopsy pick-up procedure. Reprod. Domest. Anim. 43, 360–366.
Quantification and viability assessment of isolated bovine primordial and primary ovarian follicles retrieved through a standardized biopsy pick-up procedure.CrossRef | 1:STN:280:DC%2BD1czgtFKgtg%3D%3D&md5=3e132c612f1f883b0dc36aaa65befda5CAS |

Albertini, D. F., Combelles, C. M., Benecchi, E., and Carabatsos, M. J. (2001). Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653.
Cellular basis for paracrine regulation of ovarian follicle development.CrossRef | 1:CAS:528:DC%2BD3MXktVaisbY%3D&md5=1f238b4e423853e7101563418028658eCAS |

Amorim, C. A., Van Langendonckt, A., David, A., Dolmans, M. M., and Donnez, J. (2009). Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum. Reprod. 24, 92–99.
Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix.CrossRef | 1:CAS:528:DC%2BD1cXhsFWjtbbI&md5=3c171693b745b297edfcc5ff5cee15c7CAS |

Carrell, D. T., Liu, L., Huang, I., and Peterson, C. M. (2005). Comparison of maturation, meiotic competence, and chromosome aneuploidy of oocytes derived from two protocols for in vitro culture of mouse secondary follicles. J. Assist. Reprod. Genet. 22, 347–354.
Comparison of maturation, meiotic competence, and chromosome aneuploidy of oocytes derived from two protocols for in vitro culture of mouse secondary follicles.CrossRef |

Chambers, E. L., Gosden, R. G., Yap, C., and Picton, H. M. (2010). In situ identification of follicles in ovarian cortex as a tool for quantifying follicle density, viability and developmental potential in strategies to preserve female fertility. Hum. Reprod. 25, 2559–2568.
In situ identification of follicles in ovarian cortex as a tool for quantifying follicle density, viability and developmental potential in strategies to preserve female fertility.CrossRef | 1:CAS:528:DC%2BC3cXhtFyltLjM&md5=3f8745162a1a6e292d8eb1621bd78991CAS |

Choi, J., Lee, B., Lee, E., Yoon, B. K., Bae, D., and Choi, D. (2008). Cryopreservation of ovarian tissues temporarily suppresses the proliferation of granulosa cells in mouse preantral follicles. Cryobiology 56, 36–42.
Cryopreservation of ovarian tissues temporarily suppresses the proliferation of granulosa cells in mouse preantral follicles.CrossRef | 1:CAS:528:DC%2BD1cXpt1Kruw%3D%3D&md5=4edf99e825521c86a9e4398e61d4b968CAS |

Cortvrindt, R., Smitz, J., and Van Steirteghem, A. C. (1996). In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepubertal mice in a simplified culture system. Hum. Reprod. 11, 2656–2666.
In-vitro maturation, fertilization and embryo development of immature oocytes from early preantral follicles from prepubertal mice in a simplified culture system.CrossRef | 1:STN:280:DyaK2s7ntlClsQ%3D%3D&md5=064503f89ab63809c6a280691bb8ef99CAS |

Dell’Aquila, M. E., Ambruosi, B., De Santis, T., and Cho, Y. S. (2009). Mitochondrial distribution and activity in human mature oocytes: gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation. Fertil. Steril. 91, 249–255.
Mitochondrial distribution and activity in human mature oocytes: gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation.CrossRef |

Dittrich, R., Hackl, J., Lotz, L., Hoffmann, I., and Beckmann, M. (2015). Pregnancies and live births after 20 transplantations of cryopreserved ovarian tissue in a single center. Fertil. Steril. 103, 462–468.
Pregnancies and live births after 20 transplantations of cryopreserved ovarian tissue in a single center.CrossRef |

Dolmans, M. M., Michaux, N., Camboni, A., Martinez-Madrid, B., Van Langendonckt, A., Nottola, S. A., and Donnez, J. (2006). Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles. Hum. Reprod. 21, 413–420.
Evaluation of Liberase, a purified enzyme blend, for the isolation of human primordial and primary ovarian follicles.CrossRef | 1:CAS:528:DC%2BD28Xmslymtg%3D%3D&md5=1de920e73d07aeb56d401cf5d50fa090CAS |

Dorphin, B., Prades-Borio, M., Anastacio, A., Rojat, P., Coussieu, C., and Poirot, C. (2012). Secretion profiles from in vitro cultured follicles, isolated from fresh prepubertal and adult mouse ovaries or frozen–thawed prepubertal mouse ovaries. Zygote 20, 181–192.
Secretion profiles from in vitro cultured follicles, isolated from fresh prepubertal and adult mouse ovaries or frozen–thawed prepubertal mouse ovaries.CrossRef | 1:CAS:528:DC%2BC38XkvVCrtLc%3D&md5=c8310716feda0316e127ab2b4a157c5aCAS |

Edelstein, A., Amodaj, N., Hoover, K., Vale, R., and Stuurman, N. (2010). Computer control of microscopes using microManager. In ‘Current Protocols in Molecular Biology’. (Eds F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman and K. Struhl.) pp. 14.20.1–14.20.17. (John Wiley & Sons, Inc.)

Eppig, J. J., Schroeder, A. C., and O’Brien, M. J. (1992). Developmental capacity of mouse oocytes matured in vitro: effects of gonadotrophic stimulation, follicular origin and oocyte size. J. Reprod. Fertil. 95, 119–127.
Developmental capacity of mouse oocytes matured in vitro: effects of gonadotrophic stimulation, follicular origin and oocyte size.CrossRef | 1:CAS:528:DyaK38Xks1egt7c%3D&md5=f35251aa1908f75616a7d68721a8f334CAS |

Fata, J. E., Ho, A. T.-V., Leco, K. J., Moorehead, R. A., and Khokha, R. (2000). Cellular turnover and extracellular matrix remodeling in female reproductive tissues: functions of metalloproteinases and their inhibitors. Cell. Mol. Life Sci. 57, 77–95.
Cellular turnover and extracellular matrix remodeling in female reproductive tissues: functions of metalloproteinases and their inhibitors.CrossRef | 1:CAS:528:DC%2BD3cXhslOrs74%3D&md5=5e34741d1d52dd9f55f62c8f38a35759CAS |

Gilchrist, R. B., Lane, M., and Thompson, J. G. (2008). Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update 14, 159–177.
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.CrossRef | 1:CAS:528:DC%2BD1cXisVKmurY%3D&md5=5e2a57b24e85c8f8d725a9e392930840CAS |

Gosden, R. G., Mullan, J., Picton, H. M., Yin, H., and Tan, S.-L. (2002). Current perspective on primordial follicle cryopreservation and culture for reproductive medicine. Hum. Reprod. Update 8, 105–110.
Current perspective on primordial follicle cryopreservation and culture for reproductive medicine.CrossRef |

Griffin, J., Emery, B. R., Huang, I., Peterson, C. M., and Carrell, D. T. (2006). Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J. Exp. Clin. Assist. Reprod. 3, 2.
Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human).CrossRef |

Gupta, P. S., and Nandi, S. (2012). Isolation and culture of preantral follicles for retrieving oocytes for the embryo production: present status in domestic animals. Reprod. Domest. Anim. 47, 513–519.
Isolation and culture of preantral follicles for retrieving oocytes for the embryo production: present status in domestic animals.CrossRef | 1:STN:280:DC%2BC38zms1SltQ%3D%3D&md5=e924c6a3b38953b351a22ea6c8816cb7CAS |

Hartshorne, G. M. (1997). In vitro culture of ovarian follicles. Rev. Reprod. 2, 94–104.
In vitro culture of ovarian follicles.CrossRef | 1:CAS:528:DyaK2sXktV2nur0%3D&md5=2817c59ad0c65d11f337eb48aef3ba09CAS |

Hatzirodos, N., Nigro, J., Irving-Rodgers, H. F., Vashi, A. V., Hummitzsch, K., Caterson, B., Sullivan, T. R., and Rodgers, R. J. (2012). Glycomic analyses of ovarian follicles during development and atresia. Matrix Biol. 31, 45–56.
Glycomic analyses of ovarian follicles during development and atresia.CrossRef | 1:CAS:528:DC%2BC38Xos12hsw%3D%3D&md5=36702e358e274a4631c9724ec3c6bfd6CAS |

Hornick, J. E., Duncan, F. E., Shea, L. D., and Woodruff, T. K. (2012). Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro. Hum. Reprod. 27, 1801–1810.
Isolated primate primordial follicles require a rigid physical environment to survive and grow in vitro.CrossRef | 1:CAS:528:DC%2BC38XnvVOls7k%3D&md5=d49978f5039fff5cce9cab5d5b1b481aCAS |

Hulshof, S. C. J., Figueiredo, J. R., Beckers, J. F., Bevers, M. M., and van den Hurk, R. (1994). Isolation and characterization of preantral follicles from foetal bovine ovaries. Vet. Q. 16, 78–80.
Isolation and characterization of preantral follicles from foetal bovine ovaries.CrossRef | 1:STN:280:DyaK2M%2Fns1Kmsw%3D%3D&md5=7ea573b6769087d3d47d06c1e4941b98CAS |

Irving-Rodgers, H. F., and Rodgers, R. J. (2006). ‘Extracellular matrix of the developing ovarian follicle. Seminars in Reproductive Medicine.’ (Thieme Medical Publishers, Inc.: New York, NY.)

Irving-Rodgers, H. F., Hummitzsch, K., Murdiyarso, L. S., Bonner, W. M., Sado, Y., Ninomiya, Y., Couchman, J. R., Sorokin, L. M., and Rodgers, R. J. (2010). Dynamics of extracellular matrix in ovarian follicles and corpora lutea of mice. Cell Tissue Res. 339, 613–624.
Dynamics of extracellular matrix in ovarian follicles and corpora lutea of mice.CrossRef | 1:CAS:528:DC%2BC3cXis1yjsrc%3D&md5=1b0d7fd120c55a69f43389adab569b8dCAS |

Katayama, M., Zhong, Z., Lai, L., Sutovsky, P., Prather, R. S., and Schatten, H. (2006). Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: implications for developmental potential. Dev. Biol. 299, 206–220.
Mitochondrial distribution and microtubule organization in fertilized and cloned porcine embryos: implications for developmental potential.CrossRef | 1:CAS:528:DC%2BD28XhtVygsb7K&md5=6f214cb88a2afdde30ecd93b4e0af878CAS |

Kristensen, S. G., Rasmussen, A., Byskov, A. G., and Andersen, C. Y. (2011). Isolation of pre-antral follicles from human ovarian medulla tissue. Hum. Reprod. 26, 157–166.
Isolation of pre-antral follicles from human ovarian medulla tissue.CrossRef |

Lenie, S., Cortvrindt, R., Adriaenssens, T., and Smitz, J. (2004). A reproducible two-step culture system for isolated primary mouse ovarian follicles as single functional units. Biol. Reprod. 71, 1730–1738.
A reproducible two-step culture system for isolated primary mouse ovarian follicles as single functional units.CrossRef | 1:CAS:528:DC%2BD2cXpt1yit7w%3D&md5=441fa73a7ed31e9ea75fc8ed995e2684CAS |

Makino, A., Ozaki, Y., Matsubara, H., Sato, T., Ikuta, K., Nishizawa, Y., and Suzumori, K. (2005). Role of apoptosis controlled by cytochrome c released from mitochondria for luteal function in human granulosa cells. Am. J. Reprod. Immunol. 53, 144–152.
Role of apoptosis controlled by cytochrome c released from mitochondria for luteal function in human granulosa cells.CrossRef | 1:CAS:528:DC%2BD28XhtVKms74%3D&md5=c4cdcb55bbae981ed0a7e9100c9a8de6CAS |

Matthews, K. A., Rees, D., and Kaufman, T. C. (1993). A functionally specialized alpha-tubulin is required for oocyte meiosis and cleavage mitoses in Drosophila. Development 117, 977–991.
| 1:CAS:528:DyaK3sXks1yms7s%3D&md5=64923b51efb2ef177a7878c6d6320eebCAS |

Moscatello, D. K. (2013). Systems and methods for the digestion of adipose tissue samples obtained from a client for cryopreservation, Google Patents.

Nandi, S., Girish Kumar, V., Ramesh, H. S., Manjunatha, B. M., and Gupta, P. S. (2009). Isolation and culture of ovine and bubaline small and large pre-antral follicles: effect of cyclicity and presence of a dominant follicle. Reprod. Domest. Anim. 44, 74–79.
Isolation and culture of ovine and bubaline small and large pre-antral follicles: effect of cyclicity and presence of a dominant follicle.CrossRef | 1:STN:280:DC%2BD1M%2FotFOmtQ%3D%3D&md5=0116b35d1a592c1efad86e4d28c2f80aCAS |

Palermo, G. D., Takeuchi, T., and Rosenwaks, Z. (2002). Oocyte-induced haploidization. Reprod. Biomed. Online 4, 237–242.
Oocyte-induced haploidization.CrossRef |

Park, K. S., Lee, T. H., Park, Y. K., Song, H. B., and Chun, S. S. (2005). Effects of isolating methods (mechanical or enzymatical) on structure of pre-antral follicles in mouse. J. Assist. Reprod. Genet. 22, 355–359.
Effects of isolating methods (mechanical or enzymatical) on structure of pre-antral follicles in mouse.CrossRef |

Picton, H. M., Harris, S. E., Muruvi, W., and Chambers, E. L. (2008). The in vitro growth and maturation of follicles. Reproduction 136, 703–715.
The in vitro growth and maturation of follicles.CrossRef | 1:CAS:528:DC%2BD1MXns1CktA%3D%3D&md5=6f52dbf0cc48d26452bd0da777101260CAS |

Poot, M., Zhang, Y. Z., Kramer, J. A., Wells, K. S., Jones, L. J., Hanzel, D. K., Lugade, A. G., Singer, V. L., and Haugland, R. P. (1996). Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44, 1363–1372.
Analysis of mitochondrial morphology and function with novel fixable fluorescent stains.CrossRef | 1:CAS:528:DyaK2sXhvVyrtw%3D%3D&md5=ae10d41c87b314d8f2ac33e7620ccaeeCAS |

Rice, S., Ojha, K., and Mason, H. (2008). Human ovarian biopsies as a viable source of pre-antral follicles. Hum. Reprod. 23, 600–605.
Human ovarian biopsies as a viable source of pre-antral follicles.CrossRef |

Rodgers, R. J., Irving-Rodgers, H. F., and Russell, D. L. (2003). Extracellular matrix of the developing ovarian follicle. Reproduction 126, 415–424.
Extracellular matrix of the developing ovarian follicle.CrossRef | 1:CAS:528:DC%2BD3sXpt1Clu78%3D&md5=33375c35f7c85ea2d23965d8156899a4CAS |

Schmitt, A., and Nebreda, A. R. (2002). Signalling pathways in oocyte meiotic maturation. J. Cell Sci. 115, 2457–2459.
| 1:CAS:528:DC%2BD38XlsVCqtbo%3D&md5=b332a5f7f7ae8c27332608623613e776CAS |

Smith, M. F., Ricke, W. A., Bakke, L. J., Dow, M. P., and Smith, G. W. (2002). Ovarian tissue remodeling: role of matrix metalloproteinases and their inhibitors. Mol. Cell. Endocrinol. 191, 45–56.
Ovarian tissue remodeling: role of matrix metalloproteinases and their inhibitors.CrossRef | 1:CAS:528:DC%2BD38XktFKhurY%3D&md5=9e7fa527f8cb09c1c6c404990db1e871CAS |

Stojkovic, M., Machado, S. A., Stojkovic, P., Zakhartchenko, V., Hutzler, P., Gonçalves, P. B., and Wolf, E. (2001). Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture 1. Biol. Reprod. 64, 904–909.
Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture 1.CrossRef | 1:CAS:528:DC%2BD3MXhsVKjtrk%3D&md5=8b7cf000f9af1a1d5cf28bb11a06283eCAS |

Takeuchi, T., Neri, Q. V., Katagiri, Y., Rosenwaks, Z., and Palermo, G. D. (2005). Effect of treating induced mitochondrial damage on embryonic development and epigenesis. Biol. Reprod. 72, 584–592.
Effect of treating induced mitochondrial damage on embryonic development and epigenesis.CrossRef | 1:CAS:528:DC%2BD2MXhvVeis7s%3D&md5=8b88255e54b2f532688027a8557cc1bcCAS |

Tatone, C., Di Emidio, G., Vento, M., Ciriminna, R., and Artini, P. G. (2010). Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 26, 563–567.
Cryopreservation and oxidative stress in reproductive cells.CrossRef |

Teilmann, S. C. (2005). Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary. Mol. Cell. Endocrinol. 234, 27–35.
Differential expression and localisation of connexin-37 and connexin-43 in follicles of different stages in the 4-week-old mouse ovary.CrossRef | 1:CAS:528:DC%2BD2MXjt1SqtLw%3D&md5=00f6ec727f5f88cf8e67f5221bacf014CAS |

Telfer, E. E., and Zelinski, M. B. (2013). Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil. Steril. 99, 1523–1533.
Ovarian follicle culture: advances and challenges for human and nonhuman primates.CrossRef |

Trapphoff, T., El Hajj, N., Zechner, U., Haaf, T., and Eichenlaub-Ritter, U. (2010). DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum. Reprod. 25, 3025–3042.
DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles.CrossRef | 1:CAS:528:DC%2BC3cXhsFSgsbbF&md5=955de7c875f17f84c8e1d15b2be3c31eCAS |

Vanacker, J., Camboni, A., Dath, C., Van Langendonckt, A., Dolmans, M. M., Donnez, J., and Amorim, C. A. (2011). Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. Fertil. Steril. 96, 379–383.e3.
Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting.CrossRef | 1:CAS:528:DC%2BC3MXptlyhu7c%3D&md5=5d471ced87b3b1e9868338534fe9504aCAS |

Van Blerkom, J., Davis, P. W., and Lee, J. (1995). Fertilization and early embryology: ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum. Reprod. 10, 415–424.
Fertilization and early embryology: ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer.CrossRef | 1:STN:280:DyaK2M3os1OrtQ%3D%3D&md5=3e7957ec8d671ddb5394acb50620c419CAS |

van Wezel, I. L., and Rodgers, R. J. (1996). Morphological characterization of bovine primordial follicles and their environment in vivo. Biol. Reprod. 55, 1003–1011.
Morphological characterization of bovine primordial follicles and their environment in vivo.CrossRef | 1:CAS:528:DyaK28Xmtlamu7w%3D&md5=d3c3969ade64541babd30083a28191ecCAS |

Vanhoutte, L., Cortvrindt, R., Nogueira, D., and Smitz, J. (2004). Effects of chilling on structural aspects of early preantral mouse follicles. Biol. Reprod. 70, 1041–1048.
Effects of chilling on structural aspects of early preantral mouse follicles.CrossRef | 1:CAS:528:DC%2BD2cXis1Siurc%3D&md5=cfe88437401d8117fc84ab475a993287CAS |

Wilding, M., Dale, B., Marino, M., di Matteo, L., Alviggi, C., Pisaturo, M. L., Lombardi, L., and De Placido, G. (2001). Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos. Hum. Reprod. 16, 909–917.
Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos.CrossRef | 1:STN:280:DC%2BD3MvitlCktw%3D%3D&md5=c61663a515f0938535b09bbb474acfa0CAS |

Wójtowicz, A., Szołtys, M., and Bilińska, B. (2001). Localization of alpha-tubulin in the rat cumulus oophorus before and during preovulatory expansion. Folia Histochem. Cytobiol. 39, 263–267.



Supplementary MaterialSupplementary Material (205 KB) Export Citation