Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Post-fertilisation sperm mitophagy: the tale of Mitochondrial Eve and Steve

Peter Sutovsky A B D and Won-Hee Song A C
+ Author Affiliations
- Author Affiliations

A Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO 65211, USA.

B Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, MA204C Medical Sciences Building, Columbia, MO 65211, USA.

C Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA.

D Corresponding author. Email: sutovskyp@missouri.edu

Reproduction, Fertility and Development 30(1) 56-63 https://doi.org/10.1071/RD17364
Published: 4 December 2017

Abstract

Preformationist William Harvey’s proclamation of everything live coming from an egg still holds true for mammalian mitochondria and mitochondrial genes. At fertilisation, mitochondria carried into the oocyte cytoplasm by the spermatozoon are sought out and destroyed, leaving only oocyte mitochondria to propagate their mitochondrial (mt) DNA to offspring. This clonal inheritance mode, the ‘mitochondrial Eve’ paradigm, is mediated by oocytes’ resident proteolytic, organelle-targeting mechanisms, including the substrate-specific ubiquitin proteasome system and the autophagic machinery for bulk protein and organelle degradation. Ubiquitination of sperm mitochondria within the cytoplasm of the fertilised oocyte was initially discovered in mammals. More recent studies in Drosophila and Caenorhabditis elegans implicated the ubiquitin-binding autophagy protein sequestosome 1 (SQSTM1) as the early adaptor channelling ubiquitinated sperm mitochondria towards the autophagic machinery. Downstream receptors include microtubule-associated protein 1 light chain 3α (LC3) and GABA type A receptor-associated protein (GABARAP). Among mammals, the domestic pig is the ideal mammalian model of mitochondrial inheritance because of rapid sperm mitophagy at the 1-cell stage of embryo development. Primary recognition of sperm mitochondria by SQSTM1 inside the porcine zygote is followed by GABARAP-containing autophagophore formation, and contributed to by valosin-containing protein (VCP), a 26S proteasome-presenting protein dislocase. Consequently, coinhibition of SQSTM1–GABARAP and VCP activities in the porcine zygotes, resulting in 2- to 4-cell embryos carrying intact sperm mitochondrial sheaths, revived the moniker of ‘Mitochondrial Steve’. Further work will identify the determinants of species specificity of sperm mitophagy and explain the interplay and possible consequences of a mismatch between clonal mitochondrial genome and biparentally inherited chromosomal genes encoding for structural mitochondrial proteins and transcription factors. By better understanding sperm mitophagy and its potential failure, we may be able to alleviate mitochondrial disease and early pregnancy loss in livestock and improve their fitness, reproduction and ability to pass favourable production traits to offspring.

Additional keywords: autophagy, GABA type A receptor-associated protein (GABARAP), heteroplasmy, lysosome, mitochondrial DNA, sequestosome 1 (SQSTM1), ubiquitin proteasome system, valosin-containing protein (VCP).


References

Al Rawi, S., Louvet-Vallée, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., and Galy, V. (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147.
Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission.CrossRef | 1:CAS:528:DC%2BC3MXhsV2mu7jO&md5=a1cadb12eb2d592c79a953899edb3ac4CAS |

Al Rawi, S., Louvet-Vallée, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., and Galy, V. (2012). Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles. Autophagy 8, 421–423.
Allophagy: a macroautophagic process degrading spermatozoid-inherited organelles.CrossRef |

Ankel-Simons, F., and Cummins, J. M. (1996). Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc. Natl Acad. Sci. USA 93, 13859–13863.
Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution.CrossRef | 1:CAS:528:DyaK28Xnt1Gmu7g%3D&md5=337c54ea987effc58d4e5866319d1c83CAS |

Antelman, J., Manandhar, G., Yi, Y. J., Li, R., Whitworth, K. M., Sutovsky, M., Agca, C., Prather, R. S., and Sutovsky, P. (2008). Expression of mitochondrial transcription factor a (tfam) during porcine gametogenesis and preimplantation embryo development. J. Cell. Physiol. 217, 529–543.
Expression of mitochondrial transcription factor a (tfam) during porcine gametogenesis and preimplantation embryo development.CrossRef | 1:CAS:528:DC%2BD1cXht1elt7%2FI&md5=3dd299cee51ad9144ca8a0eb658e586dCAS |

Birky, C. W. (1995). Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc. Natl Acad. Sci. USA 92, 11331–11338.
Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution.CrossRef | 1:CAS:528:DyaK2MXpvVOgt7s%3D&md5=0b061b7f1d5b72b9d429e24362c4073dCAS |

Bromham, L., Eyre-Walker, A., Smith, N. H., and Maynard Smith, J. M. (2003). Mitochondrial Steve: paternal inheritance of mitochondria in humans. Trends Ecol. Evol. 18, 2–4.
Mitochondrial Steve: paternal inheritance of mitochondria in humans.CrossRef |

Cataldo, L., Baig, K., Oko, R., Mastrangelo, M. A., and Kleene, K. C. (1996). Developmental expression, intracellular localization, and selenium content of the cysteine-rich protein associated with the mitochondrial capsules of mouse sperm. Mol. Reprod. Dev. 45, 320–331.
Developmental expression, intracellular localization, and selenium content of the cysteine-rich protein associated with the mitochondrial capsules of mouse sperm.CrossRef | 1:CAS:528:DyaK28XmslWlurc%3D&md5=ff92d43593fcdc5c089e1f30ac63e3edCAS |

Cummins, J. M., Wakayama, T., and Yanagimachi, R. (1998). Fate of microinjected spermatid mitochondria in the mouse oocyte and embryo. Zygote 6, 213–222.
Fate of microinjected spermatid mitochondria in the mouse oocyte and embryo.CrossRef | 1:STN:280:DyaK1M%2FntF2mtA%3D%3D&md5=19492e7138c1b35b89690aff608fc52fCAS |

DeLuca, S. Z., and O’Farrell, P. H. (2012). Barriers to male transmission of mitochondrial DNA in sperm development. Dev. Cell 22, 660–668.
Barriers to male transmission of mitochondrial DNA in sperm development.CrossRef | 1:CAS:528:DC%2BC38XjslertLk%3D&md5=3bcb851f8cdf32ca87227aec32bd54d1CAS |

Ding, B., and Zhong, Q. (2017). Zinc deficiency: an unexpected trigger for autophagy. J. Biol. Chem. 292, 8531–8532.
Zinc deficiency: an unexpected trigger for autophagy.CrossRef | 1:CAS:528:DC%2BC2sXotVCitL4%3D&md5=c6eda3d1035acbb96dfec6e3dbd4492cCAS |

Djeddi, A., Al Rawi, S., Deuve, J. L., Perrois, C., Liu, Y. Y., Russeau, M., Sachse, M., and Galy, V. (2015). Sperm-inherited organelle clearance in C. elegans relies on lc3-dependent autophagosome targeting to the pericentrosomal area. Development 142, 1705–1716.
Sperm-inherited organelle clearance in C. elegans relies on lc3-dependent autophagosome targeting to the pericentrosomal area.CrossRef | 1:CAS:528:DC%2BC2MXhtVSjsrjK&md5=f735007e10f086e815adadabcd38a4ecCAS |

Ficarro, S., Chertihin, O., Westbrook, V. A., White, F., Jayes, F., Kalab, P., Marto, J. A., Shabanowitz, J., Herr, J. C., Hunt, D. F., and Visconti, P. E. (2003). Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J. Biol. Chem. 278, 11579–11589.
Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation.CrossRef | 1:CAS:528:DC%2BD3sXit1Kgtbw%3D&md5=846eda60e40eea2e111cd7ec8b856334CAS |

Gibson, J. P., Freeman, A. E., and Boettcher, P. J. (1997). Cytoplasmic and mitochondrial inheritance of economic traits in cattle. Livest. Prod. Sci. 47, 115–124.
Cytoplasmic and mitochondrial inheritance of economic traits in cattle.CrossRef |

Glotzer, M., Murray, A. W., and Kirschner, M. W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138.
Cyclin is degraded by the ubiquitin pathway.CrossRef | 1:CAS:528:DyaK3MXps12jtA%3D%3D&md5=014b91a7705eac75037d80d2731d7b8eCAS |

Gresson, R. A. R. (1940). Presence of the sperm middle-piece in the fertilized egg of the mouse (Mus musculus). Nature 145, 425.
Presence of the sperm middle-piece in the fertilized egg of the mouse (Mus musculus).CrossRef |

Hayashida, K., Omagari, K., Masuda, J., Hazama, H., Kadokawa, Y., Ohba, K., and Kohno, S. (2005). The sperm mitochondria-specific translocator has a key role in maternal mitochondrial inheritance. Cell Biol. Int. 29, 472–481.
The sperm mitochondria-specific translocator has a key role in maternal mitochondrial inheritance.CrossRef | 1:CAS:528:DC%2BD2MXmvVCnt78%3D&md5=6be135a94cfa549077d995016d205c1eCAS |

Hayashida, K., Omagari, K., Masuda, J., and Kohno, S. (2008). An integrase of endogenous retrovirus is involved in maternal mitochondrial DNA inheritance of the mouse. Biochem. Biophys. Res. Commun. 366, 206–211.
An integrase of endogenous retrovirus is involved in maternal mitochondrial DNA inheritance of the mouse.CrossRef | 1:CAS:528:DC%2BD2sXhsVOktr%2FO&md5=e732d25ec06797e4c70ded602f144d97CAS |

Hershko, A., and Ciechanover, A. (1998). The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.
The ubiquitin system.CrossRef | 1:CAS:528:DyaK1cXlsFOmsLc%3D&md5=240956a833e1f12a7afa36eea194138bCAS |

Kaneda, H., Hayashi, J., Takahama, S., Taya, C., Lindahl, K. F., and Yonekawa, H. (1995). Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc. Natl Acad. Sci. USA 92, 4542–4546.
Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis.CrossRef | 1:CAS:528:DyaK2MXls1aksbw%3D&md5=f0fddab914b16925d5d0344f5fb44a41CAS |

Karbowski, M., and Youle, R. J. (2011). Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol. 23, 476–482.
Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation.CrossRef | 1:CAS:528:DC%2BC3MXps1ejtbg%3D&md5=40bbe49217875bd6f3f67aa45b23c8f5CAS |

Kennedy, C. E., Krieger, K. B., Sutovsky, M., Xu, W., Vargovič, P., Didion, B. A., Ellersieck, M. R., Hennessy, M. E., Verstegen, J., Oko, R., and Sutovsky, P. (2014). Protein expression pattern of pawp in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Mol. Reprod. Dev. 81, 436–449.
Protein expression pattern of pawp in bull spermatozoa is associated with sperm quality and fertility following artificial insemination.CrossRef | 1:CAS:528:DC%2BC2cXjtVGmtbo%3D&md5=7615df43abf4e7567f3332b61b96fa4fCAS |

Laurin, N., Brown, J. P., Morissette, J., and Raymond, V. (2002). Recurrent mutation of the gene encoding sequestosome 1 (sqstm1/p62) in Paget disease of bone. Am. J. Hum. Genet. 70, 1582–1588.
Recurrent mutation of the gene encoding sequestosome 1 (sqstm1/p62) in Paget disease of bone.CrossRef | 1:CAS:528:DC%2BD38Xkt1Sqsb4%3D&md5=cbbabd7542b9e5d30cbcfd6873b1e9b4CAS |

Lewin, R. (1987). The unmasking of Mitochondrial Eve. Science 238, 24–26.
The unmasking of Mitochondrial Eve.CrossRef | 1:STN:280:DyaL1c%2Fhsl2kug%3D%3D&md5=02f35cd4c7231df2d62fd6d9e0d5c9a6CAS |

Luo, S. M., Ge, Z. J., Wang, Z. W., Jiang, Z. Z., Wang, Z. B., Ouyang, Y. C., Hou, Y., Schatten, H., and Sun, Q. Y. (2013). Unique insights into maternal mitochondrial inheritance in mice. Proc. Natl Acad. Sci. USA 110, 13038–13043.
Unique insights into maternal mitochondrial inheritance in mice.CrossRef | 1:CAS:528:DC%2BC3sXhsVSjsb7P&md5=ea59504b2384f0432e063a3119df5cdbCAS |

Lystad, A. H., Ichimura, Y., Takagi, K., Yang, Y., Pankiv, S., Kanegae, Y., Kageyama, S., Suzuki, M., Saito, I., Mizushima, T., Komatsu, M., and Simonsen, A. (2014). Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3b-positive structures. EMBO Rep. 15, 557–565.
Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3b-positive structures.CrossRef | 1:CAS:528:DC%2BC2cXhtVyms77J&md5=84791da32d9c6eca13f2653ece12f596CAS |

Mai, S., Muster, B., Bereiter-Hahn, J., and Jendrach, M. (2012). Autophagy proteins LC3b, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 8, 47–62.
Autophagy proteins LC3b, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan.CrossRef | 1:CAS:528:DC%2BC38XlsVWnt7s%3D&md5=c605ed5d93cb858b9d0743e71360c73aCAS |

Massányi, P., Trandzík, J., Nad, P., Koréneková, B., Skalická, M., Toman, R., Lukác, N., Strapák, P., Halo, M., and Turcan, J. (2003). Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 38, 2643–2651.
Concentration of copper, iron, zinc, cadmium, lead, and nickel in boar semen and relation to the spermatozoa quality.CrossRef |

Moore, K., Lovercamp, K., Feng, D., Antelman, J., Sutovsky, M., Manandhar, G., van Leyen, K., Safranski, T., and Sutovsky, P. (2010). Altered epididymal sperm maturation and cytoplasmic droplet migration in subfertile male alox15 mice. Cell Tissue Res. 340, 569–581.
Altered epididymal sperm maturation and cytoplasmic droplet migration in subfertile male alox15 mice.CrossRef |

Pines, J. (1994). Cell cycle. Ubiquitin with everything. Nature 371, 742–743.
Cell cycle. Ubiquitin with everything.CrossRef | 1:CAS:528:DyaK2MXitVSju7s%3D&md5=fd335c9de0ee1cfbc6643c2facfd1a8cCAS |

Politi, Y., Gal, L., Kalifa, Y., Ravid, L., Elazar, Z., and Arama, E. (2014). Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila. Dev. Cell 29, 305–320.
Paternal mitochondrial destruction after fertilization is mediated by a common endocytic and autophagic pathway in Drosophila.CrossRef | 1:CAS:528:DC%2BC2cXotlOrsrY%3D&md5=846a26fec96163c413256a3122cefea8CAS |

Rojansky, R., Cha, M. Y., and Chan, D. C. (2016). Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5, e17896.
Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1.CrossRef |

Roomans, G. M., Lundevall, E., Bjorndahl, L., and Kvist, U. (1982). Removal of zinc from subcellular regions of human spermatozoa by EDTA treatment studied by X-ray microanalysis. Int. J. Androl. 5, 478–486.
Removal of zinc from subcellular regions of human spermatozoa by EDTA treatment studied by X-ray microanalysis.CrossRef | 1:CAS:528:DyaL38XmtFegsLs%3D&md5=b606048f03dca4c9ace7ff5a20ef4665CAS |

Sato, M., and Sato, K. (2011). Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 334, 1141–1144.
Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos.CrossRef | 1:CAS:528:DC%2BC3MXhsV2mu7jN&md5=81e313ee920116fc01c6b1e0b153e5a6CAS |

Schwartz, M., and Vissing, J. (2002). Paternal inheritance of mitochondrial DNA. N. Engl. J. Med. 347, 576–580.
Paternal inheritance of mitochondrial DNA.CrossRef |

Schwartz, M., and Vissing, J. (2003). [Paternal inheritance of mitochondrial DNA.] Ugeskr. Laeger 165, 3627–3630.

Sharpley, M. S., Marciniak, C., Eckel-Mahan, K., McManus, M., Crimi, M., Waymire, K., Lin, C. S., Masubuchi, S., Friend, N., Koike, M., Chalkia, D., MacGregor, G., Sassone-Corsi, P., and Wallace, D. C. (2012). Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell 151, 333–343.
Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition.CrossRef | 1:CAS:528:DC%2BC38XhsV2qtLjK&md5=323e0c4dc3a4dc4a0853b9674e4c0ce7CAS |

Shitara, H., Hayashi, J. I., Takahama, S., Kaneda, H., and Yonekawa, H. (1998). Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148, 851–857.
| 1:CAS:528:DyaK1cXks1eisbY%3D&md5=eb108ffb6e3f85edd8b857b6fdda54e3CAS |

Shitara, H., Kaneda, H., Sato, A., Inoue, K., Ogura, A., Yonekawa, H., and Hayashi, J. I. (2000). Selective and continuous elimination of mitochondria microinjected into mouse eggs from spermatids, but not from liver cells, occurs throughout embryogenesis. Genetics 156, 1277–1284.
| 1:CAS:528:DC%2BD3cXosFSntrw%3D&md5=9fcf11bb737774b446050ea32a2f1cb2CAS |

Shoubridge, E. A. (2000). Mitochondrial DNA segregation in the developing embryo. Hum. Reprod. 15, 229–234.
Mitochondrial DNA segregation in the developing embryo.CrossRef |

Song, W. H., Ballard, J. W., Yi, Y. J., and Sutovsky, P. (2014). Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. BioMed Res. Int. 2014, 981867.
Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility.CrossRef |

Song, W. H., Yi, Y. J., Sutovsky, M., Meyers, S., and Sutovsky, P. (2016a). The art and science of sperm mitophagy. Autophagy 12, 2510–2511.
The art and science of sperm mitophagy.CrossRef | 1:CAS:528:DC%2BC28Xhsl2gsLvE&md5=b727179af437552ea5ff340be029dd29CAS |

Song, W. H., Yi, Y. J., Sutovsky, M., Meyers, S., and Sutovsky, P. (2016b). Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl Acad. Sci. USA 113, E5261–E5270.
Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization.CrossRef | 1:CAS:528:DC%2BC28Xhtl2mtL%2FE&md5=4b6312f831775577f6bbca320cd0841aCAS |

St John, J. C. (2012). Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility. Cell Tissue Res. 349, 795–808.
Transmission, inheritance and replication of mitochondrial DNA in mammals: implications for reproductive processes and infertility.CrossRef | 1:CAS:528:DC%2BC38Xht1yltbjM&md5=7279ef73153f91890a6418c3e40c70c0CAS |

St John, J. C., Jokhi, R. P., and Barratt, C. L. (2005). The impact of mitochondrial genetics on male infertility. Int. J. Androl. 28, 65–73.
The impact of mitochondrial genetics on male infertility.CrossRef | 1:CAS:528:DC%2BD2MXjsVOmtrc%3D&md5=8fca1cd41d1e02a1b7568315ac8e6b05CAS |

Sutovsky, P., Navara, C. S., and Schatten, G. (1996). Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization. Biol. Reprod. 55, 1195–1205.
Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization.CrossRef | 1:CAS:528:DyaK2sXkvV2gtQ%3D%3D&md5=f6c07a82ff033470a3517726111dc74dCAS |

Sutovsky, P., Tengowski, M. W., Navara, C. S., Zoran, S. S., and Schatten, G. (1997). Mitochondrial sheath movement and detachment in mammalian, but not nonmammalian, sperm induced by disulfide bond reduction. Mol. Reprod. Dev. 47, 79–86.
Mitochondrial sheath movement and detachment in mammalian, but not nonmammalian, sperm induced by disulfide bond reduction.CrossRef | 1:CAS:528:DyaK2sXislGnurg%3D&md5=34758cf97a56f09582575c322e2ede62CAS |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (1999). Ubiquitin tag for sperm mitochondria. Nature 402, 371–372.
Ubiquitin tag for sperm mitochondria.CrossRef | 1:CAS:528:DyaK1MXnvVyktrs%3D&md5=e517e357610f60af3e6e5c0f8cef9f11CAS |

Sutovsky, P., Moreno, R. D., Ramalho-Santos, J., Dominko, T., Simerly, C., and Schatten, G. (2000). Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol. Reprod. 63, 582–590.
Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos.CrossRef | 1:CAS:528:DC%2BD3cXltl2gurw%3D&md5=bd8c45220a6a2ffc50b410d5d40ba287CAS |

Sutovsky, P., McCauley, T. C., Sutovsky, M., and Day, B. N. (2003). Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132. Biol. Reprod. 68, 1793–1800.
Early degradation of paternal mitochondria in domestic pig (Sus scrofa) is prevented by selective proteasomal inhibitors lactacystin and MG132.CrossRef | 1:CAS:528:DC%2BD3sXjt12ltL0%3D&md5=e58ca00373c7ce3e4c57ab3fe4cc32b7CAS |

Sutovsky, P., Van Leyen, K., McCauley, T., Day, B. N., and Sutovsky, M. (2004). Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod. Biomed. Online 8, 24–33.
Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance.CrossRef | 1:CAS:528:DC%2BD2cXht1Ojsb8%3D&md5=fa10646d9b13b554ad94f2d68cc45850CAS |

Szollosi, D. (1965). The fate of sperm middle-piece mitochondria in the rat egg. J. Exp. Zool. 159, 367–377.
The fate of sperm middle-piece mitochondria in the rat egg.CrossRef | 1:STN:280:DyaF287jvV2qtQ%3D%3D&md5=3228e6aa3b906c5a79961cc661bef0e6CAS |

Thompson, W. E., Ramalho-Santos, J., and Sutovsky, P. (2003). Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control. Biol. Reprod. 69, 254–260.
Ubiquitination of prohibitin in mammalian sperm mitochondria: possible roles in the regulation of mitochondrial inheritance and sperm quality control.CrossRef | 1:CAS:528:DC%2BD3sXkvFCntb4%3D&md5=407ce4c039e6cba50419c9738487c07cCAS |

Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A., and Mizushima, N. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120.
Autophagy is essential for preimplantation development of mouse embryos.CrossRef | 1:CAS:528:DC%2BD1cXnvFeksLc%3D&md5=3702338628b87799e61ca4db8d53099aCAS |

Vadlamudi, R. K., Joung, I., Strominger, J. L., and Shin, J. (1996). P62, a phosphotyrosine-independent ligand of the sh2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J. Biol. Chem. 271, 20235–20237.
P62, a phosphotyrosine-independent ligand of the sh2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins.CrossRef | 1:CAS:528:DyaK28Xlt1ygt7s%3D&md5=337618afc30724653fd551a7845cb39dCAS |

Wild, P., McEwan, D. G., and Dikic, I. (2014). The LC3 interactome at a glance. J. Cell Sci. 127, 3–9.
The LC3 interactome at a glance.CrossRef | 1:CAS:528:DC%2BC2cXis1egurc%3D&md5=c6a8d8979cebcb78093c20b9278f983eCAS |

Wolff, J. N., and Gemmell, N. J. (2013). Mitochondria, maternal inheritance, and asymmetric fitness: why males die younger. BioEssays 35, 93–99.
Mitochondria, maternal inheritance, and asymmetric fitness: why males die younger.CrossRef | 1:CAS:528:DC%2BC3sXhtVyiurs%3D&md5=e5b8edcfabdbb6d3b94b6787f6d89b9dCAS |

Wolff, J. N., Nafisinia, M., Sutovsky, P., and Ballard, J. W. (2013a). Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity (Edinb) 110, 57–62.
Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans.CrossRef | 1:CAS:528:DC%2BC38XhvVCltbvL&md5=1858513ff1b9f13659bae5e7c682caf4CAS |

Wolff, J. N., Sutovsky, P., and Ballard, J. W. (2013b). Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model drosophila. Cell Tissue Res. 353, 195–200.
Mitochondrial DNA content of mature spermatozoa and oocytes in the genetic model drosophila.CrossRef | 1:CAS:528:DC%2BC3sXhtVeitb7E&md5=2d820eca9092e359a03f75dc0c9bc62eCAS |

Xie, Z., and Klionsky, D. J. (2007). Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9, 1102–1109.
Autophagosome formation: core machinery and adaptations.CrossRef | 1:CAS:528:DC%2BD2sXhtFSntbzJ&md5=7a9f4b1f0cf6b278994644c3840657c2CAS |

Yang, H., Ni, H. M., Guo, F., Ding, Y., Shi, Y. H., Lahiri, P., Fröhlich, L. F., Rülicke, T., Smole, C., Schmidt, V. C., Zatloukal, K., Cui, Y., Komatsu, M., Fan, J., and Ding, W. X. (2016). Sequestosome 1/p62 protein is associated with autophagic removal of excess hepatic endoplasmic reticulum in mice. J. Biol. Chem. 291, 18663–18674.
Sequestosome 1/p62 protein is associated with autophagic removal of excess hepatic endoplasmic reticulum in mice.CrossRef | 1:CAS:528:DC%2BC28XhsVGgurnN&md5=3031ba6adbc46417ae20187619100033CAS |

Yi, Y. J., Sutovsky, M., Song, W. H., and Sutovsky, P. (2015). Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reprod. Fertil. Dev. 27, 1154–1167.
Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development.CrossRef | 1:CAS:528:DC%2BC2MXhs1Glu7nI&md5=c7ea592544f6a51c4113d5ca0ff19e6bCAS |

Zhou, Q., Li, H., and Xue, D. (2011). Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans. Cell Res. 21, 1662–1669.
Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans.CrossRef | 1:CAS:528:DC%2BC3MXhsFKms7bF&md5=d72806b7011a23ba3d564d7e1561cfdfCAS |

Zimmerman, S. W., Manandhar, G., Yi, Y. J., Gupta, S. K., Sutovsky, M., Odhiambo, J. F., Powell, M. D., Miller, D. J., and Sutovsky, P. (2011). Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization. PLoS One 6, e17256.
Sperm proteasomes degrade sperm receptor on the egg zona pellucida during mammalian fertilization.CrossRef | 1:CAS:528:DC%2BC3MXivFGgsL8%3D&md5=9fa979be6e633988696af230788097aaCAS |



Rent Article (via Deepdyve) Export Citation