Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Low doses of bisphenol A can impair postnatal testicular development directly, without affecting hormonal or oxidative stress levels

Fernanda M. Ogo A B , Glaucia E. M. L. Siervo A B , Géssica D. Gonçalves A B , Rubens Cecchini B , Flavia A. Guarnier B , Janete Ap. Anselmo-Franci C and Glaura S. A. Fernandes A D

A Department of General Biology, Biological Sciences Center, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 – Km 380, Campus Universitário, 86057-970, Londrina, Paraná, Brazil.

B Department of General Pathology, Biological Sciences Center, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 – Km 380, Campus Universitário, 86057-970, Londrina, Paraná, Brazil.

C Department of Morphology, Physiology and Basic Pathology, School of Dentistry of Ribeirão Preto, University of São Paulo, FORP, Av. do Café – S/N, 14040-904, Ribeirão Preto, São Paulo, Brazil.

D Corresponding author. Email: glaura@uel.br

Reproduction, Fertility and Development - https://doi.org/10.1071/RD16432
Submitted: 4 November 2016  Accepted: 22 February 2017   Published online: 7 April 2017

Abstract

Bisphenol A (BPA) is considered a potent endocrine disruptor, causing changes in the endocrine system due to its oestrogenic activity. Male individuals may be susceptible to endocrine, morphological and physiological alterations during testicular postnatal development. The aim of the present study was to evaluate whether exposure to BPA during the peripubertal period can damage testicular development. To this end, male Wistar rats were treated with BPA via gavage at doses of 20 or 200 µg kg-1 on Postnatal Days (PND) 36–66. The control group was treated with Oil + DMSO under the same conditions. On PND 67, rats were killed. The blood was collected for hormonal analysis, the testis for sperm count, oxidative stress, histopathological and immunohistochemical analyses for ki-67 and sperm of the vas deferens for morphological analysis. Both doses of BPA resulted in abnormal sperm morphology and seminiferous tubules, with the highest dose increasing the height of the germinal epithelium and reducing the number of spermatozoa at Stages IX–XIII of spermatogenesis. In conclusion, both doses of BPA administered during the peripubertal period impaired testicular development without any effects on hormone levels (luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone levels) or oxidative stress.

Additional keywords: puberty, rat, sex hormones, spermatozoa, testis.


References

Ahbab, M. A., Barlas, N., and Karabulut, G. (2017). The toxicological effects of bisphenol A and octylphenol on the reproductive system of prepubertal male rats. Toxicol. Ind. Health 33, 133–146.
The toxicological effects of bisphenol A and octylphenol on the reproductive system of prepubertal male rats.CrossRef | open url image1

Akingbemi, B. T., Sottas, C. M., Koulova, A. I., Klinefelter, G. R., and Hardy, M. P. (2004). Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology 145, 592–603.
Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells.CrossRef | 1:CAS:528:DC%2BD2cXovFSgtw%3D%3D&md5=ffffad6341b3bfc6f77a69b62ae5ac59CAS | open url image1

Anahara, R., Yoshida, M., Toyama, Y., Maekawa, M., Kai, M., Ishino, F., Toshimori, K., and Mori, C. (2006). Estrogen agonists, 17 beta-estradiol, bisphenol A, and diethylstilbestrol decrease cortactin expression in the mouse testis. Arch. Histol. Cytol. 69, 101–107.
Estrogen agonists, 17 beta-estradiol, bisphenol A, and diethylstilbestrol decrease cortactin expression in the mouse testis.CrossRef | 1:CAS:528:DC%2BD28XnslSqsL0%3D&md5=aeee031934559416e037cc7f9eb46110CAS | open url image1

Aydoğan, M., Korkmaz, A., Barlas, N., and Kolankaya, D. (2010). Pro-oxidant effect of vitamin C coadministration with bisphenol A, nonylphenol, and octylphenol on the reproductive tract of male rats. Drug Chem. Toxicol. 33, 193–203.
Pro-oxidant effect of vitamin C coadministration with bisphenol A, nonylphenol, and octylphenol on the reproductive tract of male rats.CrossRef | open url image1

Bromer, J. G., Zhou, Y., Taylor, M. B., Doherty, L., and Taylor, H. S. (2010). Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J. 24, 2273–2280.
Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response.CrossRef | 1:CAS:528:DC%2BC3cXptV2ktLY%3D&md5=35fda0c92c330eebb6082153df68f97fCAS | open url image1

Brotons, J. A., Olea-Serrano, M. F., Villalobos, M., Pedraza, V., and Olea, N. (1995). Xenoestrogens released from lacquer coating in food cans. Environ. Health Perspect. 103, 608–612.
Xenoestrogens released from lacquer coating in food cans.CrossRef | 1:CAS:528:DyaK2MXmslCntbg%3D&md5=e4732a7f84c981e3a5cee9fe51b2d218CAS | open url image1

Burridge, E. (2003). Bisphenol A product profile. European Chemical News 24, 14–20. open url image1

Chapin, R. E., Harris, M. W., Davis, B. J., Ward, S. M., Wilson, R. E., Mauney, M. A., Lockhart, A. C., Smialowicz, R. J., Moser, V. C., Burka, T. L., and Collins, B. J. (1997). The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function. Fundam. Appl. Toxicol. 40, 138–157.
The effects of perinatal/juvenile methoxychlor exposure on adult rat nervous, immune, and reproductive system function.CrossRef | 1:CAS:528:DyaK2sXns1Kksr8%3D&md5=7798c27ae27dc491abcb7d1ae4d89893CAS | open url image1

Chen, M., Xu, B., Ji, W., Qiao, S., Hu, N., Hu, Y., Wu, W., Qiu, L., Zhang, R., Wang, Y., Wang, S., Zhou, Z., Xia, Y., and Wang, X. (2012). Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study. PLoS One 7, e44754.
Bisphenol A alters n-6 fatty acid composition and decreases antioxidant enzyme levels in rat testes: a LC-QTOF-based metabolomics study.CrossRef | 1:CAS:528:DC%2BC38XhsVSjtbbE&md5=70af8e31b9239be23cb0bab59fa75d8cCAS | open url image1

Chitra, K. C., Rao, K. R., and Mathur, P. P. (2003). Effect of bisphenol A and co-administration of bisphenol A and vitamin C on epididymis of adult rats: a histological and biochemical study. Asian J. Androl. 5, 203–208.
| 1:CAS:528:DC%2BD3sXptlahs7s%3D&md5=67d1d1d6fecab554e526172037c48c0dCAS | open url image1

Chouhan, S., Yadav, S. K., Prakash, J., Westfall, S., Ghosh, A., Agarwal, N. K., and Singh, S. P. (2015). Increase in the expression of inducible nitric oxide synthase on exposure to bisphenol A: a possible cause for decline in steroidogenesis in male mice. Environ. Toxicol. Pharmacol. 39, 405–416.
Increase in the expression of inducible nitric oxide synthase on exposure to bisphenol A: a possible cause for decline in steroidogenesis in male mice.CrossRef | 1:CAS:528:DC%2BC2cXhslOkt7nK&md5=3832933ca6f5984c57ccc7360a13bb4eCAS | open url image1

European Food Safety Authority (EFSA) (2015). Understanding EFSA’s risk assessment of BPA – 2015. Available at http://www.efsa.europa.eu/en/corporate/doc/factsheetbpa150121.pdf [verified 15 January 2015].

Ehrlich, S., Calafat, A. M., Humblet, O., Smith, T., and Hauser, R. (2014). Handling of thermal receipts as a source of exposure to bisphenol A. JAMA 311, 859–860.
Handling of thermal receipts as a source of exposure to bisphenol A.CrossRef | 1:CAS:528:DC%2BC2cXjvVOht7g%3D&md5=6b5c77e35d29c56bc76257c1e955f1f0CAS | open url image1

Favareto, A. P., Fernandez, C. D., da Silva, D. A., Anselmo-Franci, J. A., and Kempinas, W. (2011). Persistent impairment of testicular histology and sperm motility in adult rats treated with cisplatin at peri-puberty. Basic Clin. Pharmacol. Toxicol. 109, 85–96.
Persistent impairment of testicular histology and sperm motility in adult rats treated with cisplatin at peri-puberty.CrossRef | 1:CAS:528:DC%2BC3MXpsl2qu7o%3D&md5=1cae5b6db65fc9a13f8413484bae4501CAS | open url image1

Fernandes, G. S., Arena, A. C., Fernandez, C. D., Mercadante, A., Barbisan, L. F., and Kempinas, W. G. (2007). Reproductive effects in male rats exposed to diuron. Reprod. Toxicol. 23, 106–112.
Reproductive effects in male rats exposed to diuron.CrossRef | 1:CAS:528:DC%2BD2sXisValsA%3D%3D&md5=37729d67c0c407a89ac87b5ed4f97a52CAS | open url image1

Fernandes, G. S., Fernandez, C. D., Campos, K. E., Damasceno, D. C., Anselmo-Franci, J. A., and Kempinas, W. D. (2011). Vitamin C partially attenuates male reproductive deficits in hyperglycemic rats. Reprod. Biol. Endocrinol. 9, 100.
Vitamin C partially attenuates male reproductive deficits in hyperglycemic rats.CrossRef | 1:CAS:528:DC%2BC3MXhtFGktr3J&md5=9a95422a3b6d3363c494ee0e581f0886CAS | open url image1

Fiorini, C., Ellil, A. T., Chevalier, S., Charuel, C., and Points, G. (2004). Sertoli cell junctional proteins as early targets for different classes of reproductive toxicans. Reprod. Toxicol. 18, 413–421.
Sertoli cell junctional proteins as early targets for different classes of reproductive toxicans.CrossRef | 1:CAS:528:DC%2BD2cXjtVemurw%3D&md5=8708cc8e61c4a5086f55b670a4ff79d6CAS | open url image1

Iida, H., Maehara, K., Doiguchi, M., Mori, T., and Yamada, F. (2003). Bisphenol A-induced apoptosis of cultured rat Sertoli cells. Reprod. Toxicol. 17, 457–464.
Bisphenol A-induced apoptosis of cultured rat Sertoli cells.CrossRef | 1:CAS:528:DC%2BD3sXkvF2gsb8%3D&md5=5bcd394b42c88f3b6f1520f0ef6d516fCAS | open url image1

Jiang, Z., Wanga, J., Lia, X., and Zhanga, X. (2016). Echinacoside and Cistanche tubulosa (Schenk) R. wight ameliorate bisphenol A-induced testicular and sperm damage in rats through gonad axis regulated steroidogenic enzymes. J. Ethnopharmacol. 193, 321–328.
Echinacoside and Cistanche tubulosa (Schenk) R. wight ameliorate bisphenol A-induced testicular and sperm damage in rats through gonad axis regulated steroidogenic enzymes.CrossRef | 1:CAS:528:DC%2BC28XhsVeltbvI&md5=c3f1689996dd022ab7fa07051868532cCAS | open url image1

Johnson, L., Blanchard, T. L., Varner, D. D., and Scrutchfield, W. L. (1997). Factors affecting spermatogenesis in the stallion. Theriogenology 48, 1199–1216.
Factors affecting spermatogenesis in the stallion.CrossRef | 1:STN:280:DC%2BD28zgtV2lsg%3D%3D&md5=20fcdac8a11f728854739c3bda710f39CAS | open url image1

Kabuto, H., Hasuike, S., Minagawa, N., and Shishibori, T. (2003). Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ. Res. 93, 31–35.
| 1:CAS:528:DC%2BD3sXlsVSmtLk%3D&md5=f04551b8bd87bf96c1adc6f4b5e95148CAS | open url image1

Kabuto, H., Amakawa, M., and Shishibori, T. (2004). Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes under development of the brain and testis in mice. Life Sci. 74, 2931–2940.
Exposure to bisphenol A during embryonic/fetal life and infancy increases oxidative injury and causes under development of the brain and testis in mice.CrossRef | 1:CAS:528:DC%2BD2cXisF2msL0%3D&md5=413359acd69c08ea004b1b82d7bbf86cCAS | open url image1

Lagos-Cabré, R., and Moreno, R. D. (2012). Contribution of environmental pollutants to male infertily: a working model of germ cell apoptosis induced by plasticizers. Biol. Res. 45, 5–14.
Contribution of environmental pollutants to male infertily: a working model of germ cell apoptosis induced by plasticizers.CrossRef | open url image1

Leblond, C. P., and Clermont, Y. (1952). Spermiogenesis of rat, mouse, hamster and guinea pig as revealed by the periodic acid–fuchsin sulfurous acid technique. Am. J. Anat. 90, 167–215.
| 1:STN:280:DyaG38%2FltlOgtw%3D%3D&md5=e8cc16cdb2c8731fa3b5e17202871e00CAS | open url image1

Li, M. W., Mruk, D. D., Lee, W. M., and Cheng, C. Y. (2009). Disruption of the blood–testis barrier integrity by bisphenol A in vitro: is this a suitable model for studying blood–testis barrier dynamics? Int. J. Biochem. Cell Biol. 41, 2302–2314.
Disruption of the blood–testis barrier integrity by bisphenol A in vitro: is this a suitable model for studying blood–testis barrier dynamics?CrossRef | 1:CAS:528:DC%2BD1MXhtFyntLvO&md5=9d979ef0cdb2b79e2db465346377fad7CAS | open url image1

Liu, C., Duan, W., Li, R., Xu, S., and Zhang, L. (2013). Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity. Cell Death Dis. 4, e676.
Exposure to bisphenol A disrupts meiotic progression during spermatogenesis in adult rats through estrogen-like activity.CrossRef | 1:CAS:528:DC%2BC3sXhtVyksbbN&md5=07c3170a5ec515707ee1295a6fa29452CAS | open url image1

Meeker, J. D., Ehrlich, S., Toth, L. T., Wright, D. L., Calafat, A. M., Trisini, A. T., Ye, X., and Hauser, R. (2010). Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod. Toxicol. 30, 532–539.
Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic.CrossRef | 1:CAS:528:DC%2BC3cXhsV2jtLfN&md5=e8346b9734aa2169992c8a349e2351f0CAS | open url image1

Miyakoda, H., Tabata, M., Onodera, S., and Takeda, K. (2000). Comparison of conjugative activity, conversion of bisphenol A to bisphenol A glucuronide, in fetal and mature male rat. J. Health Sci. 46, 269–274.
Comparison of conjugative activity, conversion of bisphenol A to bisphenol A glucuronide, in fetal and mature male rat.CrossRef | 1:CAS:528:DC%2BD3cXlsF2lt70%3D&md5=9325cb311c6f16f002d31f4baa812550CAS | open url image1

Morgan, A. M., El-Ballal, S. S., El-Bialy, B. E., and EL-Borai, N. B. (2014). Studies on the potential protective effect of cinnamon against bisphenol A- and octylphenol-induced oxidative stress in male albino rats. Toxicol. Rep. 1, 92–101.
Studies on the potential protective effect of cinnamon against bisphenol A- and octylphenol-induced oxidative stress in male albino rats.CrossRef | 1:CAS:528:DC%2BC2MXlvFWksLs%3D&md5=0e0df81dff7bfbb1eb2ecb56d46e3ef0CAS | open url image1

Nakamura, D., Yanagiba, Y., Duana, Z., Itoa, Y., Okamura, A., Asaeda, N., Tagawa, Y., Lic, C. M., Taya, K., Zhanga, S.-Y., Naitoa, H., Ramghana, D. H., Kamijima, M., and Nakajima, T. (2010). Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol. Lett. 194, 16–25.
| 1:CAS:528:DC%2BC3cXjt1aiu7k%3D&md5=ea92a0441111898461de24262e845d36CAS | open url image1

Nanjappa, M. K., Simon, L., and Akingbemi, B. T. (2012). The industrial chemical bisphenol A (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells. Biol. Reprod. 86, 135.
The industrial chemical bisphenol A (BPA) interferes with proliferative activity and development of steroidogenic capacity in rat Leydig cells.CrossRef | open url image1

Naslund, M. J., and Coffey, D. S. (1986). The differential effects of neonatal androgen, estrogen and progesterone on adult rat prostate growth. J. Urol. 136, 1136–1140.
| 1:CAS:528:DyaL2sXnsFU%3D&md5=38df63c44f749ba850d399da23e1f652CAS | open url image1

Newbold, R. R., and McLachlan, J. A. (1985). Diethylstilbestrol-associated defects in murine genital tract development. In ‘Estrogens in the Environment II – Influences on Development’. (Ed. J. A. McLachlan.) pp. 288–318. (Elsevier: New York.)

Ojeda, S. R., and Skinner, M. K. (2006). Puberty in the rat. In ‘Knobil and Neill’s Physiology of Reproduction’. (Ed. J. D. Neill.) pp. 2061–2126. (Academic Press/Elsevier: San Diego.)

Ojeda, S. R., and Urbaniski, H. F. (1994). Puberty in the rat. In ‘Knobil and Neill’s Physiology of Reproduction’. (Ed. J. D. Neill.) pp. 365–409. (Academic Press/Elsevier: San Diego.)

Ojeda, S. R., Andrews, W. W., Advis, J. P., and White, S. S. (1980). Recent advances in the endocrinology of puberty. Endocr. Rev. 1, 228–257.
Recent advances in the endocrinology of puberty.CrossRef | 1:CAS:528:DyaL3MXkvFChtLw%3D&md5=acb8c0aaaba584d46bd8bba58858928cCAS | open url image1

Oliveira, F. J. A., and Cecchini, R. (2000). Oxidative stress of liver in hamsters infected with Leishmania (L.) chagasi. J. Parasitol. 86, 1067–1072.
Oxidative stress of liver in hamsters infected with Leishmania (L.) chagasi.CrossRef | 1:CAS:528:DC%2BD3cXnvVOisLk%3D&md5=623bff3293c6a969cc5556ab04a4583eCAS | open url image1

Othman, A. I., Edrees, G. M., El-Missiry, M. A., Ali, D. A., Aboel-Nour, M., and Dabdoub, B. R. (2016). Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity. Toxicol. Ind. Health 32, 1537–1549.
Melatonin controlled apoptosis and protected the testes and sperm quality against bisphenol A-induced oxidative toxicity.CrossRef | 1:CAS:528:DC%2BC28XhvVylsLrE&md5=ad9a1ede3eafba948b12a321e30619d0CAS | open url image1

Pasqualotto, F. F., Locambo, C. V., Athayde, K. S., and Arap, S. (2003). Measuring male infertility: epidemiologicalaspects. Rev. Hosp. Clin. Fac. Med. Sao Paulo 58, 173–178. open url image1

Peretz, J., Vrooman, L., Ricke, W. A., Hunt, P. A., Ehrlich, S., Hauser, R., Padmanabhan, V., Taylor, H. S., Swan, S. H., VandeVoort, C. A., and Flaws, J. A. (2014). Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ. Health Perspect. 122, 775–786. open url image1

Puchtler, H., Waldrop, F. S., Meloan, S. N., Terry, M. S., and Conner, H. M. (1970). Methacarn (methanol-Carnoy) fixation. Histochem. Cell Biol. 21, 97–116.
Methacarn (methanol-Carnoy) fixation.CrossRef | 1:CAS:528:DyaE3cXhtFygtbk%3D&md5=fb8d3d4546cefb41fc4efed7feea39d6CAS | open url image1

Qi, S., Fu, W., Wang, C., Liu, C., Quan, C., Kourouma, A., Yan, M., Yu, T., Duan, P., and Yang, K. (2014). BPA-induced apoptosis of rat Sertoli cells through Fas/FasL and JNKs/p38 MAPK pathways. Reprod. Toxicol. 50, 108–116.
BPA-induced apoptosis of rat Sertoli cells through Fas/FasL and JNKs/p38 MAPK pathways.CrossRef | 1:CAS:528:DC%2BC2cXhvVCktLjJ&md5=6af1484900522ab4f55831f8f62b9823CAS | open url image1

Qiu, L. L., Wang, X., Zhang, X. H., Zhang, Z., Gu, J., Liu, L., Wang, Y., Wang, X., and Wang, S. L. (2013). Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A. Toxicol. Lett. 219, 116–124.
Decreased androgen receptor expression may contribute to spermatogenesis failure in rats exposed to low concentration of bisphenol A.CrossRef | 1:CAS:528:DC%2BC3sXmtlaqt7c%3D&md5=9442d2678c34b1e4c7453637445be888CAS | open url image1

Rahman, M. S., Kwon, W. S., Lee, J. S., Yoon, J. S., Ryu, B. Y., and Pang, M. G. (2015). Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci. Rep. 5, 9169.
Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa.CrossRef | open url image1

Repetto, M., Reides, C., Gomez Carretero, M. L., Costa, M., Griemberg, G., and Llesuy, S. (1996). Oxidative stress in blood of HIV infected patients. Clin. Chim. Acta 255, 107–117.
Oxidative stress in blood of HIV infected patients.CrossRef | 1:CAS:528:DyaK28XmvFars78%3D&md5=8dc90a4809a49e4d3e943b93337c06dcCAS | open url image1

Richter, C. A., Birnbaum, L. S., Farabollini, F., Newbold, R. R., Rubin, B. S., Talsness, C. E., Vandenbergh, J. G., Walser-Kuntz, D. R., and VomSaal, F. S. (2007). In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol. 24, 199–224.
In vivo effects of bisphenol A in laboratory rodent studies.CrossRef | 1:CAS:528:DC%2BD2sXhtVCisL%2FF&md5=e29ccef3d291811ba226fc58ac0ab017CAS | open url image1

Robb, G. W., Amman, R. P., and Killian, G. J. (1978). Daily sperm production and epididymal sperm reserves of pubertal and adult rats. J. Reprod. Fertil. 54, 103–107.
Daily sperm production and epididymal sperm reserves of pubertal and adult rats.CrossRef | 1:STN:280:DyaE1M%2FltVegtg%3D%3D&md5=2c9749303358060853d6f22403641102CAS | open url image1

Russell, L. (1977). Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. J. Anat. 148, 313–328.
Movement of spermatocytes from the basal to the adluminal compartment of the rat testis.CrossRef | 1:STN:280:DyaE2s7nvFSmsQ%3D%3D&md5=248d4e47a2b55600fdfd606e1fd15e89CAS | open url image1

Salian, S., Doshi, T., and Vanage, G. (2009). Neonatal exposure of male rats to bisphenol A impairs fertility and expression of Sertoli cell junctional proteins in the testis. Toxicology 265, 56–67.
Neonatal exposure of male rats to bisphenol A impairs fertility and expression of Sertoli cell junctional proteins in the testis.CrossRef | 1:CAS:528:DC%2BD1MXht1Ogur7I&md5=8e1f0b8db8b713864b1b762d7dfcc8d1CAS | open url image1

Schlesser, H. N. (2009). Neonatal exposure to endocrine disruptors. Dissertation. University of Illinois at Urbana-Champaign, Urbana, Illinois.

Sedlak, J., and Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 25, 192–205.
Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent.CrossRef | 1:CAS:528:DyaF1MXhslCktA%3D%3D&md5=e75f796aae7eafda17a082533b13e087CAS | open url image1

Sekizawa, J. (2008). Low dose effects of bisphenol A: a serious threat to human health? J. Toxicol. Sci. 33, 389–403.
Low dose effects of bisphenol A: a serious threat to human health?CrossRef | 1:CAS:528:DC%2BD1cXht1Omtr7L&md5=ea1a5aa6ca96ca40177f5e91ac40b767CAS | open url image1

Sharpe, R. M. (2010). Development and maturation of the normal male reproductive system. In ‘Environmental Impacts on Reproductive Health and Fertility’. (Eds T. J. Woodruff, S. J. Janssen, L.J. Guillette, and L. C. Giudice.) pp. 48–59. (Cambridge University Press: Cambridge.)

Stoker, T. E., Parks, L. G., Gray, L. E., and Cooper, R. L. (2000). Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee. Crit. Rev. Toxicol. 30, 197–252.
Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.CrossRef | 1:CAS:528:DC%2BD3cXis1ChsrY%3D&md5=4509bb6648d6f34c46b75cff5658a577CAS | open url image1

Tamilselvan, P., Langeswaran, K., Vijayaprakash, S., Kumara, S. G., Revathy, R., and Balasubramanian, M. P. (2014). Efficiency of lycopene against reproductive and developmental toxicity of bisphenol A in male Sprague Dawley rats. Biomedicine & Preventive Nutrition 4, 491–498.
Efficiency of lycopene against reproductive and developmental toxicity of bisphenol A in male Sprague Dawley rats.CrossRef | open url image1

Toyama, Y., and Yuasa, S. (2004). Effects of neonatal administration of 17β-estradiol,-estradiol 3-benzoate or bisphenol A on mouse and rat spermatogenesis. Reprod. Toxicol. 19, 181–188.
Effects of neonatal administration of 17β-estradiol,-estradiol 3-benzoate or bisphenol A on mouse and rat spermatogenesis.CrossRef | 1:CAS:528:DC%2BD2cXovV2gurs%3D&md5=3cc78f388e89f0473ba0d088526316dcCAS | open url image1

Toyama, Y., Suzuki-Toyota, F., Maekawa, M., Ito, C., and Toshimori, K. (2004). Adverse effects of bisphenol A to spermiogenesis in mice and rats. Arch. Histol. Cytol. 67, 373–381.
Adverse effects of bisphenol A to spermiogenesis in mice and rats.CrossRef | 1:CAS:528:DC%2BD2MXhslKrsb4%3D&md5=39de721f41839c6e45156d21cf675948CAS | open url image1

Tripathi, R., Mishra, D. P., and Shaha, C. (2009). Male germ cell development: turning on the apoptotic pathways. J. Reprod. Immunol. 83, 31–35.
Male germ cell development: turning on the apoptotic pathways.CrossRef | 1:CAS:528:DC%2BD1MXhsVyntr3J&md5=bf92aca5fb0c397f3ffcc5d07ffb04b3CAS | open url image1

U.S. Environmental Protection Agency (USEPA) (2010). Bisphenol A action plan (CASRN 80-05-7) [CA index name: phenol, 4,4′-(1-methylethylidene)bis-]. Available at https://www.epa.gov/sites/production/files/2015-09/documents/bpa_action_plan.pdf [verified 28 February 2017].

Vandenberg, L. N., Maffini, M. V., Sonnenschein, C., Rubin, B. S., and Soto, A. M. (2009). Bisphenol A and great divided: a review of controversies in the field of endocrine disruption. Endocr. Rev. 30, 75–95.
Bisphenol A and great divided: a review of controversies in the field of endocrine disruption.CrossRef | 1:CAS:528:DC%2BD1MXjt1eqsr4%3D&md5=944dafb938e26d060eeaacb84b0f008dCAS | open url image1

Vogel, S. A. (2009). The politics of plastics: the making and unmaking of bisphenolasafety. Am. J. Public Health 99, S559–S566.
The politics of plastics: the making and unmaking of bisphenolasafety.CrossRef | open url image1

Waissmann, W. (2002). Health surveillance and endocrine disruptors. Cad. Saúde Pública 18, 511–517. open url image1

Wisniewski, P., Romano, R. M., Kizys, M. M. L., Oliveira, K. C., Kasamatsu, T., Giannocco, G., Chiamolera, M. I., Dias-da-Silva, M. R., and Romano, M. A. (2015). Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis. Toxicology 329, 1–9.
Adult exposure to bisphenol A (BPA) in Wistar rats reduces sperm quality with disruption of the hypothalamic–pituitary–testicular axis.CrossRef | 1:CAS:528:DC%2BC2MXltVOjuw%3D%3D&md5=7f102f588ec8214a3a7de86408b48f41CAS | open url image1

Xiao, Q., Li, Y., Ouyang, H., Xu, P., and Wu, D. (2006). High-performance liquid chromatographic analysis of bisphenol A and 4-nonylphenol in serum, liver and testis tissues after oral administration to rats and its application to toxicokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830, 322–329.
High-performance liquid chromatographic analysis of bisphenol A and 4-nonylphenol in serum, liver and testis tissues after oral administration to rats and its application to toxicokinetic study.CrossRef | 1:CAS:528:DC%2BD28XksVCkuw%3D%3D&md5=42fafad218fcc7afe8abcd605f57ac03CAS | open url image1



Export Citation